sparc64: Add perf callchain support.
[deliverable/linux.git] / arch / sparc / kernel / perf_event.c
1 /* Performance event support for sparc64.
2 *
3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4 *
5 * This code is based almost entirely upon the x86 perf event
6 * code, which is:
7 *
8 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10 * Copyright (C) 2009 Jaswinder Singh Rajput
11 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/kernel.h>
18 #include <linux/kdebug.h>
19 #include <linux/mutex.h>
20
21 #include <asm/stacktrace.h>
22 #include <asm/cpudata.h>
23 #include <asm/uaccess.h>
24 #include <asm/atomic.h>
25 #include <asm/nmi.h>
26 #include <asm/pcr.h>
27
28 #include "kstack.h"
29
30 /* Sparc64 chips have two performance counters, 32-bits each, with
31 * overflow interrupts generated on transition from 0xffffffff to 0.
32 * The counters are accessed in one go using a 64-bit register.
33 *
34 * Both counters are controlled using a single control register. The
35 * only way to stop all sampling is to clear all of the context (user,
36 * supervisor, hypervisor) sampling enable bits. But these bits apply
37 * to both counters, thus the two counters can't be enabled/disabled
38 * individually.
39 *
40 * The control register has two event fields, one for each of the two
41 * counters. It's thus nearly impossible to have one counter going
42 * while keeping the other one stopped. Therefore it is possible to
43 * get overflow interrupts for counters not currently "in use" and
44 * that condition must be checked in the overflow interrupt handler.
45 *
46 * So we use a hack, in that we program inactive counters with the
47 * "sw_count0" and "sw_count1" events. These count how many times
48 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
49 * unusual way to encode a NOP and therefore will not trigger in
50 * normal code.
51 */
52
53 #define MAX_HWEVENTS 2
54 #define MAX_PERIOD ((1UL << 32) - 1)
55
56 #define PIC_UPPER_INDEX 0
57 #define PIC_LOWER_INDEX 1
58
59 struct cpu_hw_events {
60 struct perf_event *events[MAX_HWEVENTS];
61 unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
62 unsigned long active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
63 u64 pcr;
64 int enabled;
65 };
66 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
67
68 struct perf_event_map {
69 u16 encoding;
70 u8 pic_mask;
71 #define PIC_NONE 0x00
72 #define PIC_UPPER 0x01
73 #define PIC_LOWER 0x02
74 };
75
76 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
77 {
78 return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
79 }
80
81 static void perf_event_decode(unsigned long val, u16 *enc, u8 *msk)
82 {
83 *msk = val & 0xff;
84 *enc = val >> 16;
85 }
86
87 #define C(x) PERF_COUNT_HW_CACHE_##x
88
89 #define CACHE_OP_UNSUPPORTED 0xfffe
90 #define CACHE_OP_NONSENSE 0xffff
91
92 typedef struct perf_event_map cache_map_t
93 [PERF_COUNT_HW_CACHE_MAX]
94 [PERF_COUNT_HW_CACHE_OP_MAX]
95 [PERF_COUNT_HW_CACHE_RESULT_MAX];
96
97 struct sparc_pmu {
98 const struct perf_event_map *(*event_map)(int);
99 const cache_map_t *cache_map;
100 int max_events;
101 int upper_shift;
102 int lower_shift;
103 int event_mask;
104 int hv_bit;
105 int irq_bit;
106 int upper_nop;
107 int lower_nop;
108 };
109
110 static const struct perf_event_map ultra3_perfmon_event_map[] = {
111 [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
112 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
113 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
114 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
115 };
116
117 static const struct perf_event_map *ultra3_event_map(int event_id)
118 {
119 return &ultra3_perfmon_event_map[event_id];
120 }
121
122 static const cache_map_t ultra3_cache_map = {
123 [C(L1D)] = {
124 [C(OP_READ)] = {
125 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
126 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
127 },
128 [C(OP_WRITE)] = {
129 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
130 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
131 },
132 [C(OP_PREFETCH)] = {
133 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
134 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
135 },
136 },
137 [C(L1I)] = {
138 [C(OP_READ)] = {
139 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
140 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
141 },
142 [ C(OP_WRITE) ] = {
143 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
144 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
145 },
146 [ C(OP_PREFETCH) ] = {
147 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
148 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
149 },
150 },
151 [C(LL)] = {
152 [C(OP_READ)] = {
153 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
154 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
155 },
156 [C(OP_WRITE)] = {
157 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
158 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
159 },
160 [C(OP_PREFETCH)] = {
161 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
162 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
163 },
164 },
165 [C(DTLB)] = {
166 [C(OP_READ)] = {
167 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
168 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
169 },
170 [ C(OP_WRITE) ] = {
171 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
172 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
173 },
174 [ C(OP_PREFETCH) ] = {
175 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
176 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
177 },
178 },
179 [C(ITLB)] = {
180 [C(OP_READ)] = {
181 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
182 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
183 },
184 [ C(OP_WRITE) ] = {
185 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
186 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
187 },
188 [ C(OP_PREFETCH) ] = {
189 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
190 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
191 },
192 },
193 [C(BPU)] = {
194 [C(OP_READ)] = {
195 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
196 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
197 },
198 [ C(OP_WRITE) ] = {
199 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
200 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
201 },
202 [ C(OP_PREFETCH) ] = {
203 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
204 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
205 },
206 },
207 };
208
209 static const struct sparc_pmu ultra3_pmu = {
210 .event_map = ultra3_event_map,
211 .cache_map = &ultra3_cache_map,
212 .max_events = ARRAY_SIZE(ultra3_perfmon_event_map),
213 .upper_shift = 11,
214 .lower_shift = 4,
215 .event_mask = 0x3f,
216 .upper_nop = 0x1c,
217 .lower_nop = 0x14,
218 };
219
220 /* Niagara1 is very limited. The upper PIC is hard-locked to count
221 * only instructions, so it is free running which creates all kinds of
222 * problems. Some hardware designs make one wonder if the creator
223 * even looked at how this stuff gets used by software.
224 */
225 static const struct perf_event_map niagara1_perfmon_event_map[] = {
226 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
227 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
228 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
229 [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
230 };
231
232 static const struct perf_event_map *niagara1_event_map(int event_id)
233 {
234 return &niagara1_perfmon_event_map[event_id];
235 }
236
237 static const cache_map_t niagara1_cache_map = {
238 [C(L1D)] = {
239 [C(OP_READ)] = {
240 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
241 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
242 },
243 [C(OP_WRITE)] = {
244 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
245 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
246 },
247 [C(OP_PREFETCH)] = {
248 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
249 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
250 },
251 },
252 [C(L1I)] = {
253 [C(OP_READ)] = {
254 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
255 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
256 },
257 [ C(OP_WRITE) ] = {
258 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
259 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
260 },
261 [ C(OP_PREFETCH) ] = {
262 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
263 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
264 },
265 },
266 [C(LL)] = {
267 [C(OP_READ)] = {
268 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
269 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
270 },
271 [C(OP_WRITE)] = {
272 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
273 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
274 },
275 [C(OP_PREFETCH)] = {
276 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
277 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
278 },
279 },
280 [C(DTLB)] = {
281 [C(OP_READ)] = {
282 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
283 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
284 },
285 [ C(OP_WRITE) ] = {
286 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
287 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
288 },
289 [ C(OP_PREFETCH) ] = {
290 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
291 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
292 },
293 },
294 [C(ITLB)] = {
295 [C(OP_READ)] = {
296 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
297 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
298 },
299 [ C(OP_WRITE) ] = {
300 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
301 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
302 },
303 [ C(OP_PREFETCH) ] = {
304 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
305 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
306 },
307 },
308 [C(BPU)] = {
309 [C(OP_READ)] = {
310 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
311 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
312 },
313 [ C(OP_WRITE) ] = {
314 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
315 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
316 },
317 [ C(OP_PREFETCH) ] = {
318 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
319 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
320 },
321 },
322 };
323
324 static const struct sparc_pmu niagara1_pmu = {
325 .event_map = niagara1_event_map,
326 .cache_map = &niagara1_cache_map,
327 .max_events = ARRAY_SIZE(niagara1_perfmon_event_map),
328 .upper_shift = 0,
329 .lower_shift = 4,
330 .event_mask = 0x7,
331 .upper_nop = 0x0,
332 .lower_nop = 0x0,
333 };
334
335 static const struct perf_event_map niagara2_perfmon_event_map[] = {
336 [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
337 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
338 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
339 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
340 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
341 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
342 };
343
344 static const struct perf_event_map *niagara2_event_map(int event_id)
345 {
346 return &niagara2_perfmon_event_map[event_id];
347 }
348
349 static const cache_map_t niagara2_cache_map = {
350 [C(L1D)] = {
351 [C(OP_READ)] = {
352 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
353 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
354 },
355 [C(OP_WRITE)] = {
356 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
357 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
358 },
359 [C(OP_PREFETCH)] = {
360 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
361 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
362 },
363 },
364 [C(L1I)] = {
365 [C(OP_READ)] = {
366 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
367 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
368 },
369 [ C(OP_WRITE) ] = {
370 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
371 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
372 },
373 [ C(OP_PREFETCH) ] = {
374 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
375 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
376 },
377 },
378 [C(LL)] = {
379 [C(OP_READ)] = {
380 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
381 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
382 },
383 [C(OP_WRITE)] = {
384 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
385 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
386 },
387 [C(OP_PREFETCH)] = {
388 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
389 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
390 },
391 },
392 [C(DTLB)] = {
393 [C(OP_READ)] = {
394 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
395 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
396 },
397 [ C(OP_WRITE) ] = {
398 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
399 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
400 },
401 [ C(OP_PREFETCH) ] = {
402 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
403 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
404 },
405 },
406 [C(ITLB)] = {
407 [C(OP_READ)] = {
408 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
409 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
410 },
411 [ C(OP_WRITE) ] = {
412 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
413 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
414 },
415 [ C(OP_PREFETCH) ] = {
416 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
417 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
418 },
419 },
420 [C(BPU)] = {
421 [C(OP_READ)] = {
422 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
423 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
424 },
425 [ C(OP_WRITE) ] = {
426 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
427 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
428 },
429 [ C(OP_PREFETCH) ] = {
430 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
431 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
432 },
433 },
434 };
435
436 static const struct sparc_pmu niagara2_pmu = {
437 .event_map = niagara2_event_map,
438 .cache_map = &niagara2_cache_map,
439 .max_events = ARRAY_SIZE(niagara2_perfmon_event_map),
440 .upper_shift = 19,
441 .lower_shift = 6,
442 .event_mask = 0xfff,
443 .hv_bit = 0x8,
444 .irq_bit = 0x30,
445 .upper_nop = 0x220,
446 .lower_nop = 0x220,
447 };
448
449 static const struct sparc_pmu *sparc_pmu __read_mostly;
450
451 static u64 event_encoding(u64 event_id, int idx)
452 {
453 if (idx == PIC_UPPER_INDEX)
454 event_id <<= sparc_pmu->upper_shift;
455 else
456 event_id <<= sparc_pmu->lower_shift;
457 return event_id;
458 }
459
460 static u64 mask_for_index(int idx)
461 {
462 return event_encoding(sparc_pmu->event_mask, idx);
463 }
464
465 static u64 nop_for_index(int idx)
466 {
467 return event_encoding(idx == PIC_UPPER_INDEX ?
468 sparc_pmu->upper_nop :
469 sparc_pmu->lower_nop, idx);
470 }
471
472 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
473 {
474 u64 val, mask = mask_for_index(idx);
475
476 val = cpuc->pcr;
477 val &= ~mask;
478 val |= hwc->config;
479 cpuc->pcr = val;
480
481 pcr_ops->write(cpuc->pcr);
482 }
483
484 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
485 {
486 u64 mask = mask_for_index(idx);
487 u64 nop = nop_for_index(idx);
488 u64 val;
489
490 val = cpuc->pcr;
491 val &= ~mask;
492 val |= nop;
493 cpuc->pcr = val;
494
495 pcr_ops->write(cpuc->pcr);
496 }
497
498 void hw_perf_enable(void)
499 {
500 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
501 u64 val;
502 int i;
503
504 if (cpuc->enabled)
505 return;
506
507 cpuc->enabled = 1;
508 barrier();
509
510 val = cpuc->pcr;
511
512 for (i = 0; i < MAX_HWEVENTS; i++) {
513 struct perf_event *cp = cpuc->events[i];
514 struct hw_perf_event *hwc;
515
516 if (!cp)
517 continue;
518 hwc = &cp->hw;
519 val |= hwc->config_base;
520 }
521
522 cpuc->pcr = val;
523
524 pcr_ops->write(cpuc->pcr);
525 }
526
527 void hw_perf_disable(void)
528 {
529 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
530 u64 val;
531
532 if (!cpuc->enabled)
533 return;
534
535 cpuc->enabled = 0;
536
537 val = cpuc->pcr;
538 val &= ~(PCR_UTRACE | PCR_STRACE |
539 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
540 cpuc->pcr = val;
541
542 pcr_ops->write(cpuc->pcr);
543 }
544
545 static u32 read_pmc(int idx)
546 {
547 u64 val;
548
549 read_pic(val);
550 if (idx == PIC_UPPER_INDEX)
551 val >>= 32;
552
553 return val & 0xffffffff;
554 }
555
556 static void write_pmc(int idx, u64 val)
557 {
558 u64 shift, mask, pic;
559
560 shift = 0;
561 if (idx == PIC_UPPER_INDEX)
562 shift = 32;
563
564 mask = ((u64) 0xffffffff) << shift;
565 val <<= shift;
566
567 read_pic(pic);
568 pic &= ~mask;
569 pic |= val;
570 write_pic(pic);
571 }
572
573 static int sparc_perf_event_set_period(struct perf_event *event,
574 struct hw_perf_event *hwc, int idx)
575 {
576 s64 left = atomic64_read(&hwc->period_left);
577 s64 period = hwc->sample_period;
578 int ret = 0;
579
580 if (unlikely(left <= -period)) {
581 left = period;
582 atomic64_set(&hwc->period_left, left);
583 hwc->last_period = period;
584 ret = 1;
585 }
586
587 if (unlikely(left <= 0)) {
588 left += period;
589 atomic64_set(&hwc->period_left, left);
590 hwc->last_period = period;
591 ret = 1;
592 }
593 if (left > MAX_PERIOD)
594 left = MAX_PERIOD;
595
596 atomic64_set(&hwc->prev_count, (u64)-left);
597
598 write_pmc(idx, (u64)(-left) & 0xffffffff);
599
600 perf_event_update_userpage(event);
601
602 return ret;
603 }
604
605 static int sparc_pmu_enable(struct perf_event *event)
606 {
607 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
608 struct hw_perf_event *hwc = &event->hw;
609 int idx = hwc->idx;
610
611 if (test_and_set_bit(idx, cpuc->used_mask))
612 return -EAGAIN;
613
614 sparc_pmu_disable_event(cpuc, hwc, idx);
615
616 cpuc->events[idx] = event;
617 set_bit(idx, cpuc->active_mask);
618
619 sparc_perf_event_set_period(event, hwc, idx);
620 sparc_pmu_enable_event(cpuc, hwc, idx);
621 perf_event_update_userpage(event);
622 return 0;
623 }
624
625 static u64 sparc_perf_event_update(struct perf_event *event,
626 struct hw_perf_event *hwc, int idx)
627 {
628 int shift = 64 - 32;
629 u64 prev_raw_count, new_raw_count;
630 s64 delta;
631
632 again:
633 prev_raw_count = atomic64_read(&hwc->prev_count);
634 new_raw_count = read_pmc(idx);
635
636 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
637 new_raw_count) != prev_raw_count)
638 goto again;
639
640 delta = (new_raw_count << shift) - (prev_raw_count << shift);
641 delta >>= shift;
642
643 atomic64_add(delta, &event->count);
644 atomic64_sub(delta, &hwc->period_left);
645
646 return new_raw_count;
647 }
648
649 static void sparc_pmu_disable(struct perf_event *event)
650 {
651 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
652 struct hw_perf_event *hwc = &event->hw;
653 int idx = hwc->idx;
654
655 clear_bit(idx, cpuc->active_mask);
656 sparc_pmu_disable_event(cpuc, hwc, idx);
657
658 barrier();
659
660 sparc_perf_event_update(event, hwc, idx);
661 cpuc->events[idx] = NULL;
662 clear_bit(idx, cpuc->used_mask);
663
664 perf_event_update_userpage(event);
665 }
666
667 static void sparc_pmu_read(struct perf_event *event)
668 {
669 struct hw_perf_event *hwc = &event->hw;
670
671 sparc_perf_event_update(event, hwc, hwc->idx);
672 }
673
674 static void sparc_pmu_unthrottle(struct perf_event *event)
675 {
676 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
677 struct hw_perf_event *hwc = &event->hw;
678
679 sparc_pmu_enable_event(cpuc, hwc, hwc->idx);
680 }
681
682 static atomic_t active_events = ATOMIC_INIT(0);
683 static DEFINE_MUTEX(pmc_grab_mutex);
684
685 static void perf_stop_nmi_watchdog(void *unused)
686 {
687 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
688
689 stop_nmi_watchdog(NULL);
690 cpuc->pcr = pcr_ops->read();
691 }
692
693 void perf_event_grab_pmc(void)
694 {
695 if (atomic_inc_not_zero(&active_events))
696 return;
697
698 mutex_lock(&pmc_grab_mutex);
699 if (atomic_read(&active_events) == 0) {
700 if (atomic_read(&nmi_active) > 0) {
701 on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
702 BUG_ON(atomic_read(&nmi_active) != 0);
703 }
704 atomic_inc(&active_events);
705 }
706 mutex_unlock(&pmc_grab_mutex);
707 }
708
709 void perf_event_release_pmc(void)
710 {
711 if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
712 if (atomic_read(&nmi_active) == 0)
713 on_each_cpu(start_nmi_watchdog, NULL, 1);
714 mutex_unlock(&pmc_grab_mutex);
715 }
716 }
717
718 static const struct perf_event_map *sparc_map_cache_event(u64 config)
719 {
720 unsigned int cache_type, cache_op, cache_result;
721 const struct perf_event_map *pmap;
722
723 if (!sparc_pmu->cache_map)
724 return ERR_PTR(-ENOENT);
725
726 cache_type = (config >> 0) & 0xff;
727 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
728 return ERR_PTR(-EINVAL);
729
730 cache_op = (config >> 8) & 0xff;
731 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
732 return ERR_PTR(-EINVAL);
733
734 cache_result = (config >> 16) & 0xff;
735 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
736 return ERR_PTR(-EINVAL);
737
738 pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
739
740 if (pmap->encoding == CACHE_OP_UNSUPPORTED)
741 return ERR_PTR(-ENOENT);
742
743 if (pmap->encoding == CACHE_OP_NONSENSE)
744 return ERR_PTR(-EINVAL);
745
746 return pmap;
747 }
748
749 static void hw_perf_event_destroy(struct perf_event *event)
750 {
751 perf_event_release_pmc();
752 }
753
754 /* Make sure all events can be scheduled into the hardware at
755 * the same time. This is simplified by the fact that we only
756 * need to support 2 simultaneous HW events.
757 */
758 static int sparc_check_constraints(unsigned long *events, int n_ev)
759 {
760 if (n_ev <= perf_max_events) {
761 u8 msk1, msk2;
762 u16 dummy;
763
764 if (n_ev == 1)
765 return 0;
766 BUG_ON(n_ev != 2);
767 perf_event_decode(events[0], &dummy, &msk1);
768 perf_event_decode(events[1], &dummy, &msk2);
769
770 /* If both events can go on any counter, OK. */
771 if (msk1 == (PIC_UPPER | PIC_LOWER) &&
772 msk2 == (PIC_UPPER | PIC_LOWER))
773 return 0;
774
775 /* If one event is limited to a specific counter,
776 * and the other can go on both, OK.
777 */
778 if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
779 msk2 == (PIC_UPPER | PIC_LOWER))
780 return 0;
781 if ((msk2 == PIC_UPPER || msk2 == PIC_LOWER) &&
782 msk1 == (PIC_UPPER | PIC_LOWER))
783 return 0;
784
785 /* If the events are fixed to different counters, OK. */
786 if ((msk1 == PIC_UPPER && msk2 == PIC_LOWER) ||
787 (msk1 == PIC_LOWER && msk2 == PIC_UPPER))
788 return 0;
789
790 /* Otherwise, there is a conflict. */
791 }
792
793 return -1;
794 }
795
796 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
797 {
798 int eu = 0, ek = 0, eh = 0;
799 struct perf_event *event;
800 int i, n, first;
801
802 n = n_prev + n_new;
803 if (n <= 1)
804 return 0;
805
806 first = 1;
807 for (i = 0; i < n; i++) {
808 event = evts[i];
809 if (first) {
810 eu = event->attr.exclude_user;
811 ek = event->attr.exclude_kernel;
812 eh = event->attr.exclude_hv;
813 first = 0;
814 } else if (event->attr.exclude_user != eu ||
815 event->attr.exclude_kernel != ek ||
816 event->attr.exclude_hv != eh) {
817 return -EAGAIN;
818 }
819 }
820
821 return 0;
822 }
823
824 static int collect_events(struct perf_event *group, int max_count,
825 struct perf_event *evts[], unsigned long *events)
826 {
827 struct perf_event *event;
828 int n = 0;
829
830 if (!is_software_event(group)) {
831 if (n >= max_count)
832 return -1;
833 evts[n] = group;
834 events[n++] = group->hw.event_base;
835 }
836 list_for_each_entry(event, &group->sibling_list, group_entry) {
837 if (!is_software_event(event) &&
838 event->state != PERF_EVENT_STATE_OFF) {
839 if (n >= max_count)
840 return -1;
841 evts[n] = event;
842 events[n++] = event->hw.event_base;
843 }
844 }
845 return n;
846 }
847
848 static int __hw_perf_event_init(struct perf_event *event)
849 {
850 struct perf_event_attr *attr = &event->attr;
851 struct perf_event *evts[MAX_HWEVENTS];
852 struct hw_perf_event *hwc = &event->hw;
853 unsigned long events[MAX_HWEVENTS];
854 const struct perf_event_map *pmap;
855 u64 enc;
856 int n;
857
858 if (atomic_read(&nmi_active) < 0)
859 return -ENODEV;
860
861 if (attr->type == PERF_TYPE_HARDWARE) {
862 if (attr->config >= sparc_pmu->max_events)
863 return -EINVAL;
864 pmap = sparc_pmu->event_map(attr->config);
865 } else if (attr->type == PERF_TYPE_HW_CACHE) {
866 pmap = sparc_map_cache_event(attr->config);
867 if (IS_ERR(pmap))
868 return PTR_ERR(pmap);
869 } else
870 return -EOPNOTSUPP;
871
872 /* We save the enable bits in the config_base. So to
873 * turn off sampling just write 'config', and to enable
874 * things write 'config | config_base'.
875 */
876 hwc->config_base = sparc_pmu->irq_bit;
877 if (!attr->exclude_user)
878 hwc->config_base |= PCR_UTRACE;
879 if (!attr->exclude_kernel)
880 hwc->config_base |= PCR_STRACE;
881 if (!attr->exclude_hv)
882 hwc->config_base |= sparc_pmu->hv_bit;
883
884 hwc->event_base = perf_event_encode(pmap);
885
886 enc = pmap->encoding;
887
888 n = 0;
889 if (event->group_leader != event) {
890 n = collect_events(event->group_leader,
891 perf_max_events - 1,
892 evts, events);
893 if (n < 0)
894 return -EINVAL;
895 }
896 events[n] = hwc->event_base;
897 evts[n] = event;
898
899 if (check_excludes(evts, n, 1))
900 return -EINVAL;
901
902 if (sparc_check_constraints(events, n + 1))
903 return -EINVAL;
904
905 /* Try to do all error checking before this point, as unwinding
906 * state after grabbing the PMC is difficult.
907 */
908 perf_event_grab_pmc();
909 event->destroy = hw_perf_event_destroy;
910
911 if (!hwc->sample_period) {
912 hwc->sample_period = MAX_PERIOD;
913 hwc->last_period = hwc->sample_period;
914 atomic64_set(&hwc->period_left, hwc->sample_period);
915 }
916
917 if (pmap->pic_mask & PIC_UPPER) {
918 hwc->idx = PIC_UPPER_INDEX;
919 enc <<= sparc_pmu->upper_shift;
920 } else {
921 hwc->idx = PIC_LOWER_INDEX;
922 enc <<= sparc_pmu->lower_shift;
923 }
924
925 hwc->config |= enc;
926 return 0;
927 }
928
929 static const struct pmu pmu = {
930 .enable = sparc_pmu_enable,
931 .disable = sparc_pmu_disable,
932 .read = sparc_pmu_read,
933 .unthrottle = sparc_pmu_unthrottle,
934 };
935
936 const struct pmu *hw_perf_event_init(struct perf_event *event)
937 {
938 int err = __hw_perf_event_init(event);
939
940 if (err)
941 return ERR_PTR(err);
942 return &pmu;
943 }
944
945 void perf_event_print_debug(void)
946 {
947 unsigned long flags;
948 u64 pcr, pic;
949 int cpu;
950
951 if (!sparc_pmu)
952 return;
953
954 local_irq_save(flags);
955
956 cpu = smp_processor_id();
957
958 pcr = pcr_ops->read();
959 read_pic(pic);
960
961 pr_info("\n");
962 pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
963 cpu, pcr, pic);
964
965 local_irq_restore(flags);
966 }
967
968 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
969 unsigned long cmd, void *__args)
970 {
971 struct die_args *args = __args;
972 struct perf_sample_data data;
973 struct cpu_hw_events *cpuc;
974 struct pt_regs *regs;
975 int idx;
976
977 if (!atomic_read(&active_events))
978 return NOTIFY_DONE;
979
980 switch (cmd) {
981 case DIE_NMI:
982 break;
983
984 default:
985 return NOTIFY_DONE;
986 }
987
988 regs = args->regs;
989
990 data.addr = 0;
991
992 cpuc = &__get_cpu_var(cpu_hw_events);
993
994 /* If the PMU has the TOE IRQ enable bits, we need to do a
995 * dummy write to the %pcr to clear the overflow bits and thus
996 * the interrupt.
997 *
998 * Do this before we peek at the counters to determine
999 * overflow so we don't lose any events.
1000 */
1001 if (sparc_pmu->irq_bit)
1002 pcr_ops->write(cpuc->pcr);
1003
1004 for (idx = 0; idx < MAX_HWEVENTS; idx++) {
1005 struct perf_event *event = cpuc->events[idx];
1006 struct hw_perf_event *hwc;
1007 u64 val;
1008
1009 if (!test_bit(idx, cpuc->active_mask))
1010 continue;
1011 hwc = &event->hw;
1012 val = sparc_perf_event_update(event, hwc, idx);
1013 if (val & (1ULL << 31))
1014 continue;
1015
1016 data.period = event->hw.last_period;
1017 if (!sparc_perf_event_set_period(event, hwc, idx))
1018 continue;
1019
1020 if (perf_event_overflow(event, 1, &data, regs))
1021 sparc_pmu_disable_event(cpuc, hwc, idx);
1022 }
1023
1024 return NOTIFY_STOP;
1025 }
1026
1027 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1028 .notifier_call = perf_event_nmi_handler,
1029 };
1030
1031 static bool __init supported_pmu(void)
1032 {
1033 if (!strcmp(sparc_pmu_type, "ultra3") ||
1034 !strcmp(sparc_pmu_type, "ultra3+") ||
1035 !strcmp(sparc_pmu_type, "ultra3i") ||
1036 !strcmp(sparc_pmu_type, "ultra4+")) {
1037 sparc_pmu = &ultra3_pmu;
1038 return true;
1039 }
1040 if (!strcmp(sparc_pmu_type, "niagara")) {
1041 sparc_pmu = &niagara1_pmu;
1042 return true;
1043 }
1044 if (!strcmp(sparc_pmu_type, "niagara2")) {
1045 sparc_pmu = &niagara2_pmu;
1046 return true;
1047 }
1048 return false;
1049 }
1050
1051 void __init init_hw_perf_events(void)
1052 {
1053 pr_info("Performance events: ");
1054
1055 if (!supported_pmu()) {
1056 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1057 return;
1058 }
1059
1060 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1061
1062 /* All sparc64 PMUs currently have 2 events. But this simple
1063 * driver only supports one active event at a time.
1064 */
1065 perf_max_events = 1;
1066
1067 register_die_notifier(&perf_event_nmi_notifier);
1068 }
1069
1070 static inline void callchain_store(struct perf_callchain_entry *entry, u64 ip)
1071 {
1072 if (entry->nr < PERF_MAX_STACK_DEPTH)
1073 entry->ip[entry->nr++] = ip;
1074 }
1075
1076 static void perf_callchain_kernel(struct pt_regs *regs,
1077 struct perf_callchain_entry *entry)
1078 {
1079 unsigned long ksp, fp;
1080
1081 callchain_store(entry, PERF_CONTEXT_KERNEL);
1082 callchain_store(entry, regs->tpc);
1083
1084 ksp = regs->u_regs[UREG_I6];
1085 fp = ksp + STACK_BIAS;
1086 do {
1087 struct sparc_stackf *sf;
1088 struct pt_regs *regs;
1089 unsigned long pc;
1090
1091 if (!kstack_valid(current_thread_info(), fp))
1092 break;
1093
1094 sf = (struct sparc_stackf *) fp;
1095 regs = (struct pt_regs *) (sf + 1);
1096
1097 if (kstack_is_trap_frame(current_thread_info(), regs)) {
1098 if (user_mode(regs))
1099 break;
1100 pc = regs->tpc;
1101 fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1102 } else {
1103 pc = sf->callers_pc;
1104 fp = (unsigned long)sf->fp + STACK_BIAS;
1105 }
1106 callchain_store(entry, pc);
1107 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1108 }
1109
1110 static void perf_callchain_user_64(struct pt_regs *regs,
1111 struct perf_callchain_entry *entry)
1112 {
1113 unsigned long ufp;
1114
1115 callchain_store(entry, PERF_CONTEXT_USER);
1116 callchain_store(entry, regs->tpc);
1117
1118 ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1119 do {
1120 struct sparc_stackf *usf, sf;
1121 unsigned long pc;
1122
1123 usf = (struct sparc_stackf *) ufp;
1124 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1125 break;
1126
1127 pc = sf.callers_pc;
1128 ufp = (unsigned long)sf.fp + STACK_BIAS;
1129 callchain_store(entry, pc);
1130 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1131 }
1132
1133 static void perf_callchain_user_32(struct pt_regs *regs,
1134 struct perf_callchain_entry *entry)
1135 {
1136 unsigned long ufp;
1137
1138 callchain_store(entry, PERF_CONTEXT_USER);
1139 callchain_store(entry, regs->tpc);
1140
1141 ufp = regs->u_regs[UREG_I6];
1142 do {
1143 struct sparc_stackf32 *usf, sf;
1144 unsigned long pc;
1145
1146 usf = (struct sparc_stackf32 *) ufp;
1147 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1148 break;
1149
1150 pc = sf.callers_pc;
1151 ufp = (unsigned long)sf.fp;
1152 callchain_store(entry, pc);
1153 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1154 }
1155
1156 /* Like powerpc we can't get PMU interrupts within the PMU handler,
1157 * so no need for seperate NMI and IRQ chains as on x86.
1158 */
1159 static DEFINE_PER_CPU(struct perf_callchain_entry, callchain);
1160
1161 struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
1162 {
1163 struct perf_callchain_entry *entry = &__get_cpu_var(callchain);
1164
1165 entry->nr = 0;
1166 if (!user_mode(regs)) {
1167 stack_trace_flush();
1168 perf_callchain_kernel(regs, entry);
1169 if (current->mm)
1170 regs = task_pt_regs(current);
1171 else
1172 regs = NULL;
1173 }
1174 if (regs) {
1175 flushw_user();
1176 if (test_thread_flag(TIF_32BIT))
1177 perf_callchain_user_32(regs, entry);
1178 else
1179 perf_callchain_user_64(regs, entry);
1180 }
1181 return entry;
1182 }
This page took 0.05739 seconds and 5 git commands to generate.