Merge tag 'xtensa-next-20140721' of git://github.com/czankel/xtensa-linux
[deliverable/linux.git] / arch / sparc / kernel / process_64.c
1 /* arch/sparc64/kernel/process.c
2 *
3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 /*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12 #include <stdarg.h>
13
14 #include <linux/errno.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/compat.h>
27 #include <linux/tick.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/perf_event.h>
31 #include <linux/elfcore.h>
32 #include <linux/sysrq.h>
33 #include <linux/nmi.h>
34 #include <linux/context_tracking.h>
35
36 #include <asm/uaccess.h>
37 #include <asm/page.h>
38 #include <asm/pgalloc.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41 #include <asm/pstate.h>
42 #include <asm/elf.h>
43 #include <asm/fpumacro.h>
44 #include <asm/head.h>
45 #include <asm/cpudata.h>
46 #include <asm/mmu_context.h>
47 #include <asm/unistd.h>
48 #include <asm/hypervisor.h>
49 #include <asm/syscalls.h>
50 #include <asm/irq_regs.h>
51 #include <asm/smp.h>
52 #include <asm/pcr.h>
53
54 #include "kstack.h"
55
56 /* Idle loop support on sparc64. */
57 void arch_cpu_idle(void)
58 {
59 if (tlb_type != hypervisor) {
60 touch_nmi_watchdog();
61 local_irq_enable();
62 } else {
63 unsigned long pstate;
64
65 local_irq_enable();
66
67 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
68 * the cpu sleep hypervisor call.
69 */
70 __asm__ __volatile__(
71 "rdpr %%pstate, %0\n\t"
72 "andn %0, %1, %0\n\t"
73 "wrpr %0, %%g0, %%pstate"
74 : "=&r" (pstate)
75 : "i" (PSTATE_IE));
76
77 if (!need_resched() && !cpu_is_offline(smp_processor_id()))
78 sun4v_cpu_yield();
79
80 /* Re-enable interrupts. */
81 __asm__ __volatile__(
82 "rdpr %%pstate, %0\n\t"
83 "or %0, %1, %0\n\t"
84 "wrpr %0, %%g0, %%pstate"
85 : "=&r" (pstate)
86 : "i" (PSTATE_IE));
87 }
88 }
89
90 #ifdef CONFIG_HOTPLUG_CPU
91 void arch_cpu_idle_dead(void)
92 {
93 sched_preempt_enable_no_resched();
94 cpu_play_dead();
95 }
96 #endif
97
98 #ifdef CONFIG_COMPAT
99 static void show_regwindow32(struct pt_regs *regs)
100 {
101 struct reg_window32 __user *rw;
102 struct reg_window32 r_w;
103 mm_segment_t old_fs;
104
105 __asm__ __volatile__ ("flushw");
106 rw = compat_ptr((unsigned)regs->u_regs[14]);
107 old_fs = get_fs();
108 set_fs (USER_DS);
109 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
110 set_fs (old_fs);
111 return;
112 }
113
114 set_fs (old_fs);
115 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
116 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
117 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
118 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
119 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
120 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
121 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
122 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
123 }
124 #else
125 #define show_regwindow32(regs) do { } while (0)
126 #endif
127
128 static void show_regwindow(struct pt_regs *regs)
129 {
130 struct reg_window __user *rw;
131 struct reg_window *rwk;
132 struct reg_window r_w;
133 mm_segment_t old_fs;
134
135 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
136 __asm__ __volatile__ ("flushw");
137 rw = (struct reg_window __user *)
138 (regs->u_regs[14] + STACK_BIAS);
139 rwk = (struct reg_window *)
140 (regs->u_regs[14] + STACK_BIAS);
141 if (!(regs->tstate & TSTATE_PRIV)) {
142 old_fs = get_fs();
143 set_fs (USER_DS);
144 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
145 set_fs (old_fs);
146 return;
147 }
148 rwk = &r_w;
149 set_fs (old_fs);
150 }
151 } else {
152 show_regwindow32(regs);
153 return;
154 }
155 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
156 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
157 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
158 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
159 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
160 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
161 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
162 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
163 if (regs->tstate & TSTATE_PRIV)
164 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
165 }
166
167 void show_regs(struct pt_regs *regs)
168 {
169 show_regs_print_info(KERN_DEFAULT);
170
171 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
172 regs->tpc, regs->tnpc, regs->y, print_tainted());
173 printk("TPC: <%pS>\n", (void *) regs->tpc);
174 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
175 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
176 regs->u_regs[3]);
177 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
178 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
179 regs->u_regs[7]);
180 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
181 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
182 regs->u_regs[11]);
183 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
184 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
185 regs->u_regs[15]);
186 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
187 show_regwindow(regs);
188 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
189 }
190
191 union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
192 static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
193
194 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
195 int this_cpu)
196 {
197 struct global_reg_snapshot *rp;
198
199 flushw_all();
200
201 rp = &global_cpu_snapshot[this_cpu].reg;
202
203 rp->tstate = regs->tstate;
204 rp->tpc = regs->tpc;
205 rp->tnpc = regs->tnpc;
206 rp->o7 = regs->u_regs[UREG_I7];
207
208 if (regs->tstate & TSTATE_PRIV) {
209 struct reg_window *rw;
210
211 rw = (struct reg_window *)
212 (regs->u_regs[UREG_FP] + STACK_BIAS);
213 if (kstack_valid(tp, (unsigned long) rw)) {
214 rp->i7 = rw->ins[7];
215 rw = (struct reg_window *)
216 (rw->ins[6] + STACK_BIAS);
217 if (kstack_valid(tp, (unsigned long) rw))
218 rp->rpc = rw->ins[7];
219 }
220 } else {
221 rp->i7 = 0;
222 rp->rpc = 0;
223 }
224 rp->thread = tp;
225 }
226
227 /* In order to avoid hangs we do not try to synchronize with the
228 * global register dump client cpus. The last store they make is to
229 * the thread pointer, so do a short poll waiting for that to become
230 * non-NULL.
231 */
232 static void __global_reg_poll(struct global_reg_snapshot *gp)
233 {
234 int limit = 0;
235
236 while (!gp->thread && ++limit < 100) {
237 barrier();
238 udelay(1);
239 }
240 }
241
242 void arch_trigger_all_cpu_backtrace(bool include_self)
243 {
244 struct thread_info *tp = current_thread_info();
245 struct pt_regs *regs = get_irq_regs();
246 unsigned long flags;
247 int this_cpu, cpu;
248
249 if (!regs)
250 regs = tp->kregs;
251
252 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
253
254 this_cpu = raw_smp_processor_id();
255
256 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
257
258 if (include_self)
259 __global_reg_self(tp, regs, this_cpu);
260
261 smp_fetch_global_regs();
262
263 for_each_online_cpu(cpu) {
264 struct global_reg_snapshot *gp;
265
266 if (!include_self && cpu == this_cpu)
267 continue;
268
269 gp = &global_cpu_snapshot[cpu].reg;
270
271 __global_reg_poll(gp);
272
273 tp = gp->thread;
274 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
275 (cpu == this_cpu ? '*' : ' '), cpu,
276 gp->tstate, gp->tpc, gp->tnpc,
277 ((tp && tp->task) ? tp->task->comm : "NULL"),
278 ((tp && tp->task) ? tp->task->pid : -1));
279
280 if (gp->tstate & TSTATE_PRIV) {
281 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
282 (void *) gp->tpc,
283 (void *) gp->o7,
284 (void *) gp->i7,
285 (void *) gp->rpc);
286 } else {
287 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
288 gp->tpc, gp->o7, gp->i7, gp->rpc);
289 }
290 }
291
292 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
293
294 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
295 }
296
297 #ifdef CONFIG_MAGIC_SYSRQ
298
299 static void sysrq_handle_globreg(int key)
300 {
301 arch_trigger_all_cpu_backtrace(true);
302 }
303
304 static struct sysrq_key_op sparc_globalreg_op = {
305 .handler = sysrq_handle_globreg,
306 .help_msg = "global-regs(y)",
307 .action_msg = "Show Global CPU Regs",
308 };
309
310 static void __global_pmu_self(int this_cpu)
311 {
312 struct global_pmu_snapshot *pp;
313 int i, num;
314
315 pp = &global_cpu_snapshot[this_cpu].pmu;
316
317 num = 1;
318 if (tlb_type == hypervisor &&
319 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
320 num = 4;
321
322 for (i = 0; i < num; i++) {
323 pp->pcr[i] = pcr_ops->read_pcr(i);
324 pp->pic[i] = pcr_ops->read_pic(i);
325 }
326 }
327
328 static void __global_pmu_poll(struct global_pmu_snapshot *pp)
329 {
330 int limit = 0;
331
332 while (!pp->pcr[0] && ++limit < 100) {
333 barrier();
334 udelay(1);
335 }
336 }
337
338 static void pmu_snapshot_all_cpus(void)
339 {
340 unsigned long flags;
341 int this_cpu, cpu;
342
343 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
344
345 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
346
347 this_cpu = raw_smp_processor_id();
348
349 __global_pmu_self(this_cpu);
350
351 smp_fetch_global_pmu();
352
353 for_each_online_cpu(cpu) {
354 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
355
356 __global_pmu_poll(pp);
357
358 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
359 (cpu == this_cpu ? '*' : ' '), cpu,
360 pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
361 pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
362 }
363
364 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
365
366 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
367 }
368
369 static void sysrq_handle_globpmu(int key)
370 {
371 pmu_snapshot_all_cpus();
372 }
373
374 static struct sysrq_key_op sparc_globalpmu_op = {
375 .handler = sysrq_handle_globpmu,
376 .help_msg = "global-pmu(x)",
377 .action_msg = "Show Global PMU Regs",
378 };
379
380 static int __init sparc_sysrq_init(void)
381 {
382 int ret = register_sysrq_key('y', &sparc_globalreg_op);
383
384 if (!ret)
385 ret = register_sysrq_key('x', &sparc_globalpmu_op);
386 return ret;
387 }
388
389 core_initcall(sparc_sysrq_init);
390
391 #endif
392
393 unsigned long thread_saved_pc(struct task_struct *tsk)
394 {
395 struct thread_info *ti = task_thread_info(tsk);
396 unsigned long ret = 0xdeadbeefUL;
397
398 if (ti && ti->ksp) {
399 unsigned long *sp;
400 sp = (unsigned long *)(ti->ksp + STACK_BIAS);
401 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
402 sp[14]) {
403 unsigned long *fp;
404 fp = (unsigned long *)(sp[14] + STACK_BIAS);
405 if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
406 ret = fp[15];
407 }
408 }
409 return ret;
410 }
411
412 /* Free current thread data structures etc.. */
413 void exit_thread(void)
414 {
415 struct thread_info *t = current_thread_info();
416
417 if (t->utraps) {
418 if (t->utraps[0] < 2)
419 kfree (t->utraps);
420 else
421 t->utraps[0]--;
422 }
423 }
424
425 void flush_thread(void)
426 {
427 struct thread_info *t = current_thread_info();
428 struct mm_struct *mm;
429
430 mm = t->task->mm;
431 if (mm)
432 tsb_context_switch(mm);
433
434 set_thread_wsaved(0);
435
436 /* Clear FPU register state. */
437 t->fpsaved[0] = 0;
438 }
439
440 /* It's a bit more tricky when 64-bit tasks are involved... */
441 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
442 {
443 bool stack_64bit = test_thread_64bit_stack(psp);
444 unsigned long fp, distance, rval;
445
446 if (stack_64bit) {
447 csp += STACK_BIAS;
448 psp += STACK_BIAS;
449 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
450 fp += STACK_BIAS;
451 if (test_thread_flag(TIF_32BIT))
452 fp &= 0xffffffff;
453 } else
454 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
455
456 /* Now align the stack as this is mandatory in the Sparc ABI
457 * due to how register windows work. This hides the
458 * restriction from thread libraries etc.
459 */
460 csp &= ~15UL;
461
462 distance = fp - psp;
463 rval = (csp - distance);
464 if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
465 rval = 0;
466 else if (!stack_64bit) {
467 if (put_user(((u32)csp),
468 &(((struct reg_window32 __user *)rval)->ins[6])))
469 rval = 0;
470 } else {
471 if (put_user(((u64)csp - STACK_BIAS),
472 &(((struct reg_window __user *)rval)->ins[6])))
473 rval = 0;
474 else
475 rval = rval - STACK_BIAS;
476 }
477
478 return rval;
479 }
480
481 /* Standard stuff. */
482 static inline void shift_window_buffer(int first_win, int last_win,
483 struct thread_info *t)
484 {
485 int i;
486
487 for (i = first_win; i < last_win; i++) {
488 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
489 memcpy(&t->reg_window[i], &t->reg_window[i+1],
490 sizeof(struct reg_window));
491 }
492 }
493
494 void synchronize_user_stack(void)
495 {
496 struct thread_info *t = current_thread_info();
497 unsigned long window;
498
499 flush_user_windows();
500 if ((window = get_thread_wsaved()) != 0) {
501 window -= 1;
502 do {
503 struct reg_window *rwin = &t->reg_window[window];
504 int winsize = sizeof(struct reg_window);
505 unsigned long sp;
506
507 sp = t->rwbuf_stkptrs[window];
508
509 if (test_thread_64bit_stack(sp))
510 sp += STACK_BIAS;
511 else
512 winsize = sizeof(struct reg_window32);
513
514 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
515 shift_window_buffer(window, get_thread_wsaved() - 1, t);
516 set_thread_wsaved(get_thread_wsaved() - 1);
517 }
518 } while (window--);
519 }
520 }
521
522 static void stack_unaligned(unsigned long sp)
523 {
524 siginfo_t info;
525
526 info.si_signo = SIGBUS;
527 info.si_errno = 0;
528 info.si_code = BUS_ADRALN;
529 info.si_addr = (void __user *) sp;
530 info.si_trapno = 0;
531 force_sig_info(SIGBUS, &info, current);
532 }
533
534 void fault_in_user_windows(void)
535 {
536 struct thread_info *t = current_thread_info();
537 unsigned long window;
538
539 flush_user_windows();
540 window = get_thread_wsaved();
541
542 if (likely(window != 0)) {
543 window -= 1;
544 do {
545 struct reg_window *rwin = &t->reg_window[window];
546 int winsize = sizeof(struct reg_window);
547 unsigned long sp;
548
549 sp = t->rwbuf_stkptrs[window];
550
551 if (test_thread_64bit_stack(sp))
552 sp += STACK_BIAS;
553 else
554 winsize = sizeof(struct reg_window32);
555
556 if (unlikely(sp & 0x7UL))
557 stack_unaligned(sp);
558
559 if (unlikely(copy_to_user((char __user *)sp,
560 rwin, winsize)))
561 goto barf;
562 } while (window--);
563 }
564 set_thread_wsaved(0);
565 return;
566
567 barf:
568 set_thread_wsaved(window + 1);
569 user_exit();
570 do_exit(SIGILL);
571 }
572
573 asmlinkage long sparc_do_fork(unsigned long clone_flags,
574 unsigned long stack_start,
575 struct pt_regs *regs,
576 unsigned long stack_size)
577 {
578 int __user *parent_tid_ptr, *child_tid_ptr;
579 unsigned long orig_i1 = regs->u_regs[UREG_I1];
580 long ret;
581
582 #ifdef CONFIG_COMPAT
583 if (test_thread_flag(TIF_32BIT)) {
584 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
585 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
586 } else
587 #endif
588 {
589 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
590 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
591 }
592
593 ret = do_fork(clone_flags, stack_start, stack_size,
594 parent_tid_ptr, child_tid_ptr);
595
596 /* If we get an error and potentially restart the system
597 * call, we're screwed because copy_thread() clobbered
598 * the parent's %o1. So detect that case and restore it
599 * here.
600 */
601 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
602 regs->u_regs[UREG_I1] = orig_i1;
603
604 return ret;
605 }
606
607 /* Copy a Sparc thread. The fork() return value conventions
608 * under SunOS are nothing short of bletcherous:
609 * Parent --> %o0 == childs pid, %o1 == 0
610 * Child --> %o0 == parents pid, %o1 == 1
611 */
612 int copy_thread(unsigned long clone_flags, unsigned long sp,
613 unsigned long arg, struct task_struct *p)
614 {
615 struct thread_info *t = task_thread_info(p);
616 struct pt_regs *regs = current_pt_regs();
617 struct sparc_stackf *parent_sf;
618 unsigned long child_stack_sz;
619 char *child_trap_frame;
620
621 /* Calculate offset to stack_frame & pt_regs */
622 child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
623 child_trap_frame = (task_stack_page(p) +
624 (THREAD_SIZE - child_stack_sz));
625
626 t->new_child = 1;
627 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
628 t->kregs = (struct pt_regs *) (child_trap_frame +
629 sizeof(struct sparc_stackf));
630 t->fpsaved[0] = 0;
631
632 if (unlikely(p->flags & PF_KTHREAD)) {
633 memset(child_trap_frame, 0, child_stack_sz);
634 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
635 (current_pt_regs()->tstate + 1) & TSTATE_CWP;
636 t->current_ds = ASI_P;
637 t->kregs->u_regs[UREG_G1] = sp; /* function */
638 t->kregs->u_regs[UREG_G2] = arg;
639 return 0;
640 }
641
642 parent_sf = ((struct sparc_stackf *) regs) - 1;
643 memcpy(child_trap_frame, parent_sf, child_stack_sz);
644 if (t->flags & _TIF_32BIT) {
645 sp &= 0x00000000ffffffffUL;
646 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
647 }
648 t->kregs->u_regs[UREG_FP] = sp;
649 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
650 (regs->tstate + 1) & TSTATE_CWP;
651 t->current_ds = ASI_AIUS;
652 if (sp != regs->u_regs[UREG_FP]) {
653 unsigned long csp;
654
655 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
656 if (!csp)
657 return -EFAULT;
658 t->kregs->u_regs[UREG_FP] = csp;
659 }
660 if (t->utraps)
661 t->utraps[0]++;
662
663 /* Set the return value for the child. */
664 t->kregs->u_regs[UREG_I0] = current->pid;
665 t->kregs->u_regs[UREG_I1] = 1;
666
667 /* Set the second return value for the parent. */
668 regs->u_regs[UREG_I1] = 0;
669
670 if (clone_flags & CLONE_SETTLS)
671 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
672
673 return 0;
674 }
675
676 typedef struct {
677 union {
678 unsigned int pr_regs[32];
679 unsigned long pr_dregs[16];
680 } pr_fr;
681 unsigned int __unused;
682 unsigned int pr_fsr;
683 unsigned char pr_qcnt;
684 unsigned char pr_q_entrysize;
685 unsigned char pr_en;
686 unsigned int pr_q[64];
687 } elf_fpregset_t32;
688
689 /*
690 * fill in the fpu structure for a core dump.
691 */
692 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
693 {
694 unsigned long *kfpregs = current_thread_info()->fpregs;
695 unsigned long fprs = current_thread_info()->fpsaved[0];
696
697 if (test_thread_flag(TIF_32BIT)) {
698 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
699
700 if (fprs & FPRS_DL)
701 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
702 sizeof(unsigned int) * 32);
703 else
704 memset(&fpregs32->pr_fr.pr_regs[0], 0,
705 sizeof(unsigned int) * 32);
706 fpregs32->pr_qcnt = 0;
707 fpregs32->pr_q_entrysize = 8;
708 memset(&fpregs32->pr_q[0], 0,
709 (sizeof(unsigned int) * 64));
710 if (fprs & FPRS_FEF) {
711 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
712 fpregs32->pr_en = 1;
713 } else {
714 fpregs32->pr_fsr = 0;
715 fpregs32->pr_en = 0;
716 }
717 } else {
718 if(fprs & FPRS_DL)
719 memcpy(&fpregs->pr_regs[0], kfpregs,
720 sizeof(unsigned int) * 32);
721 else
722 memset(&fpregs->pr_regs[0], 0,
723 sizeof(unsigned int) * 32);
724 if(fprs & FPRS_DU)
725 memcpy(&fpregs->pr_regs[16], kfpregs+16,
726 sizeof(unsigned int) * 32);
727 else
728 memset(&fpregs->pr_regs[16], 0,
729 sizeof(unsigned int) * 32);
730 if(fprs & FPRS_FEF) {
731 fpregs->pr_fsr = current_thread_info()->xfsr[0];
732 fpregs->pr_gsr = current_thread_info()->gsr[0];
733 } else {
734 fpregs->pr_fsr = fpregs->pr_gsr = 0;
735 }
736 fpregs->pr_fprs = fprs;
737 }
738 return 1;
739 }
740 EXPORT_SYMBOL(dump_fpu);
741
742 unsigned long get_wchan(struct task_struct *task)
743 {
744 unsigned long pc, fp, bias = 0;
745 struct thread_info *tp;
746 struct reg_window *rw;
747 unsigned long ret = 0;
748 int count = 0;
749
750 if (!task || task == current ||
751 task->state == TASK_RUNNING)
752 goto out;
753
754 tp = task_thread_info(task);
755 bias = STACK_BIAS;
756 fp = task_thread_info(task)->ksp + bias;
757
758 do {
759 if (!kstack_valid(tp, fp))
760 break;
761 rw = (struct reg_window *) fp;
762 pc = rw->ins[7];
763 if (!in_sched_functions(pc)) {
764 ret = pc;
765 goto out;
766 }
767 fp = rw->ins[6] + bias;
768 } while (++count < 16);
769
770 out:
771 return ret;
772 }
This page took 0.077293 seconds and 5 git commands to generate.