irq: change ->set_affinity() to return status
[deliverable/linux.git] / arch / sparc / kernel / irq_64.c
1 /* irq.c: UltraSparc IRQ handling/init/registry.
2 *
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
6 */
7
8 #include <linux/module.h>
9 #include <linux/sched.h>
10 #include <linux/linkage.h>
11 #include <linux/ptrace.h>
12 #include <linux/errno.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/bootmem.h>
24 #include <linux/irq.h>
25
26 #include <asm/ptrace.h>
27 #include <asm/processor.h>
28 #include <asm/atomic.h>
29 #include <asm/system.h>
30 #include <asm/irq.h>
31 #include <asm/io.h>
32 #include <asm/iommu.h>
33 #include <asm/upa.h>
34 #include <asm/oplib.h>
35 #include <asm/prom.h>
36 #include <asm/timer.h>
37 #include <asm/smp.h>
38 #include <asm/starfire.h>
39 #include <asm/uaccess.h>
40 #include <asm/cache.h>
41 #include <asm/cpudata.h>
42 #include <asm/auxio.h>
43 #include <asm/head.h>
44 #include <asm/hypervisor.h>
45 #include <asm/cacheflush.h>
46
47 #include "entry.h"
48
49 #define NUM_IVECS (IMAP_INR + 1)
50
51 struct ino_bucket *ivector_table;
52 unsigned long ivector_table_pa;
53
54 /* On several sun4u processors, it is illegal to mix bypass and
55 * non-bypass accesses. Therefore we access all INO buckets
56 * using bypass accesses only.
57 */
58 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
59 {
60 unsigned long ret;
61
62 __asm__ __volatile__("ldxa [%1] %2, %0"
63 : "=&r" (ret)
64 : "r" (bucket_pa +
65 offsetof(struct ino_bucket,
66 __irq_chain_pa)),
67 "i" (ASI_PHYS_USE_EC));
68
69 return ret;
70 }
71
72 static void bucket_clear_chain_pa(unsigned long bucket_pa)
73 {
74 __asm__ __volatile__("stxa %%g0, [%0] %1"
75 : /* no outputs */
76 : "r" (bucket_pa +
77 offsetof(struct ino_bucket,
78 __irq_chain_pa)),
79 "i" (ASI_PHYS_USE_EC));
80 }
81
82 static unsigned int bucket_get_virt_irq(unsigned long bucket_pa)
83 {
84 unsigned int ret;
85
86 __asm__ __volatile__("lduwa [%1] %2, %0"
87 : "=&r" (ret)
88 : "r" (bucket_pa +
89 offsetof(struct ino_bucket,
90 __virt_irq)),
91 "i" (ASI_PHYS_USE_EC));
92
93 return ret;
94 }
95
96 static void bucket_set_virt_irq(unsigned long bucket_pa,
97 unsigned int virt_irq)
98 {
99 __asm__ __volatile__("stwa %0, [%1] %2"
100 : /* no outputs */
101 : "r" (virt_irq),
102 "r" (bucket_pa +
103 offsetof(struct ino_bucket,
104 __virt_irq)),
105 "i" (ASI_PHYS_USE_EC));
106 }
107
108 #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
109
110 static struct {
111 unsigned int dev_handle;
112 unsigned int dev_ino;
113 unsigned int in_use;
114 } virt_irq_table[NR_IRQS];
115 static DEFINE_SPINLOCK(virt_irq_alloc_lock);
116
117 unsigned char virt_irq_alloc(unsigned int dev_handle,
118 unsigned int dev_ino)
119 {
120 unsigned long flags;
121 unsigned char ent;
122
123 BUILD_BUG_ON(NR_IRQS >= 256);
124
125 spin_lock_irqsave(&virt_irq_alloc_lock, flags);
126
127 for (ent = 1; ent < NR_IRQS; ent++) {
128 if (!virt_irq_table[ent].in_use)
129 break;
130 }
131 if (ent >= NR_IRQS) {
132 printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
133 ent = 0;
134 } else {
135 virt_irq_table[ent].dev_handle = dev_handle;
136 virt_irq_table[ent].dev_ino = dev_ino;
137 virt_irq_table[ent].in_use = 1;
138 }
139
140 spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
141
142 return ent;
143 }
144
145 #ifdef CONFIG_PCI_MSI
146 void virt_irq_free(unsigned int virt_irq)
147 {
148 unsigned long flags;
149
150 if (virt_irq >= NR_IRQS)
151 return;
152
153 spin_lock_irqsave(&virt_irq_alloc_lock, flags);
154
155 virt_irq_table[virt_irq].in_use = 0;
156
157 spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
158 }
159 #endif
160
161 /*
162 * /proc/interrupts printing:
163 */
164
165 int show_interrupts(struct seq_file *p, void *v)
166 {
167 int i = *(loff_t *) v, j;
168 struct irqaction * action;
169 unsigned long flags;
170
171 if (i == 0) {
172 seq_printf(p, " ");
173 for_each_online_cpu(j)
174 seq_printf(p, "CPU%d ",j);
175 seq_putc(p, '\n');
176 }
177
178 if (i < NR_IRQS) {
179 spin_lock_irqsave(&irq_desc[i].lock, flags);
180 action = irq_desc[i].action;
181 if (!action)
182 goto skip;
183 seq_printf(p, "%3d: ",i);
184 #ifndef CONFIG_SMP
185 seq_printf(p, "%10u ", kstat_irqs(i));
186 #else
187 for_each_online_cpu(j)
188 seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
189 #endif
190 seq_printf(p, " %9s", irq_desc[i].chip->typename);
191 seq_printf(p, " %s", action->name);
192
193 for (action=action->next; action; action = action->next)
194 seq_printf(p, ", %s", action->name);
195
196 seq_putc(p, '\n');
197 skip:
198 spin_unlock_irqrestore(&irq_desc[i].lock, flags);
199 } else if (i == NR_IRQS) {
200 seq_printf(p, "NMI: ");
201 for_each_online_cpu(j)
202 seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
203 seq_printf(p, " Non-maskable interrupts\n");
204 }
205 return 0;
206 }
207
208 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
209 {
210 unsigned int tid;
211
212 if (this_is_starfire) {
213 tid = starfire_translate(imap, cpuid);
214 tid <<= IMAP_TID_SHIFT;
215 tid &= IMAP_TID_UPA;
216 } else {
217 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
218 unsigned long ver;
219
220 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
221 if ((ver >> 32UL) == __JALAPENO_ID ||
222 (ver >> 32UL) == __SERRANO_ID) {
223 tid = cpuid << IMAP_TID_SHIFT;
224 tid &= IMAP_TID_JBUS;
225 } else {
226 unsigned int a = cpuid & 0x1f;
227 unsigned int n = (cpuid >> 5) & 0x1f;
228
229 tid = ((a << IMAP_AID_SHIFT) |
230 (n << IMAP_NID_SHIFT));
231 tid &= (IMAP_AID_SAFARI |
232 IMAP_NID_SAFARI);;
233 }
234 } else {
235 tid = cpuid << IMAP_TID_SHIFT;
236 tid &= IMAP_TID_UPA;
237 }
238 }
239
240 return tid;
241 }
242
243 struct irq_handler_data {
244 unsigned long iclr;
245 unsigned long imap;
246
247 void (*pre_handler)(unsigned int, void *, void *);
248 void *arg1;
249 void *arg2;
250 };
251
252 #ifdef CONFIG_SMP
253 static int irq_choose_cpu(unsigned int virt_irq)
254 {
255 cpumask_t mask;
256 int cpuid;
257
258 cpumask_copy(&mask, irq_desc[virt_irq].affinity);
259 if (cpus_equal(mask, CPU_MASK_ALL)) {
260 static int irq_rover;
261 static DEFINE_SPINLOCK(irq_rover_lock);
262 unsigned long flags;
263
264 /* Round-robin distribution... */
265 do_round_robin:
266 spin_lock_irqsave(&irq_rover_lock, flags);
267
268 while (!cpu_online(irq_rover)) {
269 if (++irq_rover >= nr_cpu_ids)
270 irq_rover = 0;
271 }
272 cpuid = irq_rover;
273 do {
274 if (++irq_rover >= nr_cpu_ids)
275 irq_rover = 0;
276 } while (!cpu_online(irq_rover));
277
278 spin_unlock_irqrestore(&irq_rover_lock, flags);
279 } else {
280 cpumask_t tmp;
281
282 cpus_and(tmp, cpu_online_map, mask);
283
284 if (cpus_empty(tmp))
285 goto do_round_robin;
286
287 cpuid = first_cpu(tmp);
288 }
289
290 return cpuid;
291 }
292 #else
293 static int irq_choose_cpu(unsigned int virt_irq)
294 {
295 return real_hard_smp_processor_id();
296 }
297 #endif
298
299 static void sun4u_irq_enable(unsigned int virt_irq)
300 {
301 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
302
303 if (likely(data)) {
304 unsigned long cpuid, imap, val;
305 unsigned int tid;
306
307 cpuid = irq_choose_cpu(virt_irq);
308 imap = data->imap;
309
310 tid = sun4u_compute_tid(imap, cpuid);
311
312 val = upa_readq(imap);
313 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
314 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
315 val |= tid | IMAP_VALID;
316 upa_writeq(val, imap);
317 upa_writeq(ICLR_IDLE, data->iclr);
318 }
319 }
320
321 static int sun4u_set_affinity(unsigned int virt_irq,
322 const struct cpumask *mask)
323 {
324 sun4u_irq_enable(virt_irq);
325
326 return 0;
327 }
328
329 /* Don't do anything. The desc->status check for IRQ_DISABLED in
330 * handler_irq() will skip the handler call and that will leave the
331 * interrupt in the sent state. The next ->enable() call will hit the
332 * ICLR register to reset the state machine.
333 *
334 * This scheme is necessary, instead of clearing the Valid bit in the
335 * IMAP register, to handle the case of IMAP registers being shared by
336 * multiple INOs (and thus ICLR registers). Since we use a different
337 * virtual IRQ for each shared IMAP instance, the generic code thinks
338 * there is only one user so it prematurely calls ->disable() on
339 * free_irq().
340 *
341 * We have to provide an explicit ->disable() method instead of using
342 * NULL to get the default. The reason is that if the generic code
343 * sees that, it also hooks up a default ->shutdown method which
344 * invokes ->mask() which we do not want. See irq_chip_set_defaults().
345 */
346 static void sun4u_irq_disable(unsigned int virt_irq)
347 {
348 }
349
350 static void sun4u_irq_eoi(unsigned int virt_irq)
351 {
352 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
353 struct irq_desc *desc = irq_desc + virt_irq;
354
355 if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
356 return;
357
358 if (likely(data))
359 upa_writeq(ICLR_IDLE, data->iclr);
360 }
361
362 static void sun4v_irq_enable(unsigned int virt_irq)
363 {
364 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
365 unsigned long cpuid = irq_choose_cpu(virt_irq);
366 int err;
367
368 err = sun4v_intr_settarget(ino, cpuid);
369 if (err != HV_EOK)
370 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
371 "err(%d)\n", ino, cpuid, err);
372 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
373 if (err != HV_EOK)
374 printk(KERN_ERR "sun4v_intr_setstate(%x): "
375 "err(%d)\n", ino, err);
376 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
377 if (err != HV_EOK)
378 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
379 ino, err);
380 }
381
382 static int sun4v_set_affinity(unsigned int virt_irq,
383 const struct cpumask *mask)
384 {
385 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
386 unsigned long cpuid = irq_choose_cpu(virt_irq);
387 int err;
388
389 err = sun4v_intr_settarget(ino, cpuid);
390 if (err != HV_EOK)
391 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
392 "err(%d)\n", ino, cpuid, err);
393
394 return 0;
395 }
396
397 static void sun4v_irq_disable(unsigned int virt_irq)
398 {
399 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
400 int err;
401
402 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
403 if (err != HV_EOK)
404 printk(KERN_ERR "sun4v_intr_setenabled(%x): "
405 "err(%d)\n", ino, err);
406 }
407
408 static void sun4v_irq_eoi(unsigned int virt_irq)
409 {
410 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
411 struct irq_desc *desc = irq_desc + virt_irq;
412 int err;
413
414 if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
415 return;
416
417 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
418 if (err != HV_EOK)
419 printk(KERN_ERR "sun4v_intr_setstate(%x): "
420 "err(%d)\n", ino, err);
421 }
422
423 static void sun4v_virq_enable(unsigned int virt_irq)
424 {
425 unsigned long cpuid, dev_handle, dev_ino;
426 int err;
427
428 cpuid = irq_choose_cpu(virt_irq);
429
430 dev_handle = virt_irq_table[virt_irq].dev_handle;
431 dev_ino = virt_irq_table[virt_irq].dev_ino;
432
433 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
434 if (err != HV_EOK)
435 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
436 "err(%d)\n",
437 dev_handle, dev_ino, cpuid, err);
438 err = sun4v_vintr_set_state(dev_handle, dev_ino,
439 HV_INTR_STATE_IDLE);
440 if (err != HV_EOK)
441 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
442 "HV_INTR_STATE_IDLE): err(%d)\n",
443 dev_handle, dev_ino, err);
444 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
445 HV_INTR_ENABLED);
446 if (err != HV_EOK)
447 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
448 "HV_INTR_ENABLED): err(%d)\n",
449 dev_handle, dev_ino, err);
450 }
451
452 static int sun4v_virt_set_affinity(unsigned int virt_irq,
453 const struct cpumask *mask)
454 {
455 unsigned long cpuid, dev_handle, dev_ino;
456 int err;
457
458 cpuid = irq_choose_cpu(virt_irq);
459
460 dev_handle = virt_irq_table[virt_irq].dev_handle;
461 dev_ino = virt_irq_table[virt_irq].dev_ino;
462
463 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
464 if (err != HV_EOK)
465 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
466 "err(%d)\n",
467 dev_handle, dev_ino, cpuid, err);
468
469 return 0;
470 }
471
472 static void sun4v_virq_disable(unsigned int virt_irq)
473 {
474 unsigned long dev_handle, dev_ino;
475 int err;
476
477 dev_handle = virt_irq_table[virt_irq].dev_handle;
478 dev_ino = virt_irq_table[virt_irq].dev_ino;
479
480 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
481 HV_INTR_DISABLED);
482 if (err != HV_EOK)
483 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
484 "HV_INTR_DISABLED): err(%d)\n",
485 dev_handle, dev_ino, err);
486 }
487
488 static void sun4v_virq_eoi(unsigned int virt_irq)
489 {
490 struct irq_desc *desc = irq_desc + virt_irq;
491 unsigned long dev_handle, dev_ino;
492 int err;
493
494 if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
495 return;
496
497 dev_handle = virt_irq_table[virt_irq].dev_handle;
498 dev_ino = virt_irq_table[virt_irq].dev_ino;
499
500 err = sun4v_vintr_set_state(dev_handle, dev_ino,
501 HV_INTR_STATE_IDLE);
502 if (err != HV_EOK)
503 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
504 "HV_INTR_STATE_IDLE): err(%d)\n",
505 dev_handle, dev_ino, err);
506 }
507
508 static struct irq_chip sun4u_irq = {
509 .typename = "sun4u",
510 .enable = sun4u_irq_enable,
511 .disable = sun4u_irq_disable,
512 .eoi = sun4u_irq_eoi,
513 .set_affinity = sun4u_set_affinity,
514 };
515
516 static struct irq_chip sun4v_irq = {
517 .typename = "sun4v",
518 .enable = sun4v_irq_enable,
519 .disable = sun4v_irq_disable,
520 .eoi = sun4v_irq_eoi,
521 .set_affinity = sun4v_set_affinity,
522 };
523
524 static struct irq_chip sun4v_virq = {
525 .typename = "vsun4v",
526 .enable = sun4v_virq_enable,
527 .disable = sun4v_virq_disable,
528 .eoi = sun4v_virq_eoi,
529 .set_affinity = sun4v_virt_set_affinity,
530 };
531
532 static void pre_flow_handler(unsigned int virt_irq,
533 struct irq_desc *desc)
534 {
535 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
536 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
537
538 data->pre_handler(ino, data->arg1, data->arg2);
539
540 handle_fasteoi_irq(virt_irq, desc);
541 }
542
543 void irq_install_pre_handler(int virt_irq,
544 void (*func)(unsigned int, void *, void *),
545 void *arg1, void *arg2)
546 {
547 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
548 struct irq_desc *desc = irq_desc + virt_irq;
549
550 data->pre_handler = func;
551 data->arg1 = arg1;
552 data->arg2 = arg2;
553
554 desc->handle_irq = pre_flow_handler;
555 }
556
557 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
558 {
559 struct ino_bucket *bucket;
560 struct irq_handler_data *data;
561 unsigned int virt_irq;
562 int ino;
563
564 BUG_ON(tlb_type == hypervisor);
565
566 ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
567 bucket = &ivector_table[ino];
568 virt_irq = bucket_get_virt_irq(__pa(bucket));
569 if (!virt_irq) {
570 virt_irq = virt_irq_alloc(0, ino);
571 bucket_set_virt_irq(__pa(bucket), virt_irq);
572 set_irq_chip_and_handler_name(virt_irq,
573 &sun4u_irq,
574 handle_fasteoi_irq,
575 "IVEC");
576 }
577
578 data = get_irq_chip_data(virt_irq);
579 if (unlikely(data))
580 goto out;
581
582 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
583 if (unlikely(!data)) {
584 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
585 prom_halt();
586 }
587 set_irq_chip_data(virt_irq, data);
588
589 data->imap = imap;
590 data->iclr = iclr;
591
592 out:
593 return virt_irq;
594 }
595
596 static unsigned int sun4v_build_common(unsigned long sysino,
597 struct irq_chip *chip)
598 {
599 struct ino_bucket *bucket;
600 struct irq_handler_data *data;
601 unsigned int virt_irq;
602
603 BUG_ON(tlb_type != hypervisor);
604
605 bucket = &ivector_table[sysino];
606 virt_irq = bucket_get_virt_irq(__pa(bucket));
607 if (!virt_irq) {
608 virt_irq = virt_irq_alloc(0, sysino);
609 bucket_set_virt_irq(__pa(bucket), virt_irq);
610 set_irq_chip_and_handler_name(virt_irq, chip,
611 handle_fasteoi_irq,
612 "IVEC");
613 }
614
615 data = get_irq_chip_data(virt_irq);
616 if (unlikely(data))
617 goto out;
618
619 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
620 if (unlikely(!data)) {
621 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
622 prom_halt();
623 }
624 set_irq_chip_data(virt_irq, data);
625
626 /* Catch accidental accesses to these things. IMAP/ICLR handling
627 * is done by hypervisor calls on sun4v platforms, not by direct
628 * register accesses.
629 */
630 data->imap = ~0UL;
631 data->iclr = ~0UL;
632
633 out:
634 return virt_irq;
635 }
636
637 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
638 {
639 unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
640
641 return sun4v_build_common(sysino, &sun4v_irq);
642 }
643
644 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
645 {
646 struct irq_handler_data *data;
647 unsigned long hv_err, cookie;
648 struct ino_bucket *bucket;
649 struct irq_desc *desc;
650 unsigned int virt_irq;
651
652 bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
653 if (unlikely(!bucket))
654 return 0;
655 __flush_dcache_range((unsigned long) bucket,
656 ((unsigned long) bucket +
657 sizeof(struct ino_bucket)));
658
659 virt_irq = virt_irq_alloc(devhandle, devino);
660 bucket_set_virt_irq(__pa(bucket), virt_irq);
661
662 set_irq_chip_and_handler_name(virt_irq, &sun4v_virq,
663 handle_fasteoi_irq,
664 "IVEC");
665
666 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
667 if (unlikely(!data))
668 return 0;
669
670 /* In order to make the LDC channel startup sequence easier,
671 * especially wrt. locking, we do not let request_irq() enable
672 * the interrupt.
673 */
674 desc = irq_desc + virt_irq;
675 desc->status |= IRQ_NOAUTOEN;
676
677 set_irq_chip_data(virt_irq, data);
678
679 /* Catch accidental accesses to these things. IMAP/ICLR handling
680 * is done by hypervisor calls on sun4v platforms, not by direct
681 * register accesses.
682 */
683 data->imap = ~0UL;
684 data->iclr = ~0UL;
685
686 cookie = ~__pa(bucket);
687 hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
688 if (hv_err) {
689 prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
690 "err=%lu\n", devhandle, devino, hv_err);
691 prom_halt();
692 }
693
694 return virt_irq;
695 }
696
697 void ack_bad_irq(unsigned int virt_irq)
698 {
699 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
700
701 if (!ino)
702 ino = 0xdeadbeef;
703
704 printk(KERN_CRIT "Unexpected IRQ from ino[%x] virt_irq[%u]\n",
705 ino, virt_irq);
706 }
707
708 void *hardirq_stack[NR_CPUS];
709 void *softirq_stack[NR_CPUS];
710
711 static __attribute__((always_inline)) void *set_hardirq_stack(void)
712 {
713 void *orig_sp, *sp = hardirq_stack[smp_processor_id()];
714
715 __asm__ __volatile__("mov %%sp, %0" : "=r" (orig_sp));
716 if (orig_sp < sp ||
717 orig_sp > (sp + THREAD_SIZE)) {
718 sp += THREAD_SIZE - 192 - STACK_BIAS;
719 __asm__ __volatile__("mov %0, %%sp" : : "r" (sp));
720 }
721
722 return orig_sp;
723 }
724 static __attribute__((always_inline)) void restore_hardirq_stack(void *orig_sp)
725 {
726 __asm__ __volatile__("mov %0, %%sp" : : "r" (orig_sp));
727 }
728
729 void handler_irq(int irq, struct pt_regs *regs)
730 {
731 unsigned long pstate, bucket_pa;
732 struct pt_regs *old_regs;
733 void *orig_sp;
734
735 clear_softint(1 << irq);
736
737 old_regs = set_irq_regs(regs);
738 irq_enter();
739
740 /* Grab an atomic snapshot of the pending IVECs. */
741 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
742 "wrpr %0, %3, %%pstate\n\t"
743 "ldx [%2], %1\n\t"
744 "stx %%g0, [%2]\n\t"
745 "wrpr %0, 0x0, %%pstate\n\t"
746 : "=&r" (pstate), "=&r" (bucket_pa)
747 : "r" (irq_work_pa(smp_processor_id())),
748 "i" (PSTATE_IE)
749 : "memory");
750
751 orig_sp = set_hardirq_stack();
752
753 while (bucket_pa) {
754 struct irq_desc *desc;
755 unsigned long next_pa;
756 unsigned int virt_irq;
757
758 next_pa = bucket_get_chain_pa(bucket_pa);
759 virt_irq = bucket_get_virt_irq(bucket_pa);
760 bucket_clear_chain_pa(bucket_pa);
761
762 desc = irq_desc + virt_irq;
763
764 if (!(desc->status & IRQ_DISABLED))
765 desc->handle_irq(virt_irq, desc);
766
767 bucket_pa = next_pa;
768 }
769
770 restore_hardirq_stack(orig_sp);
771
772 irq_exit();
773 set_irq_regs(old_regs);
774 }
775
776 void do_softirq(void)
777 {
778 unsigned long flags;
779
780 if (in_interrupt())
781 return;
782
783 local_irq_save(flags);
784
785 if (local_softirq_pending()) {
786 void *orig_sp, *sp = softirq_stack[smp_processor_id()];
787
788 sp += THREAD_SIZE - 192 - STACK_BIAS;
789
790 __asm__ __volatile__("mov %%sp, %0\n\t"
791 "mov %1, %%sp"
792 : "=&r" (orig_sp)
793 : "r" (sp));
794 __do_softirq();
795 __asm__ __volatile__("mov %0, %%sp"
796 : : "r" (orig_sp));
797 }
798
799 local_irq_restore(flags);
800 }
801
802 #ifdef CONFIG_HOTPLUG_CPU
803 void fixup_irqs(void)
804 {
805 unsigned int irq;
806
807 for (irq = 0; irq < NR_IRQS; irq++) {
808 unsigned long flags;
809
810 spin_lock_irqsave(&irq_desc[irq].lock, flags);
811 if (irq_desc[irq].action &&
812 !(irq_desc[irq].status & IRQ_PER_CPU)) {
813 if (irq_desc[irq].chip->set_affinity)
814 irq_desc[irq].chip->set_affinity(irq,
815 irq_desc[irq].affinity);
816 }
817 spin_unlock_irqrestore(&irq_desc[irq].lock, flags);
818 }
819
820 tick_ops->disable_irq();
821 }
822 #endif
823
824 struct sun5_timer {
825 u64 count0;
826 u64 limit0;
827 u64 count1;
828 u64 limit1;
829 };
830
831 static struct sun5_timer *prom_timers;
832 static u64 prom_limit0, prom_limit1;
833
834 static void map_prom_timers(void)
835 {
836 struct device_node *dp;
837 const unsigned int *addr;
838
839 /* PROM timer node hangs out in the top level of device siblings... */
840 dp = of_find_node_by_path("/");
841 dp = dp->child;
842 while (dp) {
843 if (!strcmp(dp->name, "counter-timer"))
844 break;
845 dp = dp->sibling;
846 }
847
848 /* Assume if node is not present, PROM uses different tick mechanism
849 * which we should not care about.
850 */
851 if (!dp) {
852 prom_timers = (struct sun5_timer *) 0;
853 return;
854 }
855
856 /* If PROM is really using this, it must be mapped by him. */
857 addr = of_get_property(dp, "address", NULL);
858 if (!addr) {
859 prom_printf("PROM does not have timer mapped, trying to continue.\n");
860 prom_timers = (struct sun5_timer *) 0;
861 return;
862 }
863 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
864 }
865
866 static void kill_prom_timer(void)
867 {
868 if (!prom_timers)
869 return;
870
871 /* Save them away for later. */
872 prom_limit0 = prom_timers->limit0;
873 prom_limit1 = prom_timers->limit1;
874
875 /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
876 * We turn both off here just to be paranoid.
877 */
878 prom_timers->limit0 = 0;
879 prom_timers->limit1 = 0;
880
881 /* Wheee, eat the interrupt packet too... */
882 __asm__ __volatile__(
883 " mov 0x40, %%g2\n"
884 " ldxa [%%g0] %0, %%g1\n"
885 " ldxa [%%g2] %1, %%g1\n"
886 " stxa %%g0, [%%g0] %0\n"
887 " membar #Sync\n"
888 : /* no outputs */
889 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
890 : "g1", "g2");
891 }
892
893 void notrace init_irqwork_curcpu(void)
894 {
895 int cpu = hard_smp_processor_id();
896
897 trap_block[cpu].irq_worklist_pa = 0UL;
898 }
899
900 /* Please be very careful with register_one_mondo() and
901 * sun4v_register_mondo_queues().
902 *
903 * On SMP this gets invoked from the CPU trampoline before
904 * the cpu has fully taken over the trap table from OBP,
905 * and it's kernel stack + %g6 thread register state is
906 * not fully cooked yet.
907 *
908 * Therefore you cannot make any OBP calls, not even prom_printf,
909 * from these two routines.
910 */
911 static void __cpuinit register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
912 {
913 unsigned long num_entries = (qmask + 1) / 64;
914 unsigned long status;
915
916 status = sun4v_cpu_qconf(type, paddr, num_entries);
917 if (status != HV_EOK) {
918 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
919 "err %lu\n", type, paddr, num_entries, status);
920 prom_halt();
921 }
922 }
923
924 void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
925 {
926 struct trap_per_cpu *tb = &trap_block[this_cpu];
927
928 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
929 tb->cpu_mondo_qmask);
930 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
931 tb->dev_mondo_qmask);
932 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
933 tb->resum_qmask);
934 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
935 tb->nonresum_qmask);
936 }
937
938 static void __init alloc_one_mondo(unsigned long *pa_ptr, unsigned long qmask)
939 {
940 unsigned long size = PAGE_ALIGN(qmask + 1);
941 void *p = __alloc_bootmem(size, size, 0);
942 if (!p) {
943 prom_printf("SUN4V: Error, cannot allocate mondo queue.\n");
944 prom_halt();
945 }
946
947 *pa_ptr = __pa(p);
948 }
949
950 static void __init alloc_one_kbuf(unsigned long *pa_ptr, unsigned long qmask)
951 {
952 unsigned long size = PAGE_ALIGN(qmask + 1);
953 void *p = __alloc_bootmem(size, size, 0);
954
955 if (!p) {
956 prom_printf("SUN4V: Error, cannot allocate kbuf page.\n");
957 prom_halt();
958 }
959
960 *pa_ptr = __pa(p);
961 }
962
963 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
964 {
965 #ifdef CONFIG_SMP
966 void *page;
967
968 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
969
970 page = alloc_bootmem_pages(PAGE_SIZE);
971 if (!page) {
972 prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
973 prom_halt();
974 }
975
976 tb->cpu_mondo_block_pa = __pa(page);
977 tb->cpu_list_pa = __pa(page + 64);
978 #endif
979 }
980
981 /* Allocate mondo and error queues for all possible cpus. */
982 static void __init sun4v_init_mondo_queues(void)
983 {
984 int cpu;
985
986 for_each_possible_cpu(cpu) {
987 struct trap_per_cpu *tb = &trap_block[cpu];
988
989 alloc_one_mondo(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
990 alloc_one_mondo(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
991 alloc_one_mondo(&tb->resum_mondo_pa, tb->resum_qmask);
992 alloc_one_kbuf(&tb->resum_kernel_buf_pa, tb->resum_qmask);
993 alloc_one_mondo(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
994 alloc_one_kbuf(&tb->nonresum_kernel_buf_pa,
995 tb->nonresum_qmask);
996 }
997 }
998
999 static void __init init_send_mondo_info(void)
1000 {
1001 int cpu;
1002
1003 for_each_possible_cpu(cpu) {
1004 struct trap_per_cpu *tb = &trap_block[cpu];
1005
1006 init_cpu_send_mondo_info(tb);
1007 }
1008 }
1009
1010 static struct irqaction timer_irq_action = {
1011 .name = "timer",
1012 };
1013
1014 /* Only invoked on boot processor. */
1015 void __init init_IRQ(void)
1016 {
1017 unsigned long size;
1018
1019 map_prom_timers();
1020 kill_prom_timer();
1021
1022 size = sizeof(struct ino_bucket) * NUM_IVECS;
1023 ivector_table = alloc_bootmem(size);
1024 if (!ivector_table) {
1025 prom_printf("Fatal error, cannot allocate ivector_table\n");
1026 prom_halt();
1027 }
1028 __flush_dcache_range((unsigned long) ivector_table,
1029 ((unsigned long) ivector_table) + size);
1030
1031 ivector_table_pa = __pa(ivector_table);
1032
1033 if (tlb_type == hypervisor)
1034 sun4v_init_mondo_queues();
1035
1036 init_send_mondo_info();
1037
1038 if (tlb_type == hypervisor) {
1039 /* Load up the boot cpu's entries. */
1040 sun4v_register_mondo_queues(hard_smp_processor_id());
1041 }
1042
1043 /* We need to clear any IRQ's pending in the soft interrupt
1044 * registers, a spurious one could be left around from the
1045 * PROM timer which we just disabled.
1046 */
1047 clear_softint(get_softint());
1048
1049 /* Now that ivector table is initialized, it is safe
1050 * to receive IRQ vector traps. We will normally take
1051 * one or two right now, in case some device PROM used
1052 * to boot us wants to speak to us. We just ignore them.
1053 */
1054 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
1055 "or %%g1, %0, %%g1\n\t"
1056 "wrpr %%g1, 0x0, %%pstate"
1057 : /* No outputs */
1058 : "i" (PSTATE_IE)
1059 : "g1");
1060
1061 irq_desc[0].action = &timer_irq_action;
1062 }
This page took 0.165748 seconds and 5 git commands to generate.