sparc32: always define boot_cpu_id
[deliverable/linux.git] / arch / sparc / kernel / smp_32.c
1 /* smp.c: Sparc SMP support.
2 *
3 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
4 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
5 * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
6 */
7
8 #include <asm/head.h>
9
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/threads.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23
24 #include <asm/ptrace.h>
25 #include <asm/atomic.h>
26
27 #include <asm/irq.h>
28 #include <asm/page.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/oplib.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cpudata.h>
35 #include <asm/leon.h>
36
37 #include "irq.h"
38
39 volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,};
40
41 cpumask_t smp_commenced_mask = CPU_MASK_NONE;
42
43 /* The only guaranteed locking primitive available on all Sparc
44 * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
45 * places the current byte at the effective address into dest_reg and
46 * places 0xff there afterwards. Pretty lame locking primitive
47 * compared to the Alpha and the Intel no? Most Sparcs have 'swap'
48 * instruction which is much better...
49 */
50
51 void __cpuinit smp_store_cpu_info(int id)
52 {
53 int cpu_node;
54
55 cpu_data(id).udelay_val = loops_per_jiffy;
56
57 cpu_find_by_mid(id, &cpu_node);
58 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
59 "clock-frequency", 0);
60 cpu_data(id).prom_node = cpu_node;
61 cpu_data(id).mid = cpu_get_hwmid(cpu_node);
62
63 if (cpu_data(id).mid < 0)
64 panic("No MID found for CPU%d at node 0x%08d", id, cpu_node);
65 }
66
67 void __init smp_cpus_done(unsigned int max_cpus)
68 {
69 extern void smp4m_smp_done(void);
70 extern void smp4d_smp_done(void);
71 unsigned long bogosum = 0;
72 int cpu, num = 0;
73
74 for_each_online_cpu(cpu) {
75 num++;
76 bogosum += cpu_data(cpu).udelay_val;
77 }
78
79 printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
80 num, bogosum/(500000/HZ),
81 (bogosum/(5000/HZ))%100);
82
83 switch(sparc_cpu_model) {
84 case sun4:
85 printk("SUN4\n");
86 BUG();
87 break;
88 case sun4c:
89 printk("SUN4C\n");
90 BUG();
91 break;
92 case sun4m:
93 smp4m_smp_done();
94 break;
95 case sun4d:
96 smp4d_smp_done();
97 break;
98 case sparc_leon:
99 leon_smp_done();
100 break;
101 case sun4e:
102 printk("SUN4E\n");
103 BUG();
104 break;
105 case sun4u:
106 printk("SUN4U\n");
107 BUG();
108 break;
109 default:
110 printk("UNKNOWN!\n");
111 BUG();
112 break;
113 };
114 }
115
116 void cpu_panic(void)
117 {
118 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
119 panic("SMP bolixed\n");
120 }
121
122 struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 };
123
124 void smp_send_reschedule(int cpu)
125 {
126 /* See sparc64 */
127 }
128
129 void smp_send_stop(void)
130 {
131 }
132
133 void smp_flush_cache_all(void)
134 {
135 xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
136 local_flush_cache_all();
137 }
138
139 void smp_flush_tlb_all(void)
140 {
141 xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
142 local_flush_tlb_all();
143 }
144
145 void smp_flush_cache_mm(struct mm_struct *mm)
146 {
147 if(mm->context != NO_CONTEXT) {
148 cpumask_t cpu_mask = *mm_cpumask(mm);
149 cpu_clear(smp_processor_id(), cpu_mask);
150 if (!cpus_empty(cpu_mask))
151 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
152 local_flush_cache_mm(mm);
153 }
154 }
155
156 void smp_flush_tlb_mm(struct mm_struct *mm)
157 {
158 if(mm->context != NO_CONTEXT) {
159 cpumask_t cpu_mask = *mm_cpumask(mm);
160 cpu_clear(smp_processor_id(), cpu_mask);
161 if (!cpus_empty(cpu_mask)) {
162 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
163 if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
164 cpumask_copy(mm_cpumask(mm),
165 cpumask_of(smp_processor_id()));
166 }
167 local_flush_tlb_mm(mm);
168 }
169 }
170
171 void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
172 unsigned long end)
173 {
174 struct mm_struct *mm = vma->vm_mm;
175
176 if (mm->context != NO_CONTEXT) {
177 cpumask_t cpu_mask = *mm_cpumask(mm);
178 cpu_clear(smp_processor_id(), cpu_mask);
179 if (!cpus_empty(cpu_mask))
180 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
181 local_flush_cache_range(vma, start, end);
182 }
183 }
184
185 void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
186 unsigned long end)
187 {
188 struct mm_struct *mm = vma->vm_mm;
189
190 if (mm->context != NO_CONTEXT) {
191 cpumask_t cpu_mask = *mm_cpumask(mm);
192 cpu_clear(smp_processor_id(), cpu_mask);
193 if (!cpus_empty(cpu_mask))
194 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
195 local_flush_tlb_range(vma, start, end);
196 }
197 }
198
199 void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
200 {
201 struct mm_struct *mm = vma->vm_mm;
202
203 if(mm->context != NO_CONTEXT) {
204 cpumask_t cpu_mask = *mm_cpumask(mm);
205 cpu_clear(smp_processor_id(), cpu_mask);
206 if (!cpus_empty(cpu_mask))
207 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
208 local_flush_cache_page(vma, page);
209 }
210 }
211
212 void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
213 {
214 struct mm_struct *mm = vma->vm_mm;
215
216 if(mm->context != NO_CONTEXT) {
217 cpumask_t cpu_mask = *mm_cpumask(mm);
218 cpu_clear(smp_processor_id(), cpu_mask);
219 if (!cpus_empty(cpu_mask))
220 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
221 local_flush_tlb_page(vma, page);
222 }
223 }
224
225 void smp_reschedule_irq(void)
226 {
227 set_need_resched();
228 }
229
230 void smp_flush_page_to_ram(unsigned long page)
231 {
232 /* Current theory is that those who call this are the one's
233 * who have just dirtied their cache with the pages contents
234 * in kernel space, therefore we only run this on local cpu.
235 *
236 * XXX This experiment failed, research further... -DaveM
237 */
238 #if 1
239 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
240 #endif
241 local_flush_page_to_ram(page);
242 }
243
244 void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
245 {
246 cpumask_t cpu_mask = *mm_cpumask(mm);
247 cpu_clear(smp_processor_id(), cpu_mask);
248 if (!cpus_empty(cpu_mask))
249 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
250 local_flush_sig_insns(mm, insn_addr);
251 }
252
253 extern unsigned int lvl14_resolution;
254
255 /* /proc/profile writes can call this, don't __init it please. */
256 static DEFINE_SPINLOCK(prof_setup_lock);
257
258 int setup_profiling_timer(unsigned int multiplier)
259 {
260 int i;
261 unsigned long flags;
262
263 /* Prevent level14 ticker IRQ flooding. */
264 if((!multiplier) || (lvl14_resolution / multiplier) < 500)
265 return -EINVAL;
266
267 spin_lock_irqsave(&prof_setup_lock, flags);
268 for_each_possible_cpu(i) {
269 load_profile_irq(i, lvl14_resolution / multiplier);
270 prof_multiplier(i) = multiplier;
271 }
272 spin_unlock_irqrestore(&prof_setup_lock, flags);
273
274 return 0;
275 }
276
277 void __init smp_prepare_cpus(unsigned int max_cpus)
278 {
279 extern void __init smp4m_boot_cpus(void);
280 extern void __init smp4d_boot_cpus(void);
281 int i, cpuid, extra;
282
283 printk("Entering SMP Mode...\n");
284
285 extra = 0;
286 for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
287 if (cpuid >= NR_CPUS)
288 extra++;
289 }
290 /* i = number of cpus */
291 if (extra && max_cpus > i - extra)
292 printk("Warning: NR_CPUS is too low to start all cpus\n");
293
294 smp_store_cpu_info(boot_cpu_id);
295
296 switch(sparc_cpu_model) {
297 case sun4:
298 printk("SUN4\n");
299 BUG();
300 break;
301 case sun4c:
302 printk("SUN4C\n");
303 BUG();
304 break;
305 case sun4m:
306 smp4m_boot_cpus();
307 break;
308 case sun4d:
309 smp4d_boot_cpus();
310 break;
311 case sparc_leon:
312 leon_boot_cpus();
313 break;
314 case sun4e:
315 printk("SUN4E\n");
316 BUG();
317 break;
318 case sun4u:
319 printk("SUN4U\n");
320 BUG();
321 break;
322 default:
323 printk("UNKNOWN!\n");
324 BUG();
325 break;
326 };
327 }
328
329 /* Set this up early so that things like the scheduler can init
330 * properly. We use the same cpu mask for both the present and
331 * possible cpu map.
332 */
333 void __init smp_setup_cpu_possible_map(void)
334 {
335 int instance, mid;
336
337 instance = 0;
338 while (!cpu_find_by_instance(instance, NULL, &mid)) {
339 if (mid < NR_CPUS) {
340 set_cpu_possible(mid, true);
341 set_cpu_present(mid, true);
342 }
343 instance++;
344 }
345 }
346
347 void __init smp_prepare_boot_cpu(void)
348 {
349 int cpuid = hard_smp_processor_id();
350
351 if (cpuid >= NR_CPUS) {
352 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
353 prom_halt();
354 }
355 if (cpuid != 0)
356 printk("boot cpu id != 0, this could work but is untested\n");
357
358 current_thread_info()->cpu = cpuid;
359 set_cpu_online(cpuid, true);
360 set_cpu_possible(cpuid, true);
361 }
362
363 int __cpuinit __cpu_up(unsigned int cpu)
364 {
365 extern int __cpuinit smp4m_boot_one_cpu(int);
366 extern int __cpuinit smp4d_boot_one_cpu(int);
367 int ret=0;
368
369 switch(sparc_cpu_model) {
370 case sun4:
371 printk("SUN4\n");
372 BUG();
373 break;
374 case sun4c:
375 printk("SUN4C\n");
376 BUG();
377 break;
378 case sun4m:
379 ret = smp4m_boot_one_cpu(cpu);
380 break;
381 case sun4d:
382 ret = smp4d_boot_one_cpu(cpu);
383 break;
384 case sparc_leon:
385 ret = leon_boot_one_cpu(cpu);
386 break;
387 case sun4e:
388 printk("SUN4E\n");
389 BUG();
390 break;
391 case sun4u:
392 printk("SUN4U\n");
393 BUG();
394 break;
395 default:
396 printk("UNKNOWN!\n");
397 BUG();
398 break;
399 };
400
401 if (!ret) {
402 cpu_set(cpu, smp_commenced_mask);
403 while (!cpu_online(cpu))
404 mb();
405 }
406 return ret;
407 }
408
409 void smp_bogo(struct seq_file *m)
410 {
411 int i;
412
413 for_each_online_cpu(i) {
414 seq_printf(m,
415 "Cpu%dBogo\t: %lu.%02lu\n",
416 i,
417 cpu_data(i).udelay_val/(500000/HZ),
418 (cpu_data(i).udelay_val/(5000/HZ))%100);
419 }
420 }
421
422 void smp_info(struct seq_file *m)
423 {
424 int i;
425
426 seq_printf(m, "State:\n");
427 for_each_online_cpu(i)
428 seq_printf(m, "CPU%d\t\t: online\n", i);
429 }
This page took 0.053222 seconds and 5 git commands to generate.