sparc32: generic clockevent support
[deliverable/linux.git] / arch / sparc / kernel / smp_32.c
1 /* smp.c: Sparc SMP support.
2 *
3 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
4 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
5 * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
6 */
7
8 #include <asm/head.h>
9
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/threads.h>
13 #include <linux/smp.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23
24 #include <asm/ptrace.h>
25 #include <linux/atomic.h>
26
27 #include <asm/irq.h>
28 #include <asm/page.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/oplib.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/cpudata.h>
35 #include <asm/leon.h>
36
37 #include "irq.h"
38
39 volatile unsigned long cpu_callin_map[NR_CPUS] __cpuinitdata = {0,};
40
41 cpumask_t smp_commenced_mask = CPU_MASK_NONE;
42
43 /* The only guaranteed locking primitive available on all Sparc
44 * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
45 * places the current byte at the effective address into dest_reg and
46 * places 0xff there afterwards. Pretty lame locking primitive
47 * compared to the Alpha and the Intel no? Most Sparcs have 'swap'
48 * instruction which is much better...
49 */
50
51 void __cpuinit smp_store_cpu_info(int id)
52 {
53 int cpu_node;
54 int mid;
55
56 cpu_data(id).udelay_val = loops_per_jiffy;
57
58 cpu_find_by_mid(id, &cpu_node);
59 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
60 "clock-frequency", 0);
61 cpu_data(id).prom_node = cpu_node;
62 mid = cpu_get_hwmid(cpu_node);
63
64 if (mid < 0) {
65 printk(KERN_NOTICE "No MID found for CPU%d at node 0x%08d", id, cpu_node);
66 mid = 0;
67 }
68 cpu_data(id).mid = mid;
69 }
70
71 void __init smp_cpus_done(unsigned int max_cpus)
72 {
73 extern void smp4m_smp_done(void);
74 extern void smp4d_smp_done(void);
75 unsigned long bogosum = 0;
76 int cpu, num = 0;
77
78 for_each_online_cpu(cpu) {
79 num++;
80 bogosum += cpu_data(cpu).udelay_val;
81 }
82
83 printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
84 num, bogosum/(500000/HZ),
85 (bogosum/(5000/HZ))%100);
86
87 switch(sparc_cpu_model) {
88 case sun4:
89 printk("SUN4\n");
90 BUG();
91 break;
92 case sun4c:
93 printk("SUN4C\n");
94 BUG();
95 break;
96 case sun4m:
97 smp4m_smp_done();
98 break;
99 case sun4d:
100 smp4d_smp_done();
101 break;
102 case sparc_leon:
103 leon_smp_done();
104 break;
105 case sun4e:
106 printk("SUN4E\n");
107 BUG();
108 break;
109 case sun4u:
110 printk("SUN4U\n");
111 BUG();
112 break;
113 default:
114 printk("UNKNOWN!\n");
115 BUG();
116 break;
117 }
118 }
119
120 void cpu_panic(void)
121 {
122 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
123 panic("SMP bolixed\n");
124 }
125
126 struct linux_prom_registers smp_penguin_ctable __cpuinitdata = { 0 };
127
128 void smp_send_reschedule(int cpu)
129 {
130 /*
131 * CPU model dependent way of implementing IPI generation targeting
132 * a single CPU. The trap handler needs only to do trap entry/return
133 * to call schedule.
134 */
135 BTFIXUP_CALL(smp_ipi_resched)(cpu);
136 }
137
138 void smp_send_stop(void)
139 {
140 }
141
142 void arch_send_call_function_single_ipi(int cpu)
143 {
144 /* trigger one IPI single call on one CPU */
145 BTFIXUP_CALL(smp_ipi_single)(cpu);
146 }
147
148 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
149 {
150 int cpu;
151
152 /* trigger IPI mask call on each CPU */
153 for_each_cpu(cpu, mask)
154 BTFIXUP_CALL(smp_ipi_mask_one)(cpu);
155 }
156
157 void smp_resched_interrupt(void)
158 {
159 irq_enter();
160 scheduler_ipi();
161 local_cpu_data().irq_resched_count++;
162 irq_exit();
163 /* re-schedule routine called by interrupt return code. */
164 }
165
166 void smp_call_function_single_interrupt(void)
167 {
168 irq_enter();
169 generic_smp_call_function_single_interrupt();
170 local_cpu_data().irq_call_count++;
171 irq_exit();
172 }
173
174 void smp_call_function_interrupt(void)
175 {
176 irq_enter();
177 generic_smp_call_function_interrupt();
178 local_cpu_data().irq_call_count++;
179 irq_exit();
180 }
181
182 void smp_flush_cache_all(void)
183 {
184 xc0((smpfunc_t) BTFIXUP_CALL(local_flush_cache_all));
185 local_flush_cache_all();
186 }
187
188 void smp_flush_tlb_all(void)
189 {
190 xc0((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_all));
191 local_flush_tlb_all();
192 }
193
194 void smp_flush_cache_mm(struct mm_struct *mm)
195 {
196 if(mm->context != NO_CONTEXT) {
197 cpumask_t cpu_mask;
198 cpumask_copy(&cpu_mask, mm_cpumask(mm));
199 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
200 if (!cpumask_empty(&cpu_mask))
201 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_cache_mm), (unsigned long) mm);
202 local_flush_cache_mm(mm);
203 }
204 }
205
206 void smp_flush_tlb_mm(struct mm_struct *mm)
207 {
208 if(mm->context != NO_CONTEXT) {
209 cpumask_t cpu_mask;
210 cpumask_copy(&cpu_mask, mm_cpumask(mm));
211 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
212 if (!cpumask_empty(&cpu_mask)) {
213 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_mm), (unsigned long) mm);
214 if(atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
215 cpumask_copy(mm_cpumask(mm),
216 cpumask_of(smp_processor_id()));
217 }
218 local_flush_tlb_mm(mm);
219 }
220 }
221
222 void smp_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
223 unsigned long end)
224 {
225 struct mm_struct *mm = vma->vm_mm;
226
227 if (mm->context != NO_CONTEXT) {
228 cpumask_t cpu_mask;
229 cpumask_copy(&cpu_mask, mm_cpumask(mm));
230 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
231 if (!cpumask_empty(&cpu_mask))
232 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_cache_range), (unsigned long) vma, start, end);
233 local_flush_cache_range(vma, start, end);
234 }
235 }
236
237 void smp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
238 unsigned long end)
239 {
240 struct mm_struct *mm = vma->vm_mm;
241
242 if (mm->context != NO_CONTEXT) {
243 cpumask_t cpu_mask;
244 cpumask_copy(&cpu_mask, mm_cpumask(mm));
245 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
246 if (!cpumask_empty(&cpu_mask))
247 xc3((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_range), (unsigned long) vma, start, end);
248 local_flush_tlb_range(vma, start, end);
249 }
250 }
251
252 void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
253 {
254 struct mm_struct *mm = vma->vm_mm;
255
256 if(mm->context != NO_CONTEXT) {
257 cpumask_t cpu_mask;
258 cpumask_copy(&cpu_mask, mm_cpumask(mm));
259 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
260 if (!cpumask_empty(&cpu_mask))
261 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_cache_page), (unsigned long) vma, page);
262 local_flush_cache_page(vma, page);
263 }
264 }
265
266 void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
267 {
268 struct mm_struct *mm = vma->vm_mm;
269
270 if(mm->context != NO_CONTEXT) {
271 cpumask_t cpu_mask;
272 cpumask_copy(&cpu_mask, mm_cpumask(mm));
273 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
274 if (!cpumask_empty(&cpu_mask))
275 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_tlb_page), (unsigned long) vma, page);
276 local_flush_tlb_page(vma, page);
277 }
278 }
279
280 void smp_flush_page_to_ram(unsigned long page)
281 {
282 /* Current theory is that those who call this are the one's
283 * who have just dirtied their cache with the pages contents
284 * in kernel space, therefore we only run this on local cpu.
285 *
286 * XXX This experiment failed, research further... -DaveM
287 */
288 #if 1
289 xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_to_ram), page);
290 #endif
291 local_flush_page_to_ram(page);
292 }
293
294 void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
295 {
296 cpumask_t cpu_mask;
297 cpumask_copy(&cpu_mask, mm_cpumask(mm));
298 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
299 if (!cpumask_empty(&cpu_mask))
300 xc2((smpfunc_t) BTFIXUP_CALL(local_flush_sig_insns), (unsigned long) mm, insn_addr);
301 local_flush_sig_insns(mm, insn_addr);
302 }
303
304 int setup_profiling_timer(unsigned int multiplier)
305 {
306 return -EINVAL;
307 }
308
309 void __init smp_prepare_cpus(unsigned int max_cpus)
310 {
311 extern void __init smp4m_boot_cpus(void);
312 extern void __init smp4d_boot_cpus(void);
313 int i, cpuid, extra;
314
315 printk("Entering SMP Mode...\n");
316
317 extra = 0;
318 for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
319 if (cpuid >= NR_CPUS)
320 extra++;
321 }
322 /* i = number of cpus */
323 if (extra && max_cpus > i - extra)
324 printk("Warning: NR_CPUS is too low to start all cpus\n");
325
326 smp_store_cpu_info(boot_cpu_id);
327
328 switch(sparc_cpu_model) {
329 case sun4:
330 printk("SUN4\n");
331 BUG();
332 break;
333 case sun4c:
334 printk("SUN4C\n");
335 BUG();
336 break;
337 case sun4m:
338 smp4m_boot_cpus();
339 break;
340 case sun4d:
341 smp4d_boot_cpus();
342 break;
343 case sparc_leon:
344 leon_boot_cpus();
345 break;
346 case sun4e:
347 printk("SUN4E\n");
348 BUG();
349 break;
350 case sun4u:
351 printk("SUN4U\n");
352 BUG();
353 break;
354 default:
355 printk("UNKNOWN!\n");
356 BUG();
357 break;
358 }
359 }
360
361 /* Set this up early so that things like the scheduler can init
362 * properly. We use the same cpu mask for both the present and
363 * possible cpu map.
364 */
365 void __init smp_setup_cpu_possible_map(void)
366 {
367 int instance, mid;
368
369 instance = 0;
370 while (!cpu_find_by_instance(instance, NULL, &mid)) {
371 if (mid < NR_CPUS) {
372 set_cpu_possible(mid, true);
373 set_cpu_present(mid, true);
374 }
375 instance++;
376 }
377 }
378
379 void __init smp_prepare_boot_cpu(void)
380 {
381 int cpuid = hard_smp_processor_id();
382
383 if (cpuid >= NR_CPUS) {
384 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
385 prom_halt();
386 }
387 if (cpuid != 0)
388 printk("boot cpu id != 0, this could work but is untested\n");
389
390 current_thread_info()->cpu = cpuid;
391 set_cpu_online(cpuid, true);
392 set_cpu_possible(cpuid, true);
393 }
394
395 int __cpuinit __cpu_up(unsigned int cpu)
396 {
397 extern int __cpuinit smp4m_boot_one_cpu(int);
398 extern int __cpuinit smp4d_boot_one_cpu(int);
399 int ret=0;
400
401 switch(sparc_cpu_model) {
402 case sun4:
403 printk("SUN4\n");
404 BUG();
405 break;
406 case sun4c:
407 printk("SUN4C\n");
408 BUG();
409 break;
410 case sun4m:
411 ret = smp4m_boot_one_cpu(cpu);
412 break;
413 case sun4d:
414 ret = smp4d_boot_one_cpu(cpu);
415 break;
416 case sparc_leon:
417 ret = leon_boot_one_cpu(cpu);
418 break;
419 case sun4e:
420 printk("SUN4E\n");
421 BUG();
422 break;
423 case sun4u:
424 printk("SUN4U\n");
425 BUG();
426 break;
427 default:
428 printk("UNKNOWN!\n");
429 BUG();
430 break;
431 }
432
433 if (!ret) {
434 cpumask_set_cpu(cpu, &smp_commenced_mask);
435 while (!cpu_online(cpu))
436 mb();
437 }
438 return ret;
439 }
440
441 void smp_bogo(struct seq_file *m)
442 {
443 int i;
444
445 for_each_online_cpu(i) {
446 seq_printf(m,
447 "Cpu%dBogo\t: %lu.%02lu\n",
448 i,
449 cpu_data(i).udelay_val/(500000/HZ),
450 (cpu_data(i).udelay_val/(5000/HZ))%100);
451 }
452 }
453
454 void smp_info(struct seq_file *m)
455 {
456 int i;
457
458 seq_printf(m, "State:\n");
459 for_each_online_cpu(i)
460 seq_printf(m, "CPU%d\t\t: online\n", i);
461 }
This page took 0.077712 seconds and 5 git commands to generate.