Merge tag 'for-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/kishon/linux...
[deliverable/linux.git] / arch / sparc / kernel / perf_event.c
1 /* Performance event support for sparc64.
2 *
3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4 *
5 * This code is based almost entirely upon the x86 perf event
6 * code, which is:
7 *
8 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10 * Copyright (C) 2009 Jaswinder Singh Rajput
11 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/ftrace.h>
18 #include <linux/kernel.h>
19 #include <linux/kdebug.h>
20 #include <linux/mutex.h>
21
22 #include <asm/stacktrace.h>
23 #include <asm/cpudata.h>
24 #include <asm/uaccess.h>
25 #include <linux/atomic.h>
26 #include <asm/nmi.h>
27 #include <asm/pcr.h>
28 #include <asm/cacheflush.h>
29
30 #include "kernel.h"
31 #include "kstack.h"
32
33 /* Two classes of sparc64 chips currently exist. All of which have
34 * 32-bit counters which can generate overflow interrupts on the
35 * transition from 0xffffffff to 0.
36 *
37 * All chips upto and including SPARC-T3 have two performance
38 * counters. The two 32-bit counters are accessed in one go using a
39 * single 64-bit register.
40 *
41 * On these older chips both counters are controlled using a single
42 * control register. The only way to stop all sampling is to clear
43 * all of the context (user, supervisor, hypervisor) sampling enable
44 * bits. But these bits apply to both counters, thus the two counters
45 * can't be enabled/disabled individually.
46 *
47 * Furthermore, the control register on these older chips have two
48 * event fields, one for each of the two counters. It's thus nearly
49 * impossible to have one counter going while keeping the other one
50 * stopped. Therefore it is possible to get overflow interrupts for
51 * counters not currently "in use" and that condition must be checked
52 * in the overflow interrupt handler.
53 *
54 * So we use a hack, in that we program inactive counters with the
55 * "sw_count0" and "sw_count1" events. These count how many times
56 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
57 * unusual way to encode a NOP and therefore will not trigger in
58 * normal code.
59 *
60 * Starting with SPARC-T4 we have one control register per counter.
61 * And the counters are stored in individual registers. The registers
62 * for the counters are 64-bit but only a 32-bit counter is
63 * implemented. The event selections on SPARC-T4 lack any
64 * restrictions, therefore we can elide all of the complicated
65 * conflict resolution code we have for SPARC-T3 and earlier chips.
66 */
67
68 #define MAX_HWEVENTS 4
69 #define MAX_PCRS 4
70 #define MAX_PERIOD ((1UL << 32) - 1)
71
72 #define PIC_UPPER_INDEX 0
73 #define PIC_LOWER_INDEX 1
74 #define PIC_NO_INDEX -1
75
76 struct cpu_hw_events {
77 /* Number of events currently scheduled onto this cpu.
78 * This tells how many entries in the arrays below
79 * are valid.
80 */
81 int n_events;
82
83 /* Number of new events added since the last hw_perf_disable().
84 * This works because the perf event layer always adds new
85 * events inside of a perf_{disable,enable}() sequence.
86 */
87 int n_added;
88
89 /* Array of events current scheduled on this cpu. */
90 struct perf_event *event[MAX_HWEVENTS];
91
92 /* Array of encoded longs, specifying the %pcr register
93 * encoding and the mask of PIC counters this even can
94 * be scheduled on. See perf_event_encode() et al.
95 */
96 unsigned long events[MAX_HWEVENTS];
97
98 /* The current counter index assigned to an event. When the
99 * event hasn't been programmed into the cpu yet, this will
100 * hold PIC_NO_INDEX. The event->hw.idx value tells us where
101 * we ought to schedule the event.
102 */
103 int current_idx[MAX_HWEVENTS];
104
105 /* Software copy of %pcr register(s) on this cpu. */
106 u64 pcr[MAX_HWEVENTS];
107
108 /* Enabled/disable state. */
109 int enabled;
110
111 unsigned int group_flag;
112 };
113 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
114
115 /* An event map describes the characteristics of a performance
116 * counter event. In particular it gives the encoding as well as
117 * a mask telling which counters the event can be measured on.
118 *
119 * The mask is unused on SPARC-T4 and later.
120 */
121 struct perf_event_map {
122 u16 encoding;
123 u8 pic_mask;
124 #define PIC_NONE 0x00
125 #define PIC_UPPER 0x01
126 #define PIC_LOWER 0x02
127 };
128
129 /* Encode a perf_event_map entry into a long. */
130 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
131 {
132 return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
133 }
134
135 static u8 perf_event_get_msk(unsigned long val)
136 {
137 return val & 0xff;
138 }
139
140 static u64 perf_event_get_enc(unsigned long val)
141 {
142 return val >> 16;
143 }
144
145 #define C(x) PERF_COUNT_HW_CACHE_##x
146
147 #define CACHE_OP_UNSUPPORTED 0xfffe
148 #define CACHE_OP_NONSENSE 0xffff
149
150 typedef struct perf_event_map cache_map_t
151 [PERF_COUNT_HW_CACHE_MAX]
152 [PERF_COUNT_HW_CACHE_OP_MAX]
153 [PERF_COUNT_HW_CACHE_RESULT_MAX];
154
155 struct sparc_pmu {
156 const struct perf_event_map *(*event_map)(int);
157 const cache_map_t *cache_map;
158 int max_events;
159 u32 (*read_pmc)(int);
160 void (*write_pmc)(int, u64);
161 int upper_shift;
162 int lower_shift;
163 int event_mask;
164 int user_bit;
165 int priv_bit;
166 int hv_bit;
167 int irq_bit;
168 int upper_nop;
169 int lower_nop;
170 unsigned int flags;
171 #define SPARC_PMU_ALL_EXCLUDES_SAME 0x00000001
172 #define SPARC_PMU_HAS_CONFLICTS 0x00000002
173 int max_hw_events;
174 int num_pcrs;
175 int num_pic_regs;
176 };
177
178 static u32 sparc_default_read_pmc(int idx)
179 {
180 u64 val;
181
182 val = pcr_ops->read_pic(0);
183 if (idx == PIC_UPPER_INDEX)
184 val >>= 32;
185
186 return val & 0xffffffff;
187 }
188
189 static void sparc_default_write_pmc(int idx, u64 val)
190 {
191 u64 shift, mask, pic;
192
193 shift = 0;
194 if (idx == PIC_UPPER_INDEX)
195 shift = 32;
196
197 mask = ((u64) 0xffffffff) << shift;
198 val <<= shift;
199
200 pic = pcr_ops->read_pic(0);
201 pic &= ~mask;
202 pic |= val;
203 pcr_ops->write_pic(0, pic);
204 }
205
206 static const struct perf_event_map ultra3_perfmon_event_map[] = {
207 [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
208 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
209 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
210 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
211 };
212
213 static const struct perf_event_map *ultra3_event_map(int event_id)
214 {
215 return &ultra3_perfmon_event_map[event_id];
216 }
217
218 static const cache_map_t ultra3_cache_map = {
219 [C(L1D)] = {
220 [C(OP_READ)] = {
221 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
222 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
223 },
224 [C(OP_WRITE)] = {
225 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
226 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
227 },
228 [C(OP_PREFETCH)] = {
229 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
230 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
231 },
232 },
233 [C(L1I)] = {
234 [C(OP_READ)] = {
235 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
236 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
237 },
238 [ C(OP_WRITE) ] = {
239 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
240 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
241 },
242 [ C(OP_PREFETCH) ] = {
243 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
244 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
245 },
246 },
247 [C(LL)] = {
248 [C(OP_READ)] = {
249 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
250 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
251 },
252 [C(OP_WRITE)] = {
253 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
254 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
255 },
256 [C(OP_PREFETCH)] = {
257 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
258 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
259 },
260 },
261 [C(DTLB)] = {
262 [C(OP_READ)] = {
263 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
264 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
265 },
266 [ C(OP_WRITE) ] = {
267 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
268 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
269 },
270 [ C(OP_PREFETCH) ] = {
271 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
272 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
273 },
274 },
275 [C(ITLB)] = {
276 [C(OP_READ)] = {
277 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
278 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
279 },
280 [ C(OP_WRITE) ] = {
281 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
282 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
283 },
284 [ C(OP_PREFETCH) ] = {
285 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
286 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
287 },
288 },
289 [C(BPU)] = {
290 [C(OP_READ)] = {
291 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
292 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
293 },
294 [ C(OP_WRITE) ] = {
295 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
296 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
297 },
298 [ C(OP_PREFETCH) ] = {
299 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
300 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
301 },
302 },
303 [C(NODE)] = {
304 [C(OP_READ)] = {
305 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
306 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
307 },
308 [ C(OP_WRITE) ] = {
309 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
310 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
311 },
312 [ C(OP_PREFETCH) ] = {
313 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
314 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
315 },
316 },
317 };
318
319 static const struct sparc_pmu ultra3_pmu = {
320 .event_map = ultra3_event_map,
321 .cache_map = &ultra3_cache_map,
322 .max_events = ARRAY_SIZE(ultra3_perfmon_event_map),
323 .read_pmc = sparc_default_read_pmc,
324 .write_pmc = sparc_default_write_pmc,
325 .upper_shift = 11,
326 .lower_shift = 4,
327 .event_mask = 0x3f,
328 .user_bit = PCR_UTRACE,
329 .priv_bit = PCR_STRACE,
330 .upper_nop = 0x1c,
331 .lower_nop = 0x14,
332 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
333 SPARC_PMU_HAS_CONFLICTS),
334 .max_hw_events = 2,
335 .num_pcrs = 1,
336 .num_pic_regs = 1,
337 };
338
339 /* Niagara1 is very limited. The upper PIC is hard-locked to count
340 * only instructions, so it is free running which creates all kinds of
341 * problems. Some hardware designs make one wonder if the creator
342 * even looked at how this stuff gets used by software.
343 */
344 static const struct perf_event_map niagara1_perfmon_event_map[] = {
345 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
346 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
347 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
348 [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
349 };
350
351 static const struct perf_event_map *niagara1_event_map(int event_id)
352 {
353 return &niagara1_perfmon_event_map[event_id];
354 }
355
356 static const cache_map_t niagara1_cache_map = {
357 [C(L1D)] = {
358 [C(OP_READ)] = {
359 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
360 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
361 },
362 [C(OP_WRITE)] = {
363 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
364 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
365 },
366 [C(OP_PREFETCH)] = {
367 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
368 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
369 },
370 },
371 [C(L1I)] = {
372 [C(OP_READ)] = {
373 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
374 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
375 },
376 [ C(OP_WRITE) ] = {
377 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
378 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
379 },
380 [ C(OP_PREFETCH) ] = {
381 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
382 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
383 },
384 },
385 [C(LL)] = {
386 [C(OP_READ)] = {
387 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
388 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
389 },
390 [C(OP_WRITE)] = {
391 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
392 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
393 },
394 [C(OP_PREFETCH)] = {
395 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
396 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
397 },
398 },
399 [C(DTLB)] = {
400 [C(OP_READ)] = {
401 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
402 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
403 },
404 [ C(OP_WRITE) ] = {
405 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
406 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
407 },
408 [ C(OP_PREFETCH) ] = {
409 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
410 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
411 },
412 },
413 [C(ITLB)] = {
414 [C(OP_READ)] = {
415 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
416 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
417 },
418 [ C(OP_WRITE) ] = {
419 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
420 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
421 },
422 [ C(OP_PREFETCH) ] = {
423 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
424 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
425 },
426 },
427 [C(BPU)] = {
428 [C(OP_READ)] = {
429 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
430 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
431 },
432 [ C(OP_WRITE) ] = {
433 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
434 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
435 },
436 [ C(OP_PREFETCH) ] = {
437 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
438 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
439 },
440 },
441 [C(NODE)] = {
442 [C(OP_READ)] = {
443 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
444 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
445 },
446 [ C(OP_WRITE) ] = {
447 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
448 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
449 },
450 [ C(OP_PREFETCH) ] = {
451 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
452 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
453 },
454 },
455 };
456
457 static const struct sparc_pmu niagara1_pmu = {
458 .event_map = niagara1_event_map,
459 .cache_map = &niagara1_cache_map,
460 .max_events = ARRAY_SIZE(niagara1_perfmon_event_map),
461 .read_pmc = sparc_default_read_pmc,
462 .write_pmc = sparc_default_write_pmc,
463 .upper_shift = 0,
464 .lower_shift = 4,
465 .event_mask = 0x7,
466 .user_bit = PCR_UTRACE,
467 .priv_bit = PCR_STRACE,
468 .upper_nop = 0x0,
469 .lower_nop = 0x0,
470 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
471 SPARC_PMU_HAS_CONFLICTS),
472 .max_hw_events = 2,
473 .num_pcrs = 1,
474 .num_pic_regs = 1,
475 };
476
477 static const struct perf_event_map niagara2_perfmon_event_map[] = {
478 [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
479 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
480 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
481 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
482 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
483 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
484 };
485
486 static const struct perf_event_map *niagara2_event_map(int event_id)
487 {
488 return &niagara2_perfmon_event_map[event_id];
489 }
490
491 static const cache_map_t niagara2_cache_map = {
492 [C(L1D)] = {
493 [C(OP_READ)] = {
494 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
495 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
496 },
497 [C(OP_WRITE)] = {
498 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
499 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
500 },
501 [C(OP_PREFETCH)] = {
502 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
503 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
504 },
505 },
506 [C(L1I)] = {
507 [C(OP_READ)] = {
508 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
509 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
510 },
511 [ C(OP_WRITE) ] = {
512 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
513 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
514 },
515 [ C(OP_PREFETCH) ] = {
516 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
517 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
518 },
519 },
520 [C(LL)] = {
521 [C(OP_READ)] = {
522 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
523 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
524 },
525 [C(OP_WRITE)] = {
526 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
527 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
528 },
529 [C(OP_PREFETCH)] = {
530 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
531 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
532 },
533 },
534 [C(DTLB)] = {
535 [C(OP_READ)] = {
536 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
537 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
538 },
539 [ C(OP_WRITE) ] = {
540 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
541 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
542 },
543 [ C(OP_PREFETCH) ] = {
544 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
545 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
546 },
547 },
548 [C(ITLB)] = {
549 [C(OP_READ)] = {
550 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
551 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
552 },
553 [ C(OP_WRITE) ] = {
554 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
555 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
556 },
557 [ C(OP_PREFETCH) ] = {
558 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
559 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
560 },
561 },
562 [C(BPU)] = {
563 [C(OP_READ)] = {
564 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
565 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
566 },
567 [ C(OP_WRITE) ] = {
568 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
569 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
570 },
571 [ C(OP_PREFETCH) ] = {
572 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
573 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
574 },
575 },
576 [C(NODE)] = {
577 [C(OP_READ)] = {
578 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
579 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
580 },
581 [ C(OP_WRITE) ] = {
582 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
583 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
584 },
585 [ C(OP_PREFETCH) ] = {
586 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
587 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
588 },
589 },
590 };
591
592 static const struct sparc_pmu niagara2_pmu = {
593 .event_map = niagara2_event_map,
594 .cache_map = &niagara2_cache_map,
595 .max_events = ARRAY_SIZE(niagara2_perfmon_event_map),
596 .read_pmc = sparc_default_read_pmc,
597 .write_pmc = sparc_default_write_pmc,
598 .upper_shift = 19,
599 .lower_shift = 6,
600 .event_mask = 0xfff,
601 .user_bit = PCR_UTRACE,
602 .priv_bit = PCR_STRACE,
603 .hv_bit = PCR_N2_HTRACE,
604 .irq_bit = 0x30,
605 .upper_nop = 0x220,
606 .lower_nop = 0x220,
607 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
608 SPARC_PMU_HAS_CONFLICTS),
609 .max_hw_events = 2,
610 .num_pcrs = 1,
611 .num_pic_regs = 1,
612 };
613
614 static const struct perf_event_map niagara4_perfmon_event_map[] = {
615 [PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
616 [PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
617 [PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
618 [PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
619 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
620 [PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
621 };
622
623 static const struct perf_event_map *niagara4_event_map(int event_id)
624 {
625 return &niagara4_perfmon_event_map[event_id];
626 }
627
628 static const cache_map_t niagara4_cache_map = {
629 [C(L1D)] = {
630 [C(OP_READ)] = {
631 [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
632 [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
633 },
634 [C(OP_WRITE)] = {
635 [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
636 [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
637 },
638 [C(OP_PREFETCH)] = {
639 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
640 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
641 },
642 },
643 [C(L1I)] = {
644 [C(OP_READ)] = {
645 [C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
646 [C(RESULT_MISS)] = { (11 << 6) | 0x03 },
647 },
648 [ C(OP_WRITE) ] = {
649 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
650 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
651 },
652 [ C(OP_PREFETCH) ] = {
653 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
654 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
655 },
656 },
657 [C(LL)] = {
658 [C(OP_READ)] = {
659 [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
660 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
661 },
662 [C(OP_WRITE)] = {
663 [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
664 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
665 },
666 [C(OP_PREFETCH)] = {
667 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
668 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
669 },
670 },
671 [C(DTLB)] = {
672 [C(OP_READ)] = {
673 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
674 [C(RESULT_MISS)] = { (17 << 6) | 0x3f },
675 },
676 [ C(OP_WRITE) ] = {
677 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
678 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
679 },
680 [ C(OP_PREFETCH) ] = {
681 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
682 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
683 },
684 },
685 [C(ITLB)] = {
686 [C(OP_READ)] = {
687 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
688 [C(RESULT_MISS)] = { (6 << 6) | 0x3f },
689 },
690 [ C(OP_WRITE) ] = {
691 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
692 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
693 },
694 [ C(OP_PREFETCH) ] = {
695 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
696 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
697 },
698 },
699 [C(BPU)] = {
700 [C(OP_READ)] = {
701 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
702 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
703 },
704 [ C(OP_WRITE) ] = {
705 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
706 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
707 },
708 [ C(OP_PREFETCH) ] = {
709 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
710 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
711 },
712 },
713 [C(NODE)] = {
714 [C(OP_READ)] = {
715 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
716 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
717 },
718 [ C(OP_WRITE) ] = {
719 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
720 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
721 },
722 [ C(OP_PREFETCH) ] = {
723 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
724 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
725 },
726 },
727 };
728
729 static u32 sparc_vt_read_pmc(int idx)
730 {
731 u64 val = pcr_ops->read_pic(idx);
732
733 return val & 0xffffffff;
734 }
735
736 static void sparc_vt_write_pmc(int idx, u64 val)
737 {
738 u64 pcr;
739
740 /* There seems to be an internal latch on the overflow event
741 * on SPARC-T4 that prevents it from triggering unless you
742 * update the PIC exactly as we do here. The requirement
743 * seems to be that you have to turn off event counting in the
744 * PCR around the PIC update.
745 *
746 * For example, after the following sequence:
747 *
748 * 1) set PIC to -1
749 * 2) enable event counting and overflow reporting in PCR
750 * 3) overflow triggers, softint 15 handler invoked
751 * 4) clear OV bit in PCR
752 * 5) write PIC to -1
753 *
754 * a subsequent overflow event will not trigger. This
755 * sequence works on SPARC-T3 and previous chips.
756 */
757 pcr = pcr_ops->read_pcr(idx);
758 pcr_ops->write_pcr(idx, PCR_N4_PICNPT);
759
760 pcr_ops->write_pic(idx, val & 0xffffffff);
761
762 pcr_ops->write_pcr(idx, pcr);
763 }
764
765 static const struct sparc_pmu niagara4_pmu = {
766 .event_map = niagara4_event_map,
767 .cache_map = &niagara4_cache_map,
768 .max_events = ARRAY_SIZE(niagara4_perfmon_event_map),
769 .read_pmc = sparc_vt_read_pmc,
770 .write_pmc = sparc_vt_write_pmc,
771 .upper_shift = 5,
772 .lower_shift = 5,
773 .event_mask = 0x7ff,
774 .user_bit = PCR_N4_UTRACE,
775 .priv_bit = PCR_N4_STRACE,
776
777 /* We explicitly don't support hypervisor tracing. The T4
778 * generates the overflow event for precise events via a trap
779 * which will not be generated (ie. it's completely lost) if
780 * we happen to be in the hypervisor when the event triggers.
781 * Essentially, the overflow event reporting is completely
782 * unusable when you have hypervisor mode tracing enabled.
783 */
784 .hv_bit = 0,
785
786 .irq_bit = PCR_N4_TOE,
787 .upper_nop = 0,
788 .lower_nop = 0,
789 .flags = 0,
790 .max_hw_events = 4,
791 .num_pcrs = 4,
792 .num_pic_regs = 4,
793 };
794
795 static void sparc_m7_write_pmc(int idx, u64 val)
796 {
797 u64 pcr;
798
799 pcr = pcr_ops->read_pcr(idx);
800 /* ensure ov and ntc are reset */
801 pcr &= ~(PCR_N4_OV | PCR_N4_NTC);
802
803 pcr_ops->write_pic(idx, val & 0xffffffff);
804
805 pcr_ops->write_pcr(idx, pcr);
806 }
807
808 static const struct sparc_pmu sparc_m7_pmu = {
809 .event_map = niagara4_event_map,
810 .cache_map = &niagara4_cache_map,
811 .max_events = ARRAY_SIZE(niagara4_perfmon_event_map),
812 .read_pmc = sparc_vt_read_pmc,
813 .write_pmc = sparc_m7_write_pmc,
814 .upper_shift = 5,
815 .lower_shift = 5,
816 .event_mask = 0x7ff,
817 .user_bit = PCR_N4_UTRACE,
818 .priv_bit = PCR_N4_STRACE,
819
820 /* We explicitly don't support hypervisor tracing. */
821 .hv_bit = 0,
822
823 .irq_bit = PCR_N4_TOE,
824 .upper_nop = 0,
825 .lower_nop = 0,
826 .flags = 0,
827 .max_hw_events = 4,
828 .num_pcrs = 4,
829 .num_pic_regs = 4,
830 };
831 static const struct sparc_pmu *sparc_pmu __read_mostly;
832
833 static u64 event_encoding(u64 event_id, int idx)
834 {
835 if (idx == PIC_UPPER_INDEX)
836 event_id <<= sparc_pmu->upper_shift;
837 else
838 event_id <<= sparc_pmu->lower_shift;
839 return event_id;
840 }
841
842 static u64 mask_for_index(int idx)
843 {
844 return event_encoding(sparc_pmu->event_mask, idx);
845 }
846
847 static u64 nop_for_index(int idx)
848 {
849 return event_encoding(idx == PIC_UPPER_INDEX ?
850 sparc_pmu->upper_nop :
851 sparc_pmu->lower_nop, idx);
852 }
853
854 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
855 {
856 u64 enc, val, mask = mask_for_index(idx);
857 int pcr_index = 0;
858
859 if (sparc_pmu->num_pcrs > 1)
860 pcr_index = idx;
861
862 enc = perf_event_get_enc(cpuc->events[idx]);
863
864 val = cpuc->pcr[pcr_index];
865 val &= ~mask;
866 val |= event_encoding(enc, idx);
867 cpuc->pcr[pcr_index] = val;
868
869 pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
870 }
871
872 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
873 {
874 u64 mask = mask_for_index(idx);
875 u64 nop = nop_for_index(idx);
876 int pcr_index = 0;
877 u64 val;
878
879 if (sparc_pmu->num_pcrs > 1)
880 pcr_index = idx;
881
882 val = cpuc->pcr[pcr_index];
883 val &= ~mask;
884 val |= nop;
885 cpuc->pcr[pcr_index] = val;
886
887 pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
888 }
889
890 static u64 sparc_perf_event_update(struct perf_event *event,
891 struct hw_perf_event *hwc, int idx)
892 {
893 int shift = 64 - 32;
894 u64 prev_raw_count, new_raw_count;
895 s64 delta;
896
897 again:
898 prev_raw_count = local64_read(&hwc->prev_count);
899 new_raw_count = sparc_pmu->read_pmc(idx);
900
901 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
902 new_raw_count) != prev_raw_count)
903 goto again;
904
905 delta = (new_raw_count << shift) - (prev_raw_count << shift);
906 delta >>= shift;
907
908 local64_add(delta, &event->count);
909 local64_sub(delta, &hwc->period_left);
910
911 return new_raw_count;
912 }
913
914 static int sparc_perf_event_set_period(struct perf_event *event,
915 struct hw_perf_event *hwc, int idx)
916 {
917 s64 left = local64_read(&hwc->period_left);
918 s64 period = hwc->sample_period;
919 int ret = 0;
920
921 if (unlikely(left <= -period)) {
922 left = period;
923 local64_set(&hwc->period_left, left);
924 hwc->last_period = period;
925 ret = 1;
926 }
927
928 if (unlikely(left <= 0)) {
929 left += period;
930 local64_set(&hwc->period_left, left);
931 hwc->last_period = period;
932 ret = 1;
933 }
934 if (left > MAX_PERIOD)
935 left = MAX_PERIOD;
936
937 local64_set(&hwc->prev_count, (u64)-left);
938
939 sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
940
941 perf_event_update_userpage(event);
942
943 return ret;
944 }
945
946 static void read_in_all_counters(struct cpu_hw_events *cpuc)
947 {
948 int i;
949
950 for (i = 0; i < cpuc->n_events; i++) {
951 struct perf_event *cp = cpuc->event[i];
952
953 if (cpuc->current_idx[i] != PIC_NO_INDEX &&
954 cpuc->current_idx[i] != cp->hw.idx) {
955 sparc_perf_event_update(cp, &cp->hw,
956 cpuc->current_idx[i]);
957 cpuc->current_idx[i] = PIC_NO_INDEX;
958 }
959 }
960 }
961
962 /* On this PMU all PICs are programmed using a single PCR. Calculate
963 * the combined control register value.
964 *
965 * For such chips we require that all of the events have the same
966 * configuration, so just fetch the settings from the first entry.
967 */
968 static void calculate_single_pcr(struct cpu_hw_events *cpuc)
969 {
970 int i;
971
972 if (!cpuc->n_added)
973 goto out;
974
975 /* Assign to counters all unassigned events. */
976 for (i = 0; i < cpuc->n_events; i++) {
977 struct perf_event *cp = cpuc->event[i];
978 struct hw_perf_event *hwc = &cp->hw;
979 int idx = hwc->idx;
980 u64 enc;
981
982 if (cpuc->current_idx[i] != PIC_NO_INDEX)
983 continue;
984
985 sparc_perf_event_set_period(cp, hwc, idx);
986 cpuc->current_idx[i] = idx;
987
988 enc = perf_event_get_enc(cpuc->events[i]);
989 cpuc->pcr[0] &= ~mask_for_index(idx);
990 if (hwc->state & PERF_HES_STOPPED)
991 cpuc->pcr[0] |= nop_for_index(idx);
992 else
993 cpuc->pcr[0] |= event_encoding(enc, idx);
994 }
995 out:
996 cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
997 }
998
999 static void sparc_pmu_start(struct perf_event *event, int flags);
1000
1001 /* On this PMU each PIC has it's own PCR control register. */
1002 static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
1003 {
1004 int i;
1005
1006 if (!cpuc->n_added)
1007 goto out;
1008
1009 for (i = 0; i < cpuc->n_events; i++) {
1010 struct perf_event *cp = cpuc->event[i];
1011 struct hw_perf_event *hwc = &cp->hw;
1012 int idx = hwc->idx;
1013
1014 if (cpuc->current_idx[i] != PIC_NO_INDEX)
1015 continue;
1016
1017 cpuc->current_idx[i] = idx;
1018
1019 sparc_pmu_start(cp, PERF_EF_RELOAD);
1020 }
1021 out:
1022 for (i = 0; i < cpuc->n_events; i++) {
1023 struct perf_event *cp = cpuc->event[i];
1024 int idx = cp->hw.idx;
1025
1026 cpuc->pcr[idx] |= cp->hw.config_base;
1027 }
1028 }
1029
1030 /* If performance event entries have been added, move existing events
1031 * around (if necessary) and then assign new entries to counters.
1032 */
1033 static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1034 {
1035 if (cpuc->n_added)
1036 read_in_all_counters(cpuc);
1037
1038 if (sparc_pmu->num_pcrs == 1) {
1039 calculate_single_pcr(cpuc);
1040 } else {
1041 calculate_multiple_pcrs(cpuc);
1042 }
1043 }
1044
1045 static void sparc_pmu_enable(struct pmu *pmu)
1046 {
1047 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1048 int i;
1049
1050 if (cpuc->enabled)
1051 return;
1052
1053 cpuc->enabled = 1;
1054 barrier();
1055
1056 if (cpuc->n_events)
1057 update_pcrs_for_enable(cpuc);
1058
1059 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1060 pcr_ops->write_pcr(i, cpuc->pcr[i]);
1061 }
1062
1063 static void sparc_pmu_disable(struct pmu *pmu)
1064 {
1065 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1066 int i;
1067
1068 if (!cpuc->enabled)
1069 return;
1070
1071 cpuc->enabled = 0;
1072 cpuc->n_added = 0;
1073
1074 for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1075 u64 val = cpuc->pcr[i];
1076
1077 val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1078 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1079 cpuc->pcr[i] = val;
1080 pcr_ops->write_pcr(i, cpuc->pcr[i]);
1081 }
1082 }
1083
1084 static int active_event_index(struct cpu_hw_events *cpuc,
1085 struct perf_event *event)
1086 {
1087 int i;
1088
1089 for (i = 0; i < cpuc->n_events; i++) {
1090 if (cpuc->event[i] == event)
1091 break;
1092 }
1093 BUG_ON(i == cpuc->n_events);
1094 return cpuc->current_idx[i];
1095 }
1096
1097 static void sparc_pmu_start(struct perf_event *event, int flags)
1098 {
1099 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1100 int idx = active_event_index(cpuc, event);
1101
1102 if (flags & PERF_EF_RELOAD) {
1103 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1104 sparc_perf_event_set_period(event, &event->hw, idx);
1105 }
1106
1107 event->hw.state = 0;
1108
1109 sparc_pmu_enable_event(cpuc, &event->hw, idx);
1110 }
1111
1112 static void sparc_pmu_stop(struct perf_event *event, int flags)
1113 {
1114 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1115 int idx = active_event_index(cpuc, event);
1116
1117 if (!(event->hw.state & PERF_HES_STOPPED)) {
1118 sparc_pmu_disable_event(cpuc, &event->hw, idx);
1119 event->hw.state |= PERF_HES_STOPPED;
1120 }
1121
1122 if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1123 sparc_perf_event_update(event, &event->hw, idx);
1124 event->hw.state |= PERF_HES_UPTODATE;
1125 }
1126 }
1127
1128 static void sparc_pmu_del(struct perf_event *event, int _flags)
1129 {
1130 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1131 unsigned long flags;
1132 int i;
1133
1134 local_irq_save(flags);
1135
1136 for (i = 0; i < cpuc->n_events; i++) {
1137 if (event == cpuc->event[i]) {
1138 /* Absorb the final count and turn off the
1139 * event.
1140 */
1141 sparc_pmu_stop(event, PERF_EF_UPDATE);
1142
1143 /* Shift remaining entries down into
1144 * the existing slot.
1145 */
1146 while (++i < cpuc->n_events) {
1147 cpuc->event[i - 1] = cpuc->event[i];
1148 cpuc->events[i - 1] = cpuc->events[i];
1149 cpuc->current_idx[i - 1] =
1150 cpuc->current_idx[i];
1151 }
1152
1153 perf_event_update_userpage(event);
1154
1155 cpuc->n_events--;
1156 break;
1157 }
1158 }
1159
1160 local_irq_restore(flags);
1161 }
1162
1163 static void sparc_pmu_read(struct perf_event *event)
1164 {
1165 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1166 int idx = active_event_index(cpuc, event);
1167 struct hw_perf_event *hwc = &event->hw;
1168
1169 sparc_perf_event_update(event, hwc, idx);
1170 }
1171
1172 static atomic_t active_events = ATOMIC_INIT(0);
1173 static DEFINE_MUTEX(pmc_grab_mutex);
1174
1175 static void perf_stop_nmi_watchdog(void *unused)
1176 {
1177 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1178 int i;
1179
1180 stop_nmi_watchdog(NULL);
1181 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1182 cpuc->pcr[i] = pcr_ops->read_pcr(i);
1183 }
1184
1185 static void perf_event_grab_pmc(void)
1186 {
1187 if (atomic_inc_not_zero(&active_events))
1188 return;
1189
1190 mutex_lock(&pmc_grab_mutex);
1191 if (atomic_read(&active_events) == 0) {
1192 if (atomic_read(&nmi_active) > 0) {
1193 on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1194 BUG_ON(atomic_read(&nmi_active) != 0);
1195 }
1196 atomic_inc(&active_events);
1197 }
1198 mutex_unlock(&pmc_grab_mutex);
1199 }
1200
1201 static void perf_event_release_pmc(void)
1202 {
1203 if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1204 if (atomic_read(&nmi_active) == 0)
1205 on_each_cpu(start_nmi_watchdog, NULL, 1);
1206 mutex_unlock(&pmc_grab_mutex);
1207 }
1208 }
1209
1210 static const struct perf_event_map *sparc_map_cache_event(u64 config)
1211 {
1212 unsigned int cache_type, cache_op, cache_result;
1213 const struct perf_event_map *pmap;
1214
1215 if (!sparc_pmu->cache_map)
1216 return ERR_PTR(-ENOENT);
1217
1218 cache_type = (config >> 0) & 0xff;
1219 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1220 return ERR_PTR(-EINVAL);
1221
1222 cache_op = (config >> 8) & 0xff;
1223 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1224 return ERR_PTR(-EINVAL);
1225
1226 cache_result = (config >> 16) & 0xff;
1227 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1228 return ERR_PTR(-EINVAL);
1229
1230 pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1231
1232 if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1233 return ERR_PTR(-ENOENT);
1234
1235 if (pmap->encoding == CACHE_OP_NONSENSE)
1236 return ERR_PTR(-EINVAL);
1237
1238 return pmap;
1239 }
1240
1241 static void hw_perf_event_destroy(struct perf_event *event)
1242 {
1243 perf_event_release_pmc();
1244 }
1245
1246 /* Make sure all events can be scheduled into the hardware at
1247 * the same time. This is simplified by the fact that we only
1248 * need to support 2 simultaneous HW events.
1249 *
1250 * As a side effect, the evts[]->hw.idx values will be assigned
1251 * on success. These are pending indexes. When the events are
1252 * actually programmed into the chip, these values will propagate
1253 * to the per-cpu cpuc->current_idx[] slots, see the code in
1254 * maybe_change_configuration() for details.
1255 */
1256 static int sparc_check_constraints(struct perf_event **evts,
1257 unsigned long *events, int n_ev)
1258 {
1259 u8 msk0 = 0, msk1 = 0;
1260 int idx0 = 0;
1261
1262 /* This case is possible when we are invoked from
1263 * hw_perf_group_sched_in().
1264 */
1265 if (!n_ev)
1266 return 0;
1267
1268 if (n_ev > sparc_pmu->max_hw_events)
1269 return -1;
1270
1271 if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1272 int i;
1273
1274 for (i = 0; i < n_ev; i++)
1275 evts[i]->hw.idx = i;
1276 return 0;
1277 }
1278
1279 msk0 = perf_event_get_msk(events[0]);
1280 if (n_ev == 1) {
1281 if (msk0 & PIC_LOWER)
1282 idx0 = 1;
1283 goto success;
1284 }
1285 BUG_ON(n_ev != 2);
1286 msk1 = perf_event_get_msk(events[1]);
1287
1288 /* If both events can go on any counter, OK. */
1289 if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1290 msk1 == (PIC_UPPER | PIC_LOWER))
1291 goto success;
1292
1293 /* If one event is limited to a specific counter,
1294 * and the other can go on both, OK.
1295 */
1296 if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1297 msk1 == (PIC_UPPER | PIC_LOWER)) {
1298 if (msk0 & PIC_LOWER)
1299 idx0 = 1;
1300 goto success;
1301 }
1302
1303 if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1304 msk0 == (PIC_UPPER | PIC_LOWER)) {
1305 if (msk1 & PIC_UPPER)
1306 idx0 = 1;
1307 goto success;
1308 }
1309
1310 /* If the events are fixed to different counters, OK. */
1311 if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1312 (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1313 if (msk0 & PIC_LOWER)
1314 idx0 = 1;
1315 goto success;
1316 }
1317
1318 /* Otherwise, there is a conflict. */
1319 return -1;
1320
1321 success:
1322 evts[0]->hw.idx = idx0;
1323 if (n_ev == 2)
1324 evts[1]->hw.idx = idx0 ^ 1;
1325 return 0;
1326 }
1327
1328 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1329 {
1330 int eu = 0, ek = 0, eh = 0;
1331 struct perf_event *event;
1332 int i, n, first;
1333
1334 if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1335 return 0;
1336
1337 n = n_prev + n_new;
1338 if (n <= 1)
1339 return 0;
1340
1341 first = 1;
1342 for (i = 0; i < n; i++) {
1343 event = evts[i];
1344 if (first) {
1345 eu = event->attr.exclude_user;
1346 ek = event->attr.exclude_kernel;
1347 eh = event->attr.exclude_hv;
1348 first = 0;
1349 } else if (event->attr.exclude_user != eu ||
1350 event->attr.exclude_kernel != ek ||
1351 event->attr.exclude_hv != eh) {
1352 return -EAGAIN;
1353 }
1354 }
1355
1356 return 0;
1357 }
1358
1359 static int collect_events(struct perf_event *group, int max_count,
1360 struct perf_event *evts[], unsigned long *events,
1361 int *current_idx)
1362 {
1363 struct perf_event *event;
1364 int n = 0;
1365
1366 if (!is_software_event(group)) {
1367 if (n >= max_count)
1368 return -1;
1369 evts[n] = group;
1370 events[n] = group->hw.event_base;
1371 current_idx[n++] = PIC_NO_INDEX;
1372 }
1373 list_for_each_entry(event, &group->sibling_list, group_entry) {
1374 if (!is_software_event(event) &&
1375 event->state != PERF_EVENT_STATE_OFF) {
1376 if (n >= max_count)
1377 return -1;
1378 evts[n] = event;
1379 events[n] = event->hw.event_base;
1380 current_idx[n++] = PIC_NO_INDEX;
1381 }
1382 }
1383 return n;
1384 }
1385
1386 static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1387 {
1388 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1389 int n0, ret = -EAGAIN;
1390 unsigned long flags;
1391
1392 local_irq_save(flags);
1393
1394 n0 = cpuc->n_events;
1395 if (n0 >= sparc_pmu->max_hw_events)
1396 goto out;
1397
1398 cpuc->event[n0] = event;
1399 cpuc->events[n0] = event->hw.event_base;
1400 cpuc->current_idx[n0] = PIC_NO_INDEX;
1401
1402 event->hw.state = PERF_HES_UPTODATE;
1403 if (!(ef_flags & PERF_EF_START))
1404 event->hw.state |= PERF_HES_STOPPED;
1405
1406 /*
1407 * If group events scheduling transaction was started,
1408 * skip the schedulability test here, it will be performed
1409 * at commit time(->commit_txn) as a whole
1410 */
1411 if (cpuc->group_flag & PERF_EVENT_TXN)
1412 goto nocheck;
1413
1414 if (check_excludes(cpuc->event, n0, 1))
1415 goto out;
1416 if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1417 goto out;
1418
1419 nocheck:
1420 cpuc->n_events++;
1421 cpuc->n_added++;
1422
1423 ret = 0;
1424 out:
1425 local_irq_restore(flags);
1426 return ret;
1427 }
1428
1429 static int sparc_pmu_event_init(struct perf_event *event)
1430 {
1431 struct perf_event_attr *attr = &event->attr;
1432 struct perf_event *evts[MAX_HWEVENTS];
1433 struct hw_perf_event *hwc = &event->hw;
1434 unsigned long events[MAX_HWEVENTS];
1435 int current_idx_dmy[MAX_HWEVENTS];
1436 const struct perf_event_map *pmap;
1437 int n;
1438
1439 if (atomic_read(&nmi_active) < 0)
1440 return -ENODEV;
1441
1442 /* does not support taken branch sampling */
1443 if (has_branch_stack(event))
1444 return -EOPNOTSUPP;
1445
1446 switch (attr->type) {
1447 case PERF_TYPE_HARDWARE:
1448 if (attr->config >= sparc_pmu->max_events)
1449 return -EINVAL;
1450 pmap = sparc_pmu->event_map(attr->config);
1451 break;
1452
1453 case PERF_TYPE_HW_CACHE:
1454 pmap = sparc_map_cache_event(attr->config);
1455 if (IS_ERR(pmap))
1456 return PTR_ERR(pmap);
1457 break;
1458
1459 case PERF_TYPE_RAW:
1460 pmap = NULL;
1461 break;
1462
1463 default:
1464 return -ENOENT;
1465
1466 }
1467
1468 if (pmap) {
1469 hwc->event_base = perf_event_encode(pmap);
1470 } else {
1471 /*
1472 * User gives us "(encoding << 16) | pic_mask" for
1473 * PERF_TYPE_RAW events.
1474 */
1475 hwc->event_base = attr->config;
1476 }
1477
1478 /* We save the enable bits in the config_base. */
1479 hwc->config_base = sparc_pmu->irq_bit;
1480 if (!attr->exclude_user)
1481 hwc->config_base |= sparc_pmu->user_bit;
1482 if (!attr->exclude_kernel)
1483 hwc->config_base |= sparc_pmu->priv_bit;
1484 if (!attr->exclude_hv)
1485 hwc->config_base |= sparc_pmu->hv_bit;
1486
1487 n = 0;
1488 if (event->group_leader != event) {
1489 n = collect_events(event->group_leader,
1490 sparc_pmu->max_hw_events - 1,
1491 evts, events, current_idx_dmy);
1492 if (n < 0)
1493 return -EINVAL;
1494 }
1495 events[n] = hwc->event_base;
1496 evts[n] = event;
1497
1498 if (check_excludes(evts, n, 1))
1499 return -EINVAL;
1500
1501 if (sparc_check_constraints(evts, events, n + 1))
1502 return -EINVAL;
1503
1504 hwc->idx = PIC_NO_INDEX;
1505
1506 /* Try to do all error checking before this point, as unwinding
1507 * state after grabbing the PMC is difficult.
1508 */
1509 perf_event_grab_pmc();
1510 event->destroy = hw_perf_event_destroy;
1511
1512 if (!hwc->sample_period) {
1513 hwc->sample_period = MAX_PERIOD;
1514 hwc->last_period = hwc->sample_period;
1515 local64_set(&hwc->period_left, hwc->sample_period);
1516 }
1517
1518 return 0;
1519 }
1520
1521 /*
1522 * Start group events scheduling transaction
1523 * Set the flag to make pmu::enable() not perform the
1524 * schedulability test, it will be performed at commit time
1525 */
1526 static void sparc_pmu_start_txn(struct pmu *pmu)
1527 {
1528 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1529
1530 perf_pmu_disable(pmu);
1531 cpuhw->group_flag |= PERF_EVENT_TXN;
1532 }
1533
1534 /*
1535 * Stop group events scheduling transaction
1536 * Clear the flag and pmu::enable() will perform the
1537 * schedulability test.
1538 */
1539 static void sparc_pmu_cancel_txn(struct pmu *pmu)
1540 {
1541 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1542
1543 cpuhw->group_flag &= ~PERF_EVENT_TXN;
1544 perf_pmu_enable(pmu);
1545 }
1546
1547 /*
1548 * Commit group events scheduling transaction
1549 * Perform the group schedulability test as a whole
1550 * Return 0 if success
1551 */
1552 static int sparc_pmu_commit_txn(struct pmu *pmu)
1553 {
1554 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1555 int n;
1556
1557 if (!sparc_pmu)
1558 return -EINVAL;
1559
1560 cpuc = this_cpu_ptr(&cpu_hw_events);
1561 n = cpuc->n_events;
1562 if (check_excludes(cpuc->event, 0, n))
1563 return -EINVAL;
1564 if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1565 return -EAGAIN;
1566
1567 cpuc->group_flag &= ~PERF_EVENT_TXN;
1568 perf_pmu_enable(pmu);
1569 return 0;
1570 }
1571
1572 static struct pmu pmu = {
1573 .pmu_enable = sparc_pmu_enable,
1574 .pmu_disable = sparc_pmu_disable,
1575 .event_init = sparc_pmu_event_init,
1576 .add = sparc_pmu_add,
1577 .del = sparc_pmu_del,
1578 .start = sparc_pmu_start,
1579 .stop = sparc_pmu_stop,
1580 .read = sparc_pmu_read,
1581 .start_txn = sparc_pmu_start_txn,
1582 .cancel_txn = sparc_pmu_cancel_txn,
1583 .commit_txn = sparc_pmu_commit_txn,
1584 };
1585
1586 void perf_event_print_debug(void)
1587 {
1588 unsigned long flags;
1589 int cpu, i;
1590
1591 if (!sparc_pmu)
1592 return;
1593
1594 local_irq_save(flags);
1595
1596 cpu = smp_processor_id();
1597
1598 pr_info("\n");
1599 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1600 pr_info("CPU#%d: PCR%d[%016llx]\n",
1601 cpu, i, pcr_ops->read_pcr(i));
1602 for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1603 pr_info("CPU#%d: PIC%d[%016llx]\n",
1604 cpu, i, pcr_ops->read_pic(i));
1605
1606 local_irq_restore(flags);
1607 }
1608
1609 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1610 unsigned long cmd, void *__args)
1611 {
1612 struct die_args *args = __args;
1613 struct perf_sample_data data;
1614 struct cpu_hw_events *cpuc;
1615 struct pt_regs *regs;
1616 int i;
1617
1618 if (!atomic_read(&active_events))
1619 return NOTIFY_DONE;
1620
1621 switch (cmd) {
1622 case DIE_NMI:
1623 break;
1624
1625 default:
1626 return NOTIFY_DONE;
1627 }
1628
1629 regs = args->regs;
1630
1631 cpuc = this_cpu_ptr(&cpu_hw_events);
1632
1633 /* If the PMU has the TOE IRQ enable bits, we need to do a
1634 * dummy write to the %pcr to clear the overflow bits and thus
1635 * the interrupt.
1636 *
1637 * Do this before we peek at the counters to determine
1638 * overflow so we don't lose any events.
1639 */
1640 if (sparc_pmu->irq_bit &&
1641 sparc_pmu->num_pcrs == 1)
1642 pcr_ops->write_pcr(0, cpuc->pcr[0]);
1643
1644 for (i = 0; i < cpuc->n_events; i++) {
1645 struct perf_event *event = cpuc->event[i];
1646 int idx = cpuc->current_idx[i];
1647 struct hw_perf_event *hwc;
1648 u64 val;
1649
1650 if (sparc_pmu->irq_bit &&
1651 sparc_pmu->num_pcrs > 1)
1652 pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1653
1654 hwc = &event->hw;
1655 val = sparc_perf_event_update(event, hwc, idx);
1656 if (val & (1ULL << 31))
1657 continue;
1658
1659 perf_sample_data_init(&data, 0, hwc->last_period);
1660 if (!sparc_perf_event_set_period(event, hwc, idx))
1661 continue;
1662
1663 if (perf_event_overflow(event, &data, regs))
1664 sparc_pmu_stop(event, 0);
1665 }
1666
1667 return NOTIFY_STOP;
1668 }
1669
1670 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1671 .notifier_call = perf_event_nmi_handler,
1672 };
1673
1674 static bool __init supported_pmu(void)
1675 {
1676 if (!strcmp(sparc_pmu_type, "ultra3") ||
1677 !strcmp(sparc_pmu_type, "ultra3+") ||
1678 !strcmp(sparc_pmu_type, "ultra3i") ||
1679 !strcmp(sparc_pmu_type, "ultra4+")) {
1680 sparc_pmu = &ultra3_pmu;
1681 return true;
1682 }
1683 if (!strcmp(sparc_pmu_type, "niagara")) {
1684 sparc_pmu = &niagara1_pmu;
1685 return true;
1686 }
1687 if (!strcmp(sparc_pmu_type, "niagara2") ||
1688 !strcmp(sparc_pmu_type, "niagara3")) {
1689 sparc_pmu = &niagara2_pmu;
1690 return true;
1691 }
1692 if (!strcmp(sparc_pmu_type, "niagara4") ||
1693 !strcmp(sparc_pmu_type, "niagara5")) {
1694 sparc_pmu = &niagara4_pmu;
1695 return true;
1696 }
1697 if (!strcmp(sparc_pmu_type, "sparc-m7")) {
1698 sparc_pmu = &sparc_m7_pmu;
1699 return true;
1700 }
1701 return false;
1702 }
1703
1704 static int __init init_hw_perf_events(void)
1705 {
1706 int err;
1707
1708 pr_info("Performance events: ");
1709
1710 err = pcr_arch_init();
1711 if (err || !supported_pmu()) {
1712 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1713 return 0;
1714 }
1715
1716 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1717
1718 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1719 register_die_notifier(&perf_event_nmi_notifier);
1720
1721 return 0;
1722 }
1723 pure_initcall(init_hw_perf_events);
1724
1725 void perf_callchain_kernel(struct perf_callchain_entry *entry,
1726 struct pt_regs *regs)
1727 {
1728 unsigned long ksp, fp;
1729 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1730 int graph = 0;
1731 #endif
1732
1733 stack_trace_flush();
1734
1735 perf_callchain_store(entry, regs->tpc);
1736
1737 ksp = regs->u_regs[UREG_I6];
1738 fp = ksp + STACK_BIAS;
1739 do {
1740 struct sparc_stackf *sf;
1741 struct pt_regs *regs;
1742 unsigned long pc;
1743
1744 if (!kstack_valid(current_thread_info(), fp))
1745 break;
1746
1747 sf = (struct sparc_stackf *) fp;
1748 regs = (struct pt_regs *) (sf + 1);
1749
1750 if (kstack_is_trap_frame(current_thread_info(), regs)) {
1751 if (user_mode(regs))
1752 break;
1753 pc = regs->tpc;
1754 fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1755 } else {
1756 pc = sf->callers_pc;
1757 fp = (unsigned long)sf->fp + STACK_BIAS;
1758 }
1759 perf_callchain_store(entry, pc);
1760 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1761 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1762 int index = current->curr_ret_stack;
1763 if (current->ret_stack && index >= graph) {
1764 pc = current->ret_stack[index - graph].ret;
1765 perf_callchain_store(entry, pc);
1766 graph++;
1767 }
1768 }
1769 #endif
1770 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1771 }
1772
1773 static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1774 struct pt_regs *regs)
1775 {
1776 unsigned long ufp;
1777
1778 ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1779 do {
1780 struct sparc_stackf __user *usf;
1781 struct sparc_stackf sf;
1782 unsigned long pc;
1783
1784 usf = (struct sparc_stackf __user *)ufp;
1785 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1786 break;
1787
1788 pc = sf.callers_pc;
1789 ufp = (unsigned long)sf.fp + STACK_BIAS;
1790 perf_callchain_store(entry, pc);
1791 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1792 }
1793
1794 static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1795 struct pt_regs *regs)
1796 {
1797 unsigned long ufp;
1798
1799 ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1800 do {
1801 unsigned long pc;
1802
1803 if (thread32_stack_is_64bit(ufp)) {
1804 struct sparc_stackf __user *usf;
1805 struct sparc_stackf sf;
1806
1807 ufp += STACK_BIAS;
1808 usf = (struct sparc_stackf __user *)ufp;
1809 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1810 break;
1811 pc = sf.callers_pc & 0xffffffff;
1812 ufp = ((unsigned long) sf.fp) & 0xffffffff;
1813 } else {
1814 struct sparc_stackf32 __user *usf;
1815 struct sparc_stackf32 sf;
1816 usf = (struct sparc_stackf32 __user *)ufp;
1817 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1818 break;
1819 pc = sf.callers_pc;
1820 ufp = (unsigned long)sf.fp;
1821 }
1822 perf_callchain_store(entry, pc);
1823 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1824 }
1825
1826 void
1827 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1828 {
1829 perf_callchain_store(entry, regs->tpc);
1830
1831 if (!current->mm)
1832 return;
1833
1834 flushw_user();
1835 if (test_thread_flag(TIF_32BIT))
1836 perf_callchain_user_32(entry, regs);
1837 else
1838 perf_callchain_user_64(entry, regs);
1839 }
This page took 0.070355 seconds and 5 git commands to generate.