dump_stack: unify debug information printed by show_regs()
[deliverable/linux.git] / arch / sparc / kernel / process_64.c
1 /* arch/sparc64/kernel/process.c
2 *
3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 /*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12 #include <stdarg.h>
13
14 #include <linux/errno.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/compat.h>
27 #include <linux/tick.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/perf_event.h>
31 #include <linux/elfcore.h>
32 #include <linux/sysrq.h>
33 #include <linux/nmi.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/page.h>
37 #include <asm/pgalloc.h>
38 #include <asm/pgtable.h>
39 #include <asm/processor.h>
40 #include <asm/pstate.h>
41 #include <asm/elf.h>
42 #include <asm/fpumacro.h>
43 #include <asm/head.h>
44 #include <asm/cpudata.h>
45 #include <asm/mmu_context.h>
46 #include <asm/unistd.h>
47 #include <asm/hypervisor.h>
48 #include <asm/syscalls.h>
49 #include <asm/irq_regs.h>
50 #include <asm/smp.h>
51 #include <asm/pcr.h>
52
53 #include "kstack.h"
54
55 /* Idle loop support on sparc64. */
56 void arch_cpu_idle(void)
57 {
58 if (tlb_type != hypervisor) {
59 touch_nmi_watchdog();
60 } else {
61 unsigned long pstate;
62
63 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
64 * the cpu sleep hypervisor call.
65 */
66 __asm__ __volatile__(
67 "rdpr %%pstate, %0\n\t"
68 "andn %0, %1, %0\n\t"
69 "wrpr %0, %%g0, %%pstate"
70 : "=&r" (pstate)
71 : "i" (PSTATE_IE));
72
73 if (!need_resched() && !cpu_is_offline(smp_processor_id()))
74 sun4v_cpu_yield();
75
76 /* Re-enable interrupts. */
77 __asm__ __volatile__(
78 "rdpr %%pstate, %0\n\t"
79 "or %0, %1, %0\n\t"
80 "wrpr %0, %%g0, %%pstate"
81 : "=&r" (pstate)
82 : "i" (PSTATE_IE));
83 }
84 local_irq_enable();
85 }
86
87 #ifdef CONFIG_HOTPLUG_CPU
88 void arch_cpu_idle_dead()
89 {
90 sched_preempt_enable_no_resched();
91 cpu_play_dead();
92 }
93 #endif
94
95 #ifdef CONFIG_COMPAT
96 static void show_regwindow32(struct pt_regs *regs)
97 {
98 struct reg_window32 __user *rw;
99 struct reg_window32 r_w;
100 mm_segment_t old_fs;
101
102 __asm__ __volatile__ ("flushw");
103 rw = compat_ptr((unsigned)regs->u_regs[14]);
104 old_fs = get_fs();
105 set_fs (USER_DS);
106 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
107 set_fs (old_fs);
108 return;
109 }
110
111 set_fs (old_fs);
112 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
113 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
114 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
115 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
116 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
117 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
118 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
119 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
120 }
121 #else
122 #define show_regwindow32(regs) do { } while (0)
123 #endif
124
125 static void show_regwindow(struct pt_regs *regs)
126 {
127 struct reg_window __user *rw;
128 struct reg_window *rwk;
129 struct reg_window r_w;
130 mm_segment_t old_fs;
131
132 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
133 __asm__ __volatile__ ("flushw");
134 rw = (struct reg_window __user *)
135 (regs->u_regs[14] + STACK_BIAS);
136 rwk = (struct reg_window *)
137 (regs->u_regs[14] + STACK_BIAS);
138 if (!(regs->tstate & TSTATE_PRIV)) {
139 old_fs = get_fs();
140 set_fs (USER_DS);
141 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
142 set_fs (old_fs);
143 return;
144 }
145 rwk = &r_w;
146 set_fs (old_fs);
147 }
148 } else {
149 show_regwindow32(regs);
150 return;
151 }
152 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
153 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
154 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
155 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
156 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
157 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
158 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
159 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
160 if (regs->tstate & TSTATE_PRIV)
161 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
162 }
163
164 void show_regs(struct pt_regs *regs)
165 {
166 show_regs_print_info(KERN_DEFAULT);
167
168 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
169 regs->tpc, regs->tnpc, regs->y, print_tainted());
170 printk("TPC: <%pS>\n", (void *) regs->tpc);
171 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
172 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
173 regs->u_regs[3]);
174 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
175 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
176 regs->u_regs[7]);
177 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
178 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
179 regs->u_regs[11]);
180 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
181 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
182 regs->u_regs[15]);
183 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
184 show_regwindow(regs);
185 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
186 }
187
188 union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
189 static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
190
191 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
192 int this_cpu)
193 {
194 struct global_reg_snapshot *rp;
195
196 flushw_all();
197
198 rp = &global_cpu_snapshot[this_cpu].reg;
199
200 rp->tstate = regs->tstate;
201 rp->tpc = regs->tpc;
202 rp->tnpc = regs->tnpc;
203 rp->o7 = regs->u_regs[UREG_I7];
204
205 if (regs->tstate & TSTATE_PRIV) {
206 struct reg_window *rw;
207
208 rw = (struct reg_window *)
209 (regs->u_regs[UREG_FP] + STACK_BIAS);
210 if (kstack_valid(tp, (unsigned long) rw)) {
211 rp->i7 = rw->ins[7];
212 rw = (struct reg_window *)
213 (rw->ins[6] + STACK_BIAS);
214 if (kstack_valid(tp, (unsigned long) rw))
215 rp->rpc = rw->ins[7];
216 }
217 } else {
218 rp->i7 = 0;
219 rp->rpc = 0;
220 }
221 rp->thread = tp;
222 }
223
224 /* In order to avoid hangs we do not try to synchronize with the
225 * global register dump client cpus. The last store they make is to
226 * the thread pointer, so do a short poll waiting for that to become
227 * non-NULL.
228 */
229 static void __global_reg_poll(struct global_reg_snapshot *gp)
230 {
231 int limit = 0;
232
233 while (!gp->thread && ++limit < 100) {
234 barrier();
235 udelay(1);
236 }
237 }
238
239 void arch_trigger_all_cpu_backtrace(void)
240 {
241 struct thread_info *tp = current_thread_info();
242 struct pt_regs *regs = get_irq_regs();
243 unsigned long flags;
244 int this_cpu, cpu;
245
246 if (!regs)
247 regs = tp->kregs;
248
249 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
250
251 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
252
253 this_cpu = raw_smp_processor_id();
254
255 __global_reg_self(tp, regs, this_cpu);
256
257 smp_fetch_global_regs();
258
259 for_each_online_cpu(cpu) {
260 struct global_reg_snapshot *gp = &global_cpu_snapshot[cpu].reg;
261
262 __global_reg_poll(gp);
263
264 tp = gp->thread;
265 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
266 (cpu == this_cpu ? '*' : ' '), cpu,
267 gp->tstate, gp->tpc, gp->tnpc,
268 ((tp && tp->task) ? tp->task->comm : "NULL"),
269 ((tp && tp->task) ? tp->task->pid : -1));
270
271 if (gp->tstate & TSTATE_PRIV) {
272 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
273 (void *) gp->tpc,
274 (void *) gp->o7,
275 (void *) gp->i7,
276 (void *) gp->rpc);
277 } else {
278 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
279 gp->tpc, gp->o7, gp->i7, gp->rpc);
280 }
281 }
282
283 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
284
285 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
286 }
287
288 #ifdef CONFIG_MAGIC_SYSRQ
289
290 static void sysrq_handle_globreg(int key)
291 {
292 arch_trigger_all_cpu_backtrace();
293 }
294
295 static struct sysrq_key_op sparc_globalreg_op = {
296 .handler = sysrq_handle_globreg,
297 .help_msg = "global-regs(Y)",
298 .action_msg = "Show Global CPU Regs",
299 };
300
301 static void __global_pmu_self(int this_cpu)
302 {
303 struct global_pmu_snapshot *pp;
304 int i, num;
305
306 pp = &global_cpu_snapshot[this_cpu].pmu;
307
308 num = 1;
309 if (tlb_type == hypervisor &&
310 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
311 num = 4;
312
313 for (i = 0; i < num; i++) {
314 pp->pcr[i] = pcr_ops->read_pcr(i);
315 pp->pic[i] = pcr_ops->read_pic(i);
316 }
317 }
318
319 static void __global_pmu_poll(struct global_pmu_snapshot *pp)
320 {
321 int limit = 0;
322
323 while (!pp->pcr[0] && ++limit < 100) {
324 barrier();
325 udelay(1);
326 }
327 }
328
329 static void pmu_snapshot_all_cpus(void)
330 {
331 unsigned long flags;
332 int this_cpu, cpu;
333
334 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
335
336 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
337
338 this_cpu = raw_smp_processor_id();
339
340 __global_pmu_self(this_cpu);
341
342 smp_fetch_global_pmu();
343
344 for_each_online_cpu(cpu) {
345 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
346
347 __global_pmu_poll(pp);
348
349 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
350 (cpu == this_cpu ? '*' : ' '), cpu,
351 pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
352 pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
353 }
354
355 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
356
357 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
358 }
359
360 static void sysrq_handle_globpmu(int key)
361 {
362 pmu_snapshot_all_cpus();
363 }
364
365 static struct sysrq_key_op sparc_globalpmu_op = {
366 .handler = sysrq_handle_globpmu,
367 .help_msg = "global-pmu(X)",
368 .action_msg = "Show Global PMU Regs",
369 };
370
371 static int __init sparc_sysrq_init(void)
372 {
373 int ret = register_sysrq_key('y', &sparc_globalreg_op);
374
375 if (!ret)
376 ret = register_sysrq_key('x', &sparc_globalpmu_op);
377 return ret;
378 }
379
380 core_initcall(sparc_sysrq_init);
381
382 #endif
383
384 unsigned long thread_saved_pc(struct task_struct *tsk)
385 {
386 struct thread_info *ti = task_thread_info(tsk);
387 unsigned long ret = 0xdeadbeefUL;
388
389 if (ti && ti->ksp) {
390 unsigned long *sp;
391 sp = (unsigned long *)(ti->ksp + STACK_BIAS);
392 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
393 sp[14]) {
394 unsigned long *fp;
395 fp = (unsigned long *)(sp[14] + STACK_BIAS);
396 if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
397 ret = fp[15];
398 }
399 }
400 return ret;
401 }
402
403 /* Free current thread data structures etc.. */
404 void exit_thread(void)
405 {
406 struct thread_info *t = current_thread_info();
407
408 if (t->utraps) {
409 if (t->utraps[0] < 2)
410 kfree (t->utraps);
411 else
412 t->utraps[0]--;
413 }
414 }
415
416 void flush_thread(void)
417 {
418 struct thread_info *t = current_thread_info();
419 struct mm_struct *mm;
420
421 mm = t->task->mm;
422 if (mm)
423 tsb_context_switch(mm);
424
425 set_thread_wsaved(0);
426
427 /* Clear FPU register state. */
428 t->fpsaved[0] = 0;
429 }
430
431 /* It's a bit more tricky when 64-bit tasks are involved... */
432 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
433 {
434 bool stack_64bit = test_thread_64bit_stack(psp);
435 unsigned long fp, distance, rval;
436
437 if (stack_64bit) {
438 csp += STACK_BIAS;
439 psp += STACK_BIAS;
440 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
441 fp += STACK_BIAS;
442 if (test_thread_flag(TIF_32BIT))
443 fp &= 0xffffffff;
444 } else
445 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
446
447 /* Now align the stack as this is mandatory in the Sparc ABI
448 * due to how register windows work. This hides the
449 * restriction from thread libraries etc.
450 */
451 csp &= ~15UL;
452
453 distance = fp - psp;
454 rval = (csp - distance);
455 if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
456 rval = 0;
457 else if (!stack_64bit) {
458 if (put_user(((u32)csp),
459 &(((struct reg_window32 __user *)rval)->ins[6])))
460 rval = 0;
461 } else {
462 if (put_user(((u64)csp - STACK_BIAS),
463 &(((struct reg_window __user *)rval)->ins[6])))
464 rval = 0;
465 else
466 rval = rval - STACK_BIAS;
467 }
468
469 return rval;
470 }
471
472 /* Standard stuff. */
473 static inline void shift_window_buffer(int first_win, int last_win,
474 struct thread_info *t)
475 {
476 int i;
477
478 for (i = first_win; i < last_win; i++) {
479 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
480 memcpy(&t->reg_window[i], &t->reg_window[i+1],
481 sizeof(struct reg_window));
482 }
483 }
484
485 void synchronize_user_stack(void)
486 {
487 struct thread_info *t = current_thread_info();
488 unsigned long window;
489
490 flush_user_windows();
491 if ((window = get_thread_wsaved()) != 0) {
492 window -= 1;
493 do {
494 struct reg_window *rwin = &t->reg_window[window];
495 int winsize = sizeof(struct reg_window);
496 unsigned long sp;
497
498 sp = t->rwbuf_stkptrs[window];
499
500 if (test_thread_64bit_stack(sp))
501 sp += STACK_BIAS;
502 else
503 winsize = sizeof(struct reg_window32);
504
505 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
506 shift_window_buffer(window, get_thread_wsaved() - 1, t);
507 set_thread_wsaved(get_thread_wsaved() - 1);
508 }
509 } while (window--);
510 }
511 }
512
513 static void stack_unaligned(unsigned long sp)
514 {
515 siginfo_t info;
516
517 info.si_signo = SIGBUS;
518 info.si_errno = 0;
519 info.si_code = BUS_ADRALN;
520 info.si_addr = (void __user *) sp;
521 info.si_trapno = 0;
522 force_sig_info(SIGBUS, &info, current);
523 }
524
525 void fault_in_user_windows(void)
526 {
527 struct thread_info *t = current_thread_info();
528 unsigned long window;
529
530 flush_user_windows();
531 window = get_thread_wsaved();
532
533 if (likely(window != 0)) {
534 window -= 1;
535 do {
536 struct reg_window *rwin = &t->reg_window[window];
537 int winsize = sizeof(struct reg_window);
538 unsigned long sp;
539
540 sp = t->rwbuf_stkptrs[window];
541
542 if (test_thread_64bit_stack(sp))
543 sp += STACK_BIAS;
544 else
545 winsize = sizeof(struct reg_window32);
546
547 if (unlikely(sp & 0x7UL))
548 stack_unaligned(sp);
549
550 if (unlikely(copy_to_user((char __user *)sp,
551 rwin, winsize)))
552 goto barf;
553 } while (window--);
554 }
555 set_thread_wsaved(0);
556 return;
557
558 barf:
559 set_thread_wsaved(window + 1);
560 do_exit(SIGILL);
561 }
562
563 asmlinkage long sparc_do_fork(unsigned long clone_flags,
564 unsigned long stack_start,
565 struct pt_regs *regs,
566 unsigned long stack_size)
567 {
568 int __user *parent_tid_ptr, *child_tid_ptr;
569 unsigned long orig_i1 = regs->u_regs[UREG_I1];
570 long ret;
571
572 #ifdef CONFIG_COMPAT
573 if (test_thread_flag(TIF_32BIT)) {
574 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
575 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
576 } else
577 #endif
578 {
579 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
580 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
581 }
582
583 ret = do_fork(clone_flags, stack_start, stack_size,
584 parent_tid_ptr, child_tid_ptr);
585
586 /* If we get an error and potentially restart the system
587 * call, we're screwed because copy_thread() clobbered
588 * the parent's %o1. So detect that case and restore it
589 * here.
590 */
591 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
592 regs->u_regs[UREG_I1] = orig_i1;
593
594 return ret;
595 }
596
597 /* Copy a Sparc thread. The fork() return value conventions
598 * under SunOS are nothing short of bletcherous:
599 * Parent --> %o0 == childs pid, %o1 == 0
600 * Child --> %o0 == parents pid, %o1 == 1
601 */
602 int copy_thread(unsigned long clone_flags, unsigned long sp,
603 unsigned long arg, struct task_struct *p)
604 {
605 struct thread_info *t = task_thread_info(p);
606 struct pt_regs *regs = current_pt_regs();
607 struct sparc_stackf *parent_sf;
608 unsigned long child_stack_sz;
609 char *child_trap_frame;
610
611 /* Calculate offset to stack_frame & pt_regs */
612 child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
613 child_trap_frame = (task_stack_page(p) +
614 (THREAD_SIZE - child_stack_sz));
615
616 t->new_child = 1;
617 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
618 t->kregs = (struct pt_regs *) (child_trap_frame +
619 sizeof(struct sparc_stackf));
620 t->fpsaved[0] = 0;
621
622 if (unlikely(p->flags & PF_KTHREAD)) {
623 memset(child_trap_frame, 0, child_stack_sz);
624 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
625 (current_pt_regs()->tstate + 1) & TSTATE_CWP;
626 t->current_ds = ASI_P;
627 t->kregs->u_regs[UREG_G1] = sp; /* function */
628 t->kregs->u_regs[UREG_G2] = arg;
629 return 0;
630 }
631
632 parent_sf = ((struct sparc_stackf *) regs) - 1;
633 memcpy(child_trap_frame, parent_sf, child_stack_sz);
634 if (t->flags & _TIF_32BIT) {
635 sp &= 0x00000000ffffffffUL;
636 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
637 }
638 t->kregs->u_regs[UREG_FP] = sp;
639 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
640 (regs->tstate + 1) & TSTATE_CWP;
641 t->current_ds = ASI_AIUS;
642 if (sp != regs->u_regs[UREG_FP]) {
643 unsigned long csp;
644
645 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
646 if (!csp)
647 return -EFAULT;
648 t->kregs->u_regs[UREG_FP] = csp;
649 }
650 if (t->utraps)
651 t->utraps[0]++;
652
653 /* Set the return value for the child. */
654 t->kregs->u_regs[UREG_I0] = current->pid;
655 t->kregs->u_regs[UREG_I1] = 1;
656
657 /* Set the second return value for the parent. */
658 regs->u_regs[UREG_I1] = 0;
659
660 if (clone_flags & CLONE_SETTLS)
661 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
662
663 return 0;
664 }
665
666 typedef struct {
667 union {
668 unsigned int pr_regs[32];
669 unsigned long pr_dregs[16];
670 } pr_fr;
671 unsigned int __unused;
672 unsigned int pr_fsr;
673 unsigned char pr_qcnt;
674 unsigned char pr_q_entrysize;
675 unsigned char pr_en;
676 unsigned int pr_q[64];
677 } elf_fpregset_t32;
678
679 /*
680 * fill in the fpu structure for a core dump.
681 */
682 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
683 {
684 unsigned long *kfpregs = current_thread_info()->fpregs;
685 unsigned long fprs = current_thread_info()->fpsaved[0];
686
687 if (test_thread_flag(TIF_32BIT)) {
688 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
689
690 if (fprs & FPRS_DL)
691 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
692 sizeof(unsigned int) * 32);
693 else
694 memset(&fpregs32->pr_fr.pr_regs[0], 0,
695 sizeof(unsigned int) * 32);
696 fpregs32->pr_qcnt = 0;
697 fpregs32->pr_q_entrysize = 8;
698 memset(&fpregs32->pr_q[0], 0,
699 (sizeof(unsigned int) * 64));
700 if (fprs & FPRS_FEF) {
701 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
702 fpregs32->pr_en = 1;
703 } else {
704 fpregs32->pr_fsr = 0;
705 fpregs32->pr_en = 0;
706 }
707 } else {
708 if(fprs & FPRS_DL)
709 memcpy(&fpregs->pr_regs[0], kfpregs,
710 sizeof(unsigned int) * 32);
711 else
712 memset(&fpregs->pr_regs[0], 0,
713 sizeof(unsigned int) * 32);
714 if(fprs & FPRS_DU)
715 memcpy(&fpregs->pr_regs[16], kfpregs+16,
716 sizeof(unsigned int) * 32);
717 else
718 memset(&fpregs->pr_regs[16], 0,
719 sizeof(unsigned int) * 32);
720 if(fprs & FPRS_FEF) {
721 fpregs->pr_fsr = current_thread_info()->xfsr[0];
722 fpregs->pr_gsr = current_thread_info()->gsr[0];
723 } else {
724 fpregs->pr_fsr = fpregs->pr_gsr = 0;
725 }
726 fpregs->pr_fprs = fprs;
727 }
728 return 1;
729 }
730 EXPORT_SYMBOL(dump_fpu);
731
732 unsigned long get_wchan(struct task_struct *task)
733 {
734 unsigned long pc, fp, bias = 0;
735 struct thread_info *tp;
736 struct reg_window *rw;
737 unsigned long ret = 0;
738 int count = 0;
739
740 if (!task || task == current ||
741 task->state == TASK_RUNNING)
742 goto out;
743
744 tp = task_thread_info(task);
745 bias = STACK_BIAS;
746 fp = task_thread_info(task)->ksp + bias;
747
748 do {
749 if (!kstack_valid(tp, fp))
750 break;
751 rw = (struct reg_window *) fp;
752 pc = rw->ins[7];
753 if (!in_sched_functions(pc)) {
754 ret = pc;
755 goto out;
756 }
757 fp = rw->ins[6] + bias;
758 } while (++count < 16);
759
760 out:
761 return ret;
762 }
This page took 0.053706 seconds and 5 git commands to generate.