Merge tag 'arm64-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas...
[deliverable/linux.git] / arch / sparc / kernel / process_64.c
1 /* arch/sparc64/kernel/process.c
2 *
3 * Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1997, 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 /*
9 * This file handles the architecture-dependent parts of process handling..
10 */
11
12 #include <stdarg.h>
13
14 #include <linux/errno.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/compat.h>
27 #include <linux/tick.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/perf_event.h>
31 #include <linux/elfcore.h>
32 #include <linux/sysrq.h>
33 #include <linux/nmi.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/page.h>
37 #include <asm/pgalloc.h>
38 #include <asm/pgtable.h>
39 #include <asm/processor.h>
40 #include <asm/pstate.h>
41 #include <asm/elf.h>
42 #include <asm/fpumacro.h>
43 #include <asm/head.h>
44 #include <asm/cpudata.h>
45 #include <asm/mmu_context.h>
46 #include <asm/unistd.h>
47 #include <asm/hypervisor.h>
48 #include <asm/syscalls.h>
49 #include <asm/irq_regs.h>
50 #include <asm/smp.h>
51 #include <asm/pcr.h>
52
53 #include "kstack.h"
54
55 /* Idle loop support on sparc64. */
56 void arch_cpu_idle(void)
57 {
58 if (tlb_type != hypervisor) {
59 touch_nmi_watchdog();
60 } else {
61 unsigned long pstate;
62
63 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
64 * the cpu sleep hypervisor call.
65 */
66 __asm__ __volatile__(
67 "rdpr %%pstate, %0\n\t"
68 "andn %0, %1, %0\n\t"
69 "wrpr %0, %%g0, %%pstate"
70 : "=&r" (pstate)
71 : "i" (PSTATE_IE));
72
73 if (!need_resched() && !cpu_is_offline(smp_processor_id()))
74 sun4v_cpu_yield();
75
76 /* Re-enable interrupts. */
77 __asm__ __volatile__(
78 "rdpr %%pstate, %0\n\t"
79 "or %0, %1, %0\n\t"
80 "wrpr %0, %%g0, %%pstate"
81 : "=&r" (pstate)
82 : "i" (PSTATE_IE));
83 }
84 local_irq_enable();
85 }
86
87 #ifdef CONFIG_HOTPLUG_CPU
88 void arch_cpu_idle_dead()
89 {
90 sched_preempt_enable_no_resched();
91 cpu_play_dead();
92 }
93 #endif
94
95 #ifdef CONFIG_COMPAT
96 static void show_regwindow32(struct pt_regs *regs)
97 {
98 struct reg_window32 __user *rw;
99 struct reg_window32 r_w;
100 mm_segment_t old_fs;
101
102 __asm__ __volatile__ ("flushw");
103 rw = compat_ptr((unsigned)regs->u_regs[14]);
104 old_fs = get_fs();
105 set_fs (USER_DS);
106 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
107 set_fs (old_fs);
108 return;
109 }
110
111 set_fs (old_fs);
112 printk("l0: %08x l1: %08x l2: %08x l3: %08x "
113 "l4: %08x l5: %08x l6: %08x l7: %08x\n",
114 r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
115 r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
116 printk("i0: %08x i1: %08x i2: %08x i3: %08x "
117 "i4: %08x i5: %08x i6: %08x i7: %08x\n",
118 r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
119 r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
120 }
121 #else
122 #define show_regwindow32(regs) do { } while (0)
123 #endif
124
125 static void show_regwindow(struct pt_regs *regs)
126 {
127 struct reg_window __user *rw;
128 struct reg_window *rwk;
129 struct reg_window r_w;
130 mm_segment_t old_fs;
131
132 if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
133 __asm__ __volatile__ ("flushw");
134 rw = (struct reg_window __user *)
135 (regs->u_regs[14] + STACK_BIAS);
136 rwk = (struct reg_window *)
137 (regs->u_regs[14] + STACK_BIAS);
138 if (!(regs->tstate & TSTATE_PRIV)) {
139 old_fs = get_fs();
140 set_fs (USER_DS);
141 if (copy_from_user (&r_w, rw, sizeof(r_w))) {
142 set_fs (old_fs);
143 return;
144 }
145 rwk = &r_w;
146 set_fs (old_fs);
147 }
148 } else {
149 show_regwindow32(regs);
150 return;
151 }
152 printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
153 rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
154 printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
155 rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
156 printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
157 rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
158 printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
159 rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
160 if (regs->tstate & TSTATE_PRIV)
161 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
162 }
163
164 void show_regs(struct pt_regs *regs)
165 {
166 printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x %s\n", regs->tstate,
167 regs->tpc, regs->tnpc, regs->y, print_tainted());
168 printk("TPC: <%pS>\n", (void *) regs->tpc);
169 printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
170 regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
171 regs->u_regs[3]);
172 printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
173 regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
174 regs->u_regs[7]);
175 printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
176 regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
177 regs->u_regs[11]);
178 printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
179 regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
180 regs->u_regs[15]);
181 printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
182 show_regwindow(regs);
183 show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
184 }
185
186 union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
187 static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
188
189 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
190 int this_cpu)
191 {
192 struct global_reg_snapshot *rp;
193
194 flushw_all();
195
196 rp = &global_cpu_snapshot[this_cpu].reg;
197
198 rp->tstate = regs->tstate;
199 rp->tpc = regs->tpc;
200 rp->tnpc = regs->tnpc;
201 rp->o7 = regs->u_regs[UREG_I7];
202
203 if (regs->tstate & TSTATE_PRIV) {
204 struct reg_window *rw;
205
206 rw = (struct reg_window *)
207 (regs->u_regs[UREG_FP] + STACK_BIAS);
208 if (kstack_valid(tp, (unsigned long) rw)) {
209 rp->i7 = rw->ins[7];
210 rw = (struct reg_window *)
211 (rw->ins[6] + STACK_BIAS);
212 if (kstack_valid(tp, (unsigned long) rw))
213 rp->rpc = rw->ins[7];
214 }
215 } else {
216 rp->i7 = 0;
217 rp->rpc = 0;
218 }
219 rp->thread = tp;
220 }
221
222 /* In order to avoid hangs we do not try to synchronize with the
223 * global register dump client cpus. The last store they make is to
224 * the thread pointer, so do a short poll waiting for that to become
225 * non-NULL.
226 */
227 static void __global_reg_poll(struct global_reg_snapshot *gp)
228 {
229 int limit = 0;
230
231 while (!gp->thread && ++limit < 100) {
232 barrier();
233 udelay(1);
234 }
235 }
236
237 void arch_trigger_all_cpu_backtrace(void)
238 {
239 struct thread_info *tp = current_thread_info();
240 struct pt_regs *regs = get_irq_regs();
241 unsigned long flags;
242 int this_cpu, cpu;
243
244 if (!regs)
245 regs = tp->kregs;
246
247 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
248
249 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
250
251 this_cpu = raw_smp_processor_id();
252
253 __global_reg_self(tp, regs, this_cpu);
254
255 smp_fetch_global_regs();
256
257 for_each_online_cpu(cpu) {
258 struct global_reg_snapshot *gp = &global_cpu_snapshot[cpu].reg;
259
260 __global_reg_poll(gp);
261
262 tp = gp->thread;
263 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
264 (cpu == this_cpu ? '*' : ' '), cpu,
265 gp->tstate, gp->tpc, gp->tnpc,
266 ((tp && tp->task) ? tp->task->comm : "NULL"),
267 ((tp && tp->task) ? tp->task->pid : -1));
268
269 if (gp->tstate & TSTATE_PRIV) {
270 printk(" TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
271 (void *) gp->tpc,
272 (void *) gp->o7,
273 (void *) gp->i7,
274 (void *) gp->rpc);
275 } else {
276 printk(" TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
277 gp->tpc, gp->o7, gp->i7, gp->rpc);
278 }
279 }
280
281 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
282
283 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
284 }
285
286 #ifdef CONFIG_MAGIC_SYSRQ
287
288 static void sysrq_handle_globreg(int key)
289 {
290 arch_trigger_all_cpu_backtrace();
291 }
292
293 static struct sysrq_key_op sparc_globalreg_op = {
294 .handler = sysrq_handle_globreg,
295 .help_msg = "global-regs(Y)",
296 .action_msg = "Show Global CPU Regs",
297 };
298
299 static void __global_pmu_self(int this_cpu)
300 {
301 struct global_pmu_snapshot *pp;
302 int i, num;
303
304 pp = &global_cpu_snapshot[this_cpu].pmu;
305
306 num = 1;
307 if (tlb_type == hypervisor &&
308 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
309 num = 4;
310
311 for (i = 0; i < num; i++) {
312 pp->pcr[i] = pcr_ops->read_pcr(i);
313 pp->pic[i] = pcr_ops->read_pic(i);
314 }
315 }
316
317 static void __global_pmu_poll(struct global_pmu_snapshot *pp)
318 {
319 int limit = 0;
320
321 while (!pp->pcr[0] && ++limit < 100) {
322 barrier();
323 udelay(1);
324 }
325 }
326
327 static void pmu_snapshot_all_cpus(void)
328 {
329 unsigned long flags;
330 int this_cpu, cpu;
331
332 spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
333
334 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
335
336 this_cpu = raw_smp_processor_id();
337
338 __global_pmu_self(this_cpu);
339
340 smp_fetch_global_pmu();
341
342 for_each_online_cpu(cpu) {
343 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
344
345 __global_pmu_poll(pp);
346
347 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
348 (cpu == this_cpu ? '*' : ' '), cpu,
349 pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
350 pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
351 }
352
353 memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
354
355 spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
356 }
357
358 static void sysrq_handle_globpmu(int key)
359 {
360 pmu_snapshot_all_cpus();
361 }
362
363 static struct sysrq_key_op sparc_globalpmu_op = {
364 .handler = sysrq_handle_globpmu,
365 .help_msg = "global-pmu(X)",
366 .action_msg = "Show Global PMU Regs",
367 };
368
369 static int __init sparc_sysrq_init(void)
370 {
371 int ret = register_sysrq_key('y', &sparc_globalreg_op);
372
373 if (!ret)
374 ret = register_sysrq_key('x', &sparc_globalpmu_op);
375 return ret;
376 }
377
378 core_initcall(sparc_sysrq_init);
379
380 #endif
381
382 unsigned long thread_saved_pc(struct task_struct *tsk)
383 {
384 struct thread_info *ti = task_thread_info(tsk);
385 unsigned long ret = 0xdeadbeefUL;
386
387 if (ti && ti->ksp) {
388 unsigned long *sp;
389 sp = (unsigned long *)(ti->ksp + STACK_BIAS);
390 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
391 sp[14]) {
392 unsigned long *fp;
393 fp = (unsigned long *)(sp[14] + STACK_BIAS);
394 if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
395 ret = fp[15];
396 }
397 }
398 return ret;
399 }
400
401 /* Free current thread data structures etc.. */
402 void exit_thread(void)
403 {
404 struct thread_info *t = current_thread_info();
405
406 if (t->utraps) {
407 if (t->utraps[0] < 2)
408 kfree (t->utraps);
409 else
410 t->utraps[0]--;
411 }
412 }
413
414 void flush_thread(void)
415 {
416 struct thread_info *t = current_thread_info();
417 struct mm_struct *mm;
418
419 mm = t->task->mm;
420 if (mm)
421 tsb_context_switch(mm);
422
423 set_thread_wsaved(0);
424
425 /* Clear FPU register state. */
426 t->fpsaved[0] = 0;
427 }
428
429 /* It's a bit more tricky when 64-bit tasks are involved... */
430 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
431 {
432 bool stack_64bit = test_thread_64bit_stack(psp);
433 unsigned long fp, distance, rval;
434
435 if (stack_64bit) {
436 csp += STACK_BIAS;
437 psp += STACK_BIAS;
438 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
439 fp += STACK_BIAS;
440 if (test_thread_flag(TIF_32BIT))
441 fp &= 0xffffffff;
442 } else
443 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
444
445 /* Now align the stack as this is mandatory in the Sparc ABI
446 * due to how register windows work. This hides the
447 * restriction from thread libraries etc.
448 */
449 csp &= ~15UL;
450
451 distance = fp - psp;
452 rval = (csp - distance);
453 if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
454 rval = 0;
455 else if (!stack_64bit) {
456 if (put_user(((u32)csp),
457 &(((struct reg_window32 __user *)rval)->ins[6])))
458 rval = 0;
459 } else {
460 if (put_user(((u64)csp - STACK_BIAS),
461 &(((struct reg_window __user *)rval)->ins[6])))
462 rval = 0;
463 else
464 rval = rval - STACK_BIAS;
465 }
466
467 return rval;
468 }
469
470 /* Standard stuff. */
471 static inline void shift_window_buffer(int first_win, int last_win,
472 struct thread_info *t)
473 {
474 int i;
475
476 for (i = first_win; i < last_win; i++) {
477 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
478 memcpy(&t->reg_window[i], &t->reg_window[i+1],
479 sizeof(struct reg_window));
480 }
481 }
482
483 void synchronize_user_stack(void)
484 {
485 struct thread_info *t = current_thread_info();
486 unsigned long window;
487
488 flush_user_windows();
489 if ((window = get_thread_wsaved()) != 0) {
490 window -= 1;
491 do {
492 struct reg_window *rwin = &t->reg_window[window];
493 int winsize = sizeof(struct reg_window);
494 unsigned long sp;
495
496 sp = t->rwbuf_stkptrs[window];
497
498 if (test_thread_64bit_stack(sp))
499 sp += STACK_BIAS;
500 else
501 winsize = sizeof(struct reg_window32);
502
503 if (!copy_to_user((char __user *)sp, rwin, winsize)) {
504 shift_window_buffer(window, get_thread_wsaved() - 1, t);
505 set_thread_wsaved(get_thread_wsaved() - 1);
506 }
507 } while (window--);
508 }
509 }
510
511 static void stack_unaligned(unsigned long sp)
512 {
513 siginfo_t info;
514
515 info.si_signo = SIGBUS;
516 info.si_errno = 0;
517 info.si_code = BUS_ADRALN;
518 info.si_addr = (void __user *) sp;
519 info.si_trapno = 0;
520 force_sig_info(SIGBUS, &info, current);
521 }
522
523 void fault_in_user_windows(void)
524 {
525 struct thread_info *t = current_thread_info();
526 unsigned long window;
527
528 flush_user_windows();
529 window = get_thread_wsaved();
530
531 if (likely(window != 0)) {
532 window -= 1;
533 do {
534 struct reg_window *rwin = &t->reg_window[window];
535 int winsize = sizeof(struct reg_window);
536 unsigned long sp;
537
538 sp = t->rwbuf_stkptrs[window];
539
540 if (test_thread_64bit_stack(sp))
541 sp += STACK_BIAS;
542 else
543 winsize = sizeof(struct reg_window32);
544
545 if (unlikely(sp & 0x7UL))
546 stack_unaligned(sp);
547
548 if (unlikely(copy_to_user((char __user *)sp,
549 rwin, winsize)))
550 goto barf;
551 } while (window--);
552 }
553 set_thread_wsaved(0);
554 return;
555
556 barf:
557 set_thread_wsaved(window + 1);
558 do_exit(SIGILL);
559 }
560
561 asmlinkage long sparc_do_fork(unsigned long clone_flags,
562 unsigned long stack_start,
563 struct pt_regs *regs,
564 unsigned long stack_size)
565 {
566 int __user *parent_tid_ptr, *child_tid_ptr;
567 unsigned long orig_i1 = regs->u_regs[UREG_I1];
568 long ret;
569
570 #ifdef CONFIG_COMPAT
571 if (test_thread_flag(TIF_32BIT)) {
572 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
573 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
574 } else
575 #endif
576 {
577 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
578 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
579 }
580
581 ret = do_fork(clone_flags, stack_start, stack_size,
582 parent_tid_ptr, child_tid_ptr);
583
584 /* If we get an error and potentially restart the system
585 * call, we're screwed because copy_thread() clobbered
586 * the parent's %o1. So detect that case and restore it
587 * here.
588 */
589 if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
590 regs->u_regs[UREG_I1] = orig_i1;
591
592 return ret;
593 }
594
595 /* Copy a Sparc thread. The fork() return value conventions
596 * under SunOS are nothing short of bletcherous:
597 * Parent --> %o0 == childs pid, %o1 == 0
598 * Child --> %o0 == parents pid, %o1 == 1
599 */
600 int copy_thread(unsigned long clone_flags, unsigned long sp,
601 unsigned long arg, struct task_struct *p)
602 {
603 struct thread_info *t = task_thread_info(p);
604 struct pt_regs *regs = current_pt_regs();
605 struct sparc_stackf *parent_sf;
606 unsigned long child_stack_sz;
607 char *child_trap_frame;
608
609 /* Calculate offset to stack_frame & pt_regs */
610 child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
611 child_trap_frame = (task_stack_page(p) +
612 (THREAD_SIZE - child_stack_sz));
613
614 t->new_child = 1;
615 t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
616 t->kregs = (struct pt_regs *) (child_trap_frame +
617 sizeof(struct sparc_stackf));
618 t->fpsaved[0] = 0;
619
620 if (unlikely(p->flags & PF_KTHREAD)) {
621 memset(child_trap_frame, 0, child_stack_sz);
622 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
623 (current_pt_regs()->tstate + 1) & TSTATE_CWP;
624 t->current_ds = ASI_P;
625 t->kregs->u_regs[UREG_G1] = sp; /* function */
626 t->kregs->u_regs[UREG_G2] = arg;
627 return 0;
628 }
629
630 parent_sf = ((struct sparc_stackf *) regs) - 1;
631 memcpy(child_trap_frame, parent_sf, child_stack_sz);
632 if (t->flags & _TIF_32BIT) {
633 sp &= 0x00000000ffffffffUL;
634 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
635 }
636 t->kregs->u_regs[UREG_FP] = sp;
637 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] =
638 (regs->tstate + 1) & TSTATE_CWP;
639 t->current_ds = ASI_AIUS;
640 if (sp != regs->u_regs[UREG_FP]) {
641 unsigned long csp;
642
643 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
644 if (!csp)
645 return -EFAULT;
646 t->kregs->u_regs[UREG_FP] = csp;
647 }
648 if (t->utraps)
649 t->utraps[0]++;
650
651 /* Set the return value for the child. */
652 t->kregs->u_regs[UREG_I0] = current->pid;
653 t->kregs->u_regs[UREG_I1] = 1;
654
655 /* Set the second return value for the parent. */
656 regs->u_regs[UREG_I1] = 0;
657
658 if (clone_flags & CLONE_SETTLS)
659 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
660
661 return 0;
662 }
663
664 typedef struct {
665 union {
666 unsigned int pr_regs[32];
667 unsigned long pr_dregs[16];
668 } pr_fr;
669 unsigned int __unused;
670 unsigned int pr_fsr;
671 unsigned char pr_qcnt;
672 unsigned char pr_q_entrysize;
673 unsigned char pr_en;
674 unsigned int pr_q[64];
675 } elf_fpregset_t32;
676
677 /*
678 * fill in the fpu structure for a core dump.
679 */
680 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
681 {
682 unsigned long *kfpregs = current_thread_info()->fpregs;
683 unsigned long fprs = current_thread_info()->fpsaved[0];
684
685 if (test_thread_flag(TIF_32BIT)) {
686 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
687
688 if (fprs & FPRS_DL)
689 memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
690 sizeof(unsigned int) * 32);
691 else
692 memset(&fpregs32->pr_fr.pr_regs[0], 0,
693 sizeof(unsigned int) * 32);
694 fpregs32->pr_qcnt = 0;
695 fpregs32->pr_q_entrysize = 8;
696 memset(&fpregs32->pr_q[0], 0,
697 (sizeof(unsigned int) * 64));
698 if (fprs & FPRS_FEF) {
699 fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
700 fpregs32->pr_en = 1;
701 } else {
702 fpregs32->pr_fsr = 0;
703 fpregs32->pr_en = 0;
704 }
705 } else {
706 if(fprs & FPRS_DL)
707 memcpy(&fpregs->pr_regs[0], kfpregs,
708 sizeof(unsigned int) * 32);
709 else
710 memset(&fpregs->pr_regs[0], 0,
711 sizeof(unsigned int) * 32);
712 if(fprs & FPRS_DU)
713 memcpy(&fpregs->pr_regs[16], kfpregs+16,
714 sizeof(unsigned int) * 32);
715 else
716 memset(&fpregs->pr_regs[16], 0,
717 sizeof(unsigned int) * 32);
718 if(fprs & FPRS_FEF) {
719 fpregs->pr_fsr = current_thread_info()->xfsr[0];
720 fpregs->pr_gsr = current_thread_info()->gsr[0];
721 } else {
722 fpregs->pr_fsr = fpregs->pr_gsr = 0;
723 }
724 fpregs->pr_fprs = fprs;
725 }
726 return 1;
727 }
728 EXPORT_SYMBOL(dump_fpu);
729
730 unsigned long get_wchan(struct task_struct *task)
731 {
732 unsigned long pc, fp, bias = 0;
733 struct thread_info *tp;
734 struct reg_window *rw;
735 unsigned long ret = 0;
736 int count = 0;
737
738 if (!task || task == current ||
739 task->state == TASK_RUNNING)
740 goto out;
741
742 tp = task_thread_info(task);
743 bias = STACK_BIAS;
744 fp = task_thread_info(task)->ksp + bias;
745
746 do {
747 if (!kstack_valid(tp, fp))
748 break;
749 rw = (struct reg_window *) fp;
750 pc = rw->ins[7];
751 if (!in_sched_functions(pc)) {
752 ret = pc;
753 goto out;
754 }
755 fp = rw->ins[6] + bias;
756 } while (++count < 16);
757
758 out:
759 return ret;
760 }
This page took 0.070069 seconds and 6 git commands to generate.