sparc: move of_device common code to of_device_common
[deliverable/linux.git] / arch / sparc / kernel / of_device_64.c
1 #include <linux/string.h>
2 #include <linux/kernel.h>
3 #include <linux/of.h>
4 #include <linux/init.h>
5 #include <linux/module.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/slab.h>
8 #include <linux/errno.h>
9 #include <linux/irq.h>
10 #include <linux/of_device.h>
11 #include <linux/of_platform.h>
12
13 #include "of_device_common.h"
14
15 void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name)
16 {
17 unsigned long ret = res->start + offset;
18 struct resource *r;
19
20 if (res->flags & IORESOURCE_MEM)
21 r = request_mem_region(ret, size, name);
22 else
23 r = request_region(ret, size, name);
24 if (!r)
25 ret = 0;
26
27 return (void __iomem *) ret;
28 }
29 EXPORT_SYMBOL(of_ioremap);
30
31 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
32 {
33 if (res->flags & IORESOURCE_MEM)
34 release_mem_region((unsigned long) base, size);
35 else
36 release_region((unsigned long) base, size);
37 }
38 EXPORT_SYMBOL(of_iounmap);
39
40 /*
41 * PCI bus specific translator
42 */
43
44 static int of_bus_pci_match(struct device_node *np)
45 {
46 if (!strcmp(np->name, "pci")) {
47 const char *model = of_get_property(np, "model", NULL);
48
49 if (model && !strcmp(model, "SUNW,simba"))
50 return 0;
51
52 /* Do not do PCI specific frobbing if the
53 * PCI bridge lacks a ranges property. We
54 * want to pass it through up to the next
55 * parent as-is, not with the PCI translate
56 * method which chops off the top address cell.
57 */
58 if (!of_find_property(np, "ranges", NULL))
59 return 0;
60
61 return 1;
62 }
63
64 return 0;
65 }
66
67 static int of_bus_simba_match(struct device_node *np)
68 {
69 const char *model = of_get_property(np, "model", NULL);
70
71 if (model && !strcmp(model, "SUNW,simba"))
72 return 1;
73
74 /* Treat PCI busses lacking ranges property just like
75 * simba.
76 */
77 if (!strcmp(np->name, "pci")) {
78 if (!of_find_property(np, "ranges", NULL))
79 return 1;
80 }
81
82 return 0;
83 }
84
85 static int of_bus_simba_map(u32 *addr, const u32 *range,
86 int na, int ns, int pna)
87 {
88 return 0;
89 }
90
91 static void of_bus_pci_count_cells(struct device_node *np,
92 int *addrc, int *sizec)
93 {
94 if (addrc)
95 *addrc = 3;
96 if (sizec)
97 *sizec = 2;
98 }
99
100 static int of_bus_pci_map(u32 *addr, const u32 *range,
101 int na, int ns, int pna)
102 {
103 u32 result[OF_MAX_ADDR_CELLS];
104 int i;
105
106 /* Check address type match */
107 if ((addr[0] ^ range[0]) & 0x03000000)
108 return -EINVAL;
109
110 if (of_out_of_range(addr + 1, range + 1, range + na + pna,
111 na - 1, ns))
112 return -EINVAL;
113
114 /* Start with the parent range base. */
115 memcpy(result, range + na, pna * 4);
116
117 /* Add in the child address offset, skipping high cell. */
118 for (i = 0; i < na - 1; i++)
119 result[pna - 1 - i] +=
120 (addr[na - 1 - i] -
121 range[na - 1 - i]);
122
123 memcpy(addr, result, pna * 4);
124
125 return 0;
126 }
127
128 static unsigned long of_bus_pci_get_flags(const u32 *addr, unsigned long flags)
129 {
130 u32 w = addr[0];
131
132 /* For PCI, we override whatever child busses may have used. */
133 flags = 0;
134 switch((w >> 24) & 0x03) {
135 case 0x01:
136 flags |= IORESOURCE_IO;
137 break;
138
139 case 0x02: /* 32 bits */
140 case 0x03: /* 64 bits */
141 flags |= IORESOURCE_MEM;
142 break;
143 }
144 if (w & 0x40000000)
145 flags |= IORESOURCE_PREFETCH;
146 return flags;
147 }
148
149 /*
150 * FHC/Central bus specific translator.
151 *
152 * This is just needed to hard-code the address and size cell
153 * counts. 'fhc' and 'central' nodes lack the #address-cells and
154 * #size-cells properties, and if you walk to the root on such
155 * Enterprise boxes all you'll get is a #size-cells of 2 which is
156 * not what we want to use.
157 */
158 static int of_bus_fhc_match(struct device_node *np)
159 {
160 return !strcmp(np->name, "fhc") ||
161 !strcmp(np->name, "central");
162 }
163
164 #define of_bus_fhc_count_cells of_bus_sbus_count_cells
165
166 /*
167 * Array of bus specific translators
168 */
169
170 static struct of_bus of_busses[] = {
171 /* PCI */
172 {
173 .name = "pci",
174 .addr_prop_name = "assigned-addresses",
175 .match = of_bus_pci_match,
176 .count_cells = of_bus_pci_count_cells,
177 .map = of_bus_pci_map,
178 .get_flags = of_bus_pci_get_flags,
179 },
180 /* SIMBA */
181 {
182 .name = "simba",
183 .addr_prop_name = "assigned-addresses",
184 .match = of_bus_simba_match,
185 .count_cells = of_bus_pci_count_cells,
186 .map = of_bus_simba_map,
187 .get_flags = of_bus_pci_get_flags,
188 },
189 /* SBUS */
190 {
191 .name = "sbus",
192 .addr_prop_name = "reg",
193 .match = of_bus_sbus_match,
194 .count_cells = of_bus_sbus_count_cells,
195 .map = of_bus_default_map,
196 .get_flags = of_bus_default_get_flags,
197 },
198 /* FHC */
199 {
200 .name = "fhc",
201 .addr_prop_name = "reg",
202 .match = of_bus_fhc_match,
203 .count_cells = of_bus_fhc_count_cells,
204 .map = of_bus_default_map,
205 .get_flags = of_bus_default_get_flags,
206 },
207 /* Default */
208 {
209 .name = "default",
210 .addr_prop_name = "reg",
211 .match = NULL,
212 .count_cells = of_bus_default_count_cells,
213 .map = of_bus_default_map,
214 .get_flags = of_bus_default_get_flags,
215 },
216 };
217
218 static struct of_bus *of_match_bus(struct device_node *np)
219 {
220 int i;
221
222 for (i = 0; i < ARRAY_SIZE(of_busses); i ++)
223 if (!of_busses[i].match || of_busses[i].match(np))
224 return &of_busses[i];
225 BUG();
226 return NULL;
227 }
228
229 static int __init build_one_resource(struct device_node *parent,
230 struct of_bus *bus,
231 struct of_bus *pbus,
232 u32 *addr,
233 int na, int ns, int pna)
234 {
235 const u32 *ranges;
236 int rone, rlen;
237
238 ranges = of_get_property(parent, "ranges", &rlen);
239 if (ranges == NULL || rlen == 0) {
240 u32 result[OF_MAX_ADDR_CELLS];
241 int i;
242
243 memset(result, 0, pna * 4);
244 for (i = 0; i < na; i++)
245 result[pna - 1 - i] =
246 addr[na - 1 - i];
247
248 memcpy(addr, result, pna * 4);
249 return 0;
250 }
251
252 /* Now walk through the ranges */
253 rlen /= 4;
254 rone = na + pna + ns;
255 for (; rlen >= rone; rlen -= rone, ranges += rone) {
256 if (!bus->map(addr, ranges, na, ns, pna))
257 return 0;
258 }
259
260 /* When we miss an I/O space match on PCI, just pass it up
261 * to the next PCI bridge and/or controller.
262 */
263 if (!strcmp(bus->name, "pci") &&
264 (addr[0] & 0x03000000) == 0x01000000)
265 return 0;
266
267 return 1;
268 }
269
270 static int __init use_1to1_mapping(struct device_node *pp)
271 {
272 /* If we have a ranges property in the parent, use it. */
273 if (of_find_property(pp, "ranges", NULL) != NULL)
274 return 0;
275
276 /* If the parent is the dma node of an ISA bus, pass
277 * the translation up to the root.
278 *
279 * Some SBUS devices use intermediate nodes to express
280 * hierarchy within the device itself. These aren't
281 * real bus nodes, and don't have a 'ranges' property.
282 * But, we should still pass the translation work up
283 * to the SBUS itself.
284 */
285 if (!strcmp(pp->name, "dma") ||
286 !strcmp(pp->name, "espdma") ||
287 !strcmp(pp->name, "ledma") ||
288 !strcmp(pp->name, "lebuffer"))
289 return 0;
290
291 /* Similarly for all PCI bridges, if we get this far
292 * it lacks a ranges property, and this will include
293 * cases like Simba.
294 */
295 if (!strcmp(pp->name, "pci"))
296 return 0;
297
298 return 1;
299 }
300
301 static int of_resource_verbose;
302
303 static void __init build_device_resources(struct of_device *op,
304 struct device *parent)
305 {
306 struct of_device *p_op;
307 struct of_bus *bus;
308 int na, ns;
309 int index, num_reg;
310 const void *preg;
311
312 if (!parent)
313 return;
314
315 p_op = to_of_device(parent);
316 bus = of_match_bus(p_op->node);
317 bus->count_cells(op->node, &na, &ns);
318
319 preg = of_get_property(op->node, bus->addr_prop_name, &num_reg);
320 if (!preg || num_reg == 0)
321 return;
322
323 /* Convert to num-cells. */
324 num_reg /= 4;
325
326 /* Convert to num-entries. */
327 num_reg /= na + ns;
328
329 /* Prevent overrunning the op->resources[] array. */
330 if (num_reg > PROMREG_MAX) {
331 printk(KERN_WARNING "%s: Too many regs (%d), "
332 "limiting to %d.\n",
333 op->node->full_name, num_reg, PROMREG_MAX);
334 num_reg = PROMREG_MAX;
335 }
336
337 for (index = 0; index < num_reg; index++) {
338 struct resource *r = &op->resource[index];
339 u32 addr[OF_MAX_ADDR_CELLS];
340 const u32 *reg = (preg + (index * ((na + ns) * 4)));
341 struct device_node *dp = op->node;
342 struct device_node *pp = p_op->node;
343 struct of_bus *pbus, *dbus;
344 u64 size, result = OF_BAD_ADDR;
345 unsigned long flags;
346 int dna, dns;
347 int pna, pns;
348
349 size = of_read_addr(reg + na, ns);
350 memcpy(addr, reg, na * 4);
351
352 flags = bus->get_flags(addr, 0);
353
354 if (use_1to1_mapping(pp)) {
355 result = of_read_addr(addr, na);
356 goto build_res;
357 }
358
359 dna = na;
360 dns = ns;
361 dbus = bus;
362
363 while (1) {
364 dp = pp;
365 pp = dp->parent;
366 if (!pp) {
367 result = of_read_addr(addr, dna);
368 break;
369 }
370
371 pbus = of_match_bus(pp);
372 pbus->count_cells(dp, &pna, &pns);
373
374 if (build_one_resource(dp, dbus, pbus, addr,
375 dna, dns, pna))
376 break;
377
378 flags = pbus->get_flags(addr, flags);
379
380 dna = pna;
381 dns = pns;
382 dbus = pbus;
383 }
384
385 build_res:
386 memset(r, 0, sizeof(*r));
387
388 if (of_resource_verbose)
389 printk("%s reg[%d] -> %llx\n",
390 op->node->full_name, index,
391 result);
392
393 if (result != OF_BAD_ADDR) {
394 if (tlb_type == hypervisor)
395 result &= 0x0fffffffffffffffUL;
396
397 r->start = result;
398 r->end = result + size - 1;
399 r->flags = flags;
400 }
401 r->name = op->node->name;
402 }
403 }
404
405 static struct device_node * __init
406 apply_interrupt_map(struct device_node *dp, struct device_node *pp,
407 const u32 *imap, int imlen, const u32 *imask,
408 unsigned int *irq_p)
409 {
410 struct device_node *cp;
411 unsigned int irq = *irq_p;
412 struct of_bus *bus;
413 phandle handle;
414 const u32 *reg;
415 int na, num_reg, i;
416
417 bus = of_match_bus(pp);
418 bus->count_cells(dp, &na, NULL);
419
420 reg = of_get_property(dp, "reg", &num_reg);
421 if (!reg || !num_reg)
422 return NULL;
423
424 imlen /= ((na + 3) * 4);
425 handle = 0;
426 for (i = 0; i < imlen; i++) {
427 int j;
428
429 for (j = 0; j < na; j++) {
430 if ((reg[j] & imask[j]) != imap[j])
431 goto next;
432 }
433 if (imap[na] == irq) {
434 handle = imap[na + 1];
435 irq = imap[na + 2];
436 break;
437 }
438
439 next:
440 imap += (na + 3);
441 }
442 if (i == imlen) {
443 /* Psycho and Sabre PCI controllers can have 'interrupt-map'
444 * properties that do not include the on-board device
445 * interrupts. Instead, the device's 'interrupts' property
446 * is already a fully specified INO value.
447 *
448 * Handle this by deciding that, if we didn't get a
449 * match in the parent's 'interrupt-map', and the
450 * parent is an IRQ translater, then use the parent as
451 * our IRQ controller.
452 */
453 if (pp->irq_trans)
454 return pp;
455
456 return NULL;
457 }
458
459 *irq_p = irq;
460 cp = of_find_node_by_phandle(handle);
461
462 return cp;
463 }
464
465 static unsigned int __init pci_irq_swizzle(struct device_node *dp,
466 struct device_node *pp,
467 unsigned int irq)
468 {
469 const struct linux_prom_pci_registers *regs;
470 unsigned int bus, devfn, slot, ret;
471
472 if (irq < 1 || irq > 4)
473 return irq;
474
475 regs = of_get_property(dp, "reg", NULL);
476 if (!regs)
477 return irq;
478
479 bus = (regs->phys_hi >> 16) & 0xff;
480 devfn = (regs->phys_hi >> 8) & 0xff;
481 slot = (devfn >> 3) & 0x1f;
482
483 if (pp->irq_trans) {
484 /* Derived from Table 8-3, U2P User's Manual. This branch
485 * is handling a PCI controller that lacks a proper set of
486 * interrupt-map and interrupt-map-mask properties. The
487 * Ultra-E450 is one example.
488 *
489 * The bit layout is BSSLL, where:
490 * B: 0 on bus A, 1 on bus B
491 * D: 2-bit slot number, derived from PCI device number as
492 * (dev - 1) for bus A, or (dev - 2) for bus B
493 * L: 2-bit line number
494 */
495 if (bus & 0x80) {
496 /* PBM-A */
497 bus = 0x00;
498 slot = (slot - 1) << 2;
499 } else {
500 /* PBM-B */
501 bus = 0x10;
502 slot = (slot - 2) << 2;
503 }
504 irq -= 1;
505
506 ret = (bus | slot | irq);
507 } else {
508 /* Going through a PCI-PCI bridge that lacks a set of
509 * interrupt-map and interrupt-map-mask properties.
510 */
511 ret = ((irq - 1 + (slot & 3)) & 3) + 1;
512 }
513
514 return ret;
515 }
516
517 static int of_irq_verbose;
518
519 static unsigned int __init build_one_device_irq(struct of_device *op,
520 struct device *parent,
521 unsigned int irq)
522 {
523 struct device_node *dp = op->node;
524 struct device_node *pp, *ip;
525 unsigned int orig_irq = irq;
526 int nid;
527
528 if (irq == 0xffffffff)
529 return irq;
530
531 if (dp->irq_trans) {
532 irq = dp->irq_trans->irq_build(dp, irq,
533 dp->irq_trans->data);
534
535 if (of_irq_verbose)
536 printk("%s: direct translate %x --> %x\n",
537 dp->full_name, orig_irq, irq);
538
539 goto out;
540 }
541
542 /* Something more complicated. Walk up to the root, applying
543 * interrupt-map or bus specific translations, until we hit
544 * an IRQ translator.
545 *
546 * If we hit a bus type or situation we cannot handle, we
547 * stop and assume that the original IRQ number was in a
548 * format which has special meaning to it's immediate parent.
549 */
550 pp = dp->parent;
551 ip = NULL;
552 while (pp) {
553 const void *imap, *imsk;
554 int imlen;
555
556 imap = of_get_property(pp, "interrupt-map", &imlen);
557 imsk = of_get_property(pp, "interrupt-map-mask", NULL);
558 if (imap && imsk) {
559 struct device_node *iret;
560 int this_orig_irq = irq;
561
562 iret = apply_interrupt_map(dp, pp,
563 imap, imlen, imsk,
564 &irq);
565
566 if (of_irq_verbose)
567 printk("%s: Apply [%s:%x] imap --> [%s:%x]\n",
568 op->node->full_name,
569 pp->full_name, this_orig_irq,
570 (iret ? iret->full_name : "NULL"), irq);
571
572 if (!iret)
573 break;
574
575 if (iret->irq_trans) {
576 ip = iret;
577 break;
578 }
579 } else {
580 if (!strcmp(pp->name, "pci")) {
581 unsigned int this_orig_irq = irq;
582
583 irq = pci_irq_swizzle(dp, pp, irq);
584 if (of_irq_verbose)
585 printk("%s: PCI swizzle [%s] "
586 "%x --> %x\n",
587 op->node->full_name,
588 pp->full_name, this_orig_irq,
589 irq);
590
591 }
592
593 if (pp->irq_trans) {
594 ip = pp;
595 break;
596 }
597 }
598 dp = pp;
599 pp = pp->parent;
600 }
601 if (!ip)
602 return orig_irq;
603
604 irq = ip->irq_trans->irq_build(op->node, irq,
605 ip->irq_trans->data);
606 if (of_irq_verbose)
607 printk("%s: Apply IRQ trans [%s] %x --> %x\n",
608 op->node->full_name, ip->full_name, orig_irq, irq);
609
610 out:
611 nid = of_node_to_nid(dp);
612 if (nid != -1) {
613 cpumask_t numa_mask = *cpumask_of_node(nid);
614
615 irq_set_affinity(irq, &numa_mask);
616 }
617
618 return irq;
619 }
620
621 static struct of_device * __init scan_one_device(struct device_node *dp,
622 struct device *parent)
623 {
624 struct of_device *op = kzalloc(sizeof(*op), GFP_KERNEL);
625 const unsigned int *irq;
626 struct dev_archdata *sd;
627 int len, i;
628
629 if (!op)
630 return NULL;
631
632 sd = &op->dev.archdata;
633 sd->prom_node = dp;
634 sd->op = op;
635
636 op->node = dp;
637
638 op->clock_freq = of_getintprop_default(dp, "clock-frequency",
639 (25*1000*1000));
640 op->portid = of_getintprop_default(dp, "upa-portid", -1);
641 if (op->portid == -1)
642 op->portid = of_getintprop_default(dp, "portid", -1);
643
644 irq = of_get_property(dp, "interrupts", &len);
645 if (irq) {
646 op->num_irqs = len / 4;
647
648 /* Prevent overrunning the op->irqs[] array. */
649 if (op->num_irqs > PROMINTR_MAX) {
650 printk(KERN_WARNING "%s: Too many irqs (%d), "
651 "limiting to %d.\n",
652 dp->full_name, op->num_irqs, PROMINTR_MAX);
653 op->num_irqs = PROMINTR_MAX;
654 }
655 memcpy(op->irqs, irq, op->num_irqs * 4);
656 } else {
657 op->num_irqs = 0;
658 }
659
660 build_device_resources(op, parent);
661 for (i = 0; i < op->num_irqs; i++)
662 op->irqs[i] = build_one_device_irq(op, parent, op->irqs[i]);
663
664 op->dev.parent = parent;
665 op->dev.bus = &of_platform_bus_type;
666 if (!parent)
667 dev_set_name(&op->dev, "root");
668 else
669 dev_set_name(&op->dev, "%08x", dp->node);
670
671 if (of_device_register(op)) {
672 printk("%s: Could not register of device.\n",
673 dp->full_name);
674 kfree(op);
675 op = NULL;
676 }
677
678 return op;
679 }
680
681 static void __init scan_tree(struct device_node *dp, struct device *parent)
682 {
683 while (dp) {
684 struct of_device *op = scan_one_device(dp, parent);
685
686 if (op)
687 scan_tree(dp->child, &op->dev);
688
689 dp = dp->sibling;
690 }
691 }
692
693 static void __init scan_of_devices(void)
694 {
695 struct device_node *root = of_find_node_by_path("/");
696 struct of_device *parent;
697
698 parent = scan_one_device(root, NULL);
699 if (!parent)
700 return;
701
702 scan_tree(root->child, &parent->dev);
703 }
704
705 static int __init of_bus_driver_init(void)
706 {
707 int err;
708
709 err = of_bus_type_init(&of_platform_bus_type, "of");
710 if (!err)
711 scan_of_devices();
712
713 return err;
714 }
715
716 postcore_initcall(of_bus_driver_init);
717
718 static int __init of_debug(char *str)
719 {
720 int val = 0;
721
722 get_option(&str, &val);
723 if (val & 1)
724 of_resource_verbose = 1;
725 if (val & 2)
726 of_irq_verbose = 1;
727 return 1;
728 }
729
730 __setup("of_debug=", of_debug);
This page took 0.073262 seconds and 5 git commands to generate.