Merge branch 'x86-debug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / arch / sparc / kernel / smp_64.c
1 /* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 */
5
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28
29 #include <asm/head.h>
30 #include <asm/ptrace.h>
31 #include <linux/atomic.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/cpudata.h>
35 #include <asm/hvtramp.h>
36 #include <asm/io.h>
37 #include <asm/timer.h>
38
39 #include <asm/irq.h>
40 #include <asm/irq_regs.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/oplib.h>
44 #include <asm/uaccess.h>
45 #include <asm/starfire.h>
46 #include <asm/tlb.h>
47 #include <asm/sections.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/ldc.h>
51 #include <asm/hypervisor.h>
52 #include <asm/pcr.h>
53
54 #include "cpumap.h"
55
56 int sparc64_multi_core __read_mostly;
57
58 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
59 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
60 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
61
62 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
63 EXPORT_SYMBOL(cpu_core_map);
64
65 static cpumask_t smp_commenced_mask;
66
67 void smp_info(struct seq_file *m)
68 {
69 int i;
70
71 seq_printf(m, "State:\n");
72 for_each_online_cpu(i)
73 seq_printf(m, "CPU%d:\t\tonline\n", i);
74 }
75
76 void smp_bogo(struct seq_file *m)
77 {
78 int i;
79
80 for_each_online_cpu(i)
81 seq_printf(m,
82 "Cpu%dClkTck\t: %016lx\n",
83 i, cpu_data(i).clock_tick);
84 }
85
86 extern void setup_sparc64_timer(void);
87
88 static volatile unsigned long callin_flag = 0;
89
90 void __cpuinit smp_callin(void)
91 {
92 int cpuid = hard_smp_processor_id();
93
94 __local_per_cpu_offset = __per_cpu_offset(cpuid);
95
96 if (tlb_type == hypervisor)
97 sun4v_ktsb_register();
98
99 __flush_tlb_all();
100
101 setup_sparc64_timer();
102
103 if (cheetah_pcache_forced_on)
104 cheetah_enable_pcache();
105
106 callin_flag = 1;
107 __asm__ __volatile__("membar #Sync\n\t"
108 "flush %%g6" : : : "memory");
109
110 /* Clear this or we will die instantly when we
111 * schedule back to this idler...
112 */
113 current_thread_info()->new_child = 0;
114
115 /* Attach to the address space of init_task. */
116 atomic_inc(&init_mm.mm_count);
117 current->active_mm = &init_mm;
118
119 /* inform the notifiers about the new cpu */
120 notify_cpu_starting(cpuid);
121
122 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
123 rmb();
124
125 set_cpu_online(cpuid, true);
126 local_irq_enable();
127
128 /* idle thread is expected to have preempt disabled */
129 preempt_disable();
130 }
131
132 void cpu_panic(void)
133 {
134 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
135 panic("SMP bolixed\n");
136 }
137
138 /* This tick register synchronization scheme is taken entirely from
139 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
140 *
141 * The only change I've made is to rework it so that the master
142 * initiates the synchonization instead of the slave. -DaveM
143 */
144
145 #define MASTER 0
146 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
147
148 #define NUM_ROUNDS 64 /* magic value */
149 #define NUM_ITERS 5 /* likewise */
150
151 static DEFINE_SPINLOCK(itc_sync_lock);
152 static unsigned long go[SLAVE + 1];
153
154 #define DEBUG_TICK_SYNC 0
155
156 static inline long get_delta (long *rt, long *master)
157 {
158 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
159 unsigned long tcenter, t0, t1, tm;
160 unsigned long i;
161
162 for (i = 0; i < NUM_ITERS; i++) {
163 t0 = tick_ops->get_tick();
164 go[MASTER] = 1;
165 membar_safe("#StoreLoad");
166 while (!(tm = go[SLAVE]))
167 rmb();
168 go[SLAVE] = 0;
169 wmb();
170 t1 = tick_ops->get_tick();
171
172 if (t1 - t0 < best_t1 - best_t0)
173 best_t0 = t0, best_t1 = t1, best_tm = tm;
174 }
175
176 *rt = best_t1 - best_t0;
177 *master = best_tm - best_t0;
178
179 /* average best_t0 and best_t1 without overflow: */
180 tcenter = (best_t0/2 + best_t1/2);
181 if (best_t0 % 2 + best_t1 % 2 == 2)
182 tcenter++;
183 return tcenter - best_tm;
184 }
185
186 void smp_synchronize_tick_client(void)
187 {
188 long i, delta, adj, adjust_latency = 0, done = 0;
189 unsigned long flags, rt, master_time_stamp;
190 #if DEBUG_TICK_SYNC
191 struct {
192 long rt; /* roundtrip time */
193 long master; /* master's timestamp */
194 long diff; /* difference between midpoint and master's timestamp */
195 long lat; /* estimate of itc adjustment latency */
196 } t[NUM_ROUNDS];
197 #endif
198
199 go[MASTER] = 1;
200
201 while (go[MASTER])
202 rmb();
203
204 local_irq_save(flags);
205 {
206 for (i = 0; i < NUM_ROUNDS; i++) {
207 delta = get_delta(&rt, &master_time_stamp);
208 if (delta == 0)
209 done = 1; /* let's lock on to this... */
210
211 if (!done) {
212 if (i > 0) {
213 adjust_latency += -delta;
214 adj = -delta + adjust_latency/4;
215 } else
216 adj = -delta;
217
218 tick_ops->add_tick(adj);
219 }
220 #if DEBUG_TICK_SYNC
221 t[i].rt = rt;
222 t[i].master = master_time_stamp;
223 t[i].diff = delta;
224 t[i].lat = adjust_latency/4;
225 #endif
226 }
227 }
228 local_irq_restore(flags);
229
230 #if DEBUG_TICK_SYNC
231 for (i = 0; i < NUM_ROUNDS; i++)
232 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
233 t[i].rt, t[i].master, t[i].diff, t[i].lat);
234 #endif
235
236 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
237 "(last diff %ld cycles, maxerr %lu cycles)\n",
238 smp_processor_id(), delta, rt);
239 }
240
241 static void smp_start_sync_tick_client(int cpu);
242
243 static void smp_synchronize_one_tick(int cpu)
244 {
245 unsigned long flags, i;
246
247 go[MASTER] = 0;
248
249 smp_start_sync_tick_client(cpu);
250
251 /* wait for client to be ready */
252 while (!go[MASTER])
253 rmb();
254
255 /* now let the client proceed into his loop */
256 go[MASTER] = 0;
257 membar_safe("#StoreLoad");
258
259 spin_lock_irqsave(&itc_sync_lock, flags);
260 {
261 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
262 while (!go[MASTER])
263 rmb();
264 go[MASTER] = 0;
265 wmb();
266 go[SLAVE] = tick_ops->get_tick();
267 membar_safe("#StoreLoad");
268 }
269 }
270 spin_unlock_irqrestore(&itc_sync_lock, flags);
271 }
272
273 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
274 /* XXX Put this in some common place. XXX */
275 static unsigned long kimage_addr_to_ra(void *p)
276 {
277 unsigned long val = (unsigned long) p;
278
279 return kern_base + (val - KERNBASE);
280 }
281
282 static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
283 {
284 extern unsigned long sparc64_ttable_tl0;
285 extern unsigned long kern_locked_tte_data;
286 struct hvtramp_descr *hdesc;
287 unsigned long trampoline_ra;
288 struct trap_per_cpu *tb;
289 u64 tte_vaddr, tte_data;
290 unsigned long hv_err;
291 int i;
292
293 hdesc = kzalloc(sizeof(*hdesc) +
294 (sizeof(struct hvtramp_mapping) *
295 num_kernel_image_mappings - 1),
296 GFP_KERNEL);
297 if (!hdesc) {
298 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
299 "hvtramp_descr.\n");
300 return;
301 }
302 *descrp = hdesc;
303
304 hdesc->cpu = cpu;
305 hdesc->num_mappings = num_kernel_image_mappings;
306
307 tb = &trap_block[cpu];
308
309 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
310 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
311
312 hdesc->thread_reg = thread_reg;
313
314 tte_vaddr = (unsigned long) KERNBASE;
315 tte_data = kern_locked_tte_data;
316
317 for (i = 0; i < hdesc->num_mappings; i++) {
318 hdesc->maps[i].vaddr = tte_vaddr;
319 hdesc->maps[i].tte = tte_data;
320 tte_vaddr += 0x400000;
321 tte_data += 0x400000;
322 }
323
324 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
325
326 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
327 kimage_addr_to_ra(&sparc64_ttable_tl0),
328 __pa(hdesc));
329 if (hv_err)
330 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
331 "gives error %lu\n", hv_err);
332 }
333 #endif
334
335 extern unsigned long sparc64_cpu_startup;
336
337 /* The OBP cpu startup callback truncates the 3rd arg cookie to
338 * 32-bits (I think) so to be safe we have it read the pointer
339 * contained here so we work on >4GB machines. -DaveM
340 */
341 static struct thread_info *cpu_new_thread = NULL;
342
343 static int __cpuinit smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
344 {
345 unsigned long entry =
346 (unsigned long)(&sparc64_cpu_startup);
347 unsigned long cookie =
348 (unsigned long)(&cpu_new_thread);
349 void *descr = NULL;
350 int timeout, ret;
351
352 callin_flag = 0;
353 cpu_new_thread = task_thread_info(idle);
354
355 if (tlb_type == hypervisor) {
356 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
357 if (ldom_domaining_enabled)
358 ldom_startcpu_cpuid(cpu,
359 (unsigned long) cpu_new_thread,
360 &descr);
361 else
362 #endif
363 prom_startcpu_cpuid(cpu, entry, cookie);
364 } else {
365 struct device_node *dp = of_find_node_by_cpuid(cpu);
366
367 prom_startcpu(dp->phandle, entry, cookie);
368 }
369
370 for (timeout = 0; timeout < 50000; timeout++) {
371 if (callin_flag)
372 break;
373 udelay(100);
374 }
375
376 if (callin_flag) {
377 ret = 0;
378 } else {
379 printk("Processor %d is stuck.\n", cpu);
380 ret = -ENODEV;
381 }
382 cpu_new_thread = NULL;
383
384 kfree(descr);
385
386 return ret;
387 }
388
389 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
390 {
391 u64 result, target;
392 int stuck, tmp;
393
394 if (this_is_starfire) {
395 /* map to real upaid */
396 cpu = (((cpu & 0x3c) << 1) |
397 ((cpu & 0x40) >> 4) |
398 (cpu & 0x3));
399 }
400
401 target = (cpu << 14) | 0x70;
402 again:
403 /* Ok, this is the real Spitfire Errata #54.
404 * One must read back from a UDB internal register
405 * after writes to the UDB interrupt dispatch, but
406 * before the membar Sync for that write.
407 * So we use the high UDB control register (ASI 0x7f,
408 * ADDR 0x20) for the dummy read. -DaveM
409 */
410 tmp = 0x40;
411 __asm__ __volatile__(
412 "wrpr %1, %2, %%pstate\n\t"
413 "stxa %4, [%0] %3\n\t"
414 "stxa %5, [%0+%8] %3\n\t"
415 "add %0, %8, %0\n\t"
416 "stxa %6, [%0+%8] %3\n\t"
417 "membar #Sync\n\t"
418 "stxa %%g0, [%7] %3\n\t"
419 "membar #Sync\n\t"
420 "mov 0x20, %%g1\n\t"
421 "ldxa [%%g1] 0x7f, %%g0\n\t"
422 "membar #Sync"
423 : "=r" (tmp)
424 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
425 "r" (data0), "r" (data1), "r" (data2), "r" (target),
426 "r" (0x10), "0" (tmp)
427 : "g1");
428
429 /* NOTE: PSTATE_IE is still clear. */
430 stuck = 100000;
431 do {
432 __asm__ __volatile__("ldxa [%%g0] %1, %0"
433 : "=r" (result)
434 : "i" (ASI_INTR_DISPATCH_STAT));
435 if (result == 0) {
436 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
437 : : "r" (pstate));
438 return;
439 }
440 stuck -= 1;
441 if (stuck == 0)
442 break;
443 } while (result & 0x1);
444 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
445 : : "r" (pstate));
446 if (stuck == 0) {
447 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
448 smp_processor_id(), result);
449 } else {
450 udelay(2);
451 goto again;
452 }
453 }
454
455 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
456 {
457 u64 *mondo, data0, data1, data2;
458 u16 *cpu_list;
459 u64 pstate;
460 int i;
461
462 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
463 cpu_list = __va(tb->cpu_list_pa);
464 mondo = __va(tb->cpu_mondo_block_pa);
465 data0 = mondo[0];
466 data1 = mondo[1];
467 data2 = mondo[2];
468 for (i = 0; i < cnt; i++)
469 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
470 }
471
472 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
473 * packet, but we have no use for that. However we do take advantage of
474 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
475 */
476 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
477 {
478 int nack_busy_id, is_jbus, need_more;
479 u64 *mondo, pstate, ver, busy_mask;
480 u16 *cpu_list;
481
482 cpu_list = __va(tb->cpu_list_pa);
483 mondo = __va(tb->cpu_mondo_block_pa);
484
485 /* Unfortunately, someone at Sun had the brilliant idea to make the
486 * busy/nack fields hard-coded by ITID number for this Ultra-III
487 * derivative processor.
488 */
489 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
490 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
491 (ver >> 32) == __SERRANO_ID);
492
493 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
494
495 retry:
496 need_more = 0;
497 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
498 : : "r" (pstate), "i" (PSTATE_IE));
499
500 /* Setup the dispatch data registers. */
501 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
502 "stxa %1, [%4] %6\n\t"
503 "stxa %2, [%5] %6\n\t"
504 "membar #Sync\n\t"
505 : /* no outputs */
506 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
507 "r" (0x40), "r" (0x50), "r" (0x60),
508 "i" (ASI_INTR_W));
509
510 nack_busy_id = 0;
511 busy_mask = 0;
512 {
513 int i;
514
515 for (i = 0; i < cnt; i++) {
516 u64 target, nr;
517
518 nr = cpu_list[i];
519 if (nr == 0xffff)
520 continue;
521
522 target = (nr << 14) | 0x70;
523 if (is_jbus) {
524 busy_mask |= (0x1UL << (nr * 2));
525 } else {
526 target |= (nack_busy_id << 24);
527 busy_mask |= (0x1UL <<
528 (nack_busy_id * 2));
529 }
530 __asm__ __volatile__(
531 "stxa %%g0, [%0] %1\n\t"
532 "membar #Sync\n\t"
533 : /* no outputs */
534 : "r" (target), "i" (ASI_INTR_W));
535 nack_busy_id++;
536 if (nack_busy_id == 32) {
537 need_more = 1;
538 break;
539 }
540 }
541 }
542
543 /* Now, poll for completion. */
544 {
545 u64 dispatch_stat, nack_mask;
546 long stuck;
547
548 stuck = 100000 * nack_busy_id;
549 nack_mask = busy_mask << 1;
550 do {
551 __asm__ __volatile__("ldxa [%%g0] %1, %0"
552 : "=r" (dispatch_stat)
553 : "i" (ASI_INTR_DISPATCH_STAT));
554 if (!(dispatch_stat & (busy_mask | nack_mask))) {
555 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
556 : : "r" (pstate));
557 if (unlikely(need_more)) {
558 int i, this_cnt = 0;
559 for (i = 0; i < cnt; i++) {
560 if (cpu_list[i] == 0xffff)
561 continue;
562 cpu_list[i] = 0xffff;
563 this_cnt++;
564 if (this_cnt == 32)
565 break;
566 }
567 goto retry;
568 }
569 return;
570 }
571 if (!--stuck)
572 break;
573 } while (dispatch_stat & busy_mask);
574
575 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
576 : : "r" (pstate));
577
578 if (dispatch_stat & busy_mask) {
579 /* Busy bits will not clear, continue instead
580 * of freezing up on this cpu.
581 */
582 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
583 smp_processor_id(), dispatch_stat);
584 } else {
585 int i, this_busy_nack = 0;
586
587 /* Delay some random time with interrupts enabled
588 * to prevent deadlock.
589 */
590 udelay(2 * nack_busy_id);
591
592 /* Clear out the mask bits for cpus which did not
593 * NACK us.
594 */
595 for (i = 0; i < cnt; i++) {
596 u64 check_mask, nr;
597
598 nr = cpu_list[i];
599 if (nr == 0xffff)
600 continue;
601
602 if (is_jbus)
603 check_mask = (0x2UL << (2*nr));
604 else
605 check_mask = (0x2UL <<
606 this_busy_nack);
607 if ((dispatch_stat & check_mask) == 0)
608 cpu_list[i] = 0xffff;
609 this_busy_nack += 2;
610 if (this_busy_nack == 64)
611 break;
612 }
613
614 goto retry;
615 }
616 }
617 }
618
619 /* Multi-cpu list version. */
620 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
621 {
622 int retries, this_cpu, prev_sent, i, saw_cpu_error;
623 unsigned long status;
624 u16 *cpu_list;
625
626 this_cpu = smp_processor_id();
627
628 cpu_list = __va(tb->cpu_list_pa);
629
630 saw_cpu_error = 0;
631 retries = 0;
632 prev_sent = 0;
633 do {
634 int forward_progress, n_sent;
635
636 status = sun4v_cpu_mondo_send(cnt,
637 tb->cpu_list_pa,
638 tb->cpu_mondo_block_pa);
639
640 /* HV_EOK means all cpus received the xcall, we're done. */
641 if (likely(status == HV_EOK))
642 break;
643
644 /* First, see if we made any forward progress.
645 *
646 * The hypervisor indicates successful sends by setting
647 * cpu list entries to the value 0xffff.
648 */
649 n_sent = 0;
650 for (i = 0; i < cnt; i++) {
651 if (likely(cpu_list[i] == 0xffff))
652 n_sent++;
653 }
654
655 forward_progress = 0;
656 if (n_sent > prev_sent)
657 forward_progress = 1;
658
659 prev_sent = n_sent;
660
661 /* If we get a HV_ECPUERROR, then one or more of the cpus
662 * in the list are in error state. Use the cpu_state()
663 * hypervisor call to find out which cpus are in error state.
664 */
665 if (unlikely(status == HV_ECPUERROR)) {
666 for (i = 0; i < cnt; i++) {
667 long err;
668 u16 cpu;
669
670 cpu = cpu_list[i];
671 if (cpu == 0xffff)
672 continue;
673
674 err = sun4v_cpu_state(cpu);
675 if (err == HV_CPU_STATE_ERROR) {
676 saw_cpu_error = (cpu + 1);
677 cpu_list[i] = 0xffff;
678 }
679 }
680 } else if (unlikely(status != HV_EWOULDBLOCK))
681 goto fatal_mondo_error;
682
683 /* Don't bother rewriting the CPU list, just leave the
684 * 0xffff and non-0xffff entries in there and the
685 * hypervisor will do the right thing.
686 *
687 * Only advance timeout state if we didn't make any
688 * forward progress.
689 */
690 if (unlikely(!forward_progress)) {
691 if (unlikely(++retries > 10000))
692 goto fatal_mondo_timeout;
693
694 /* Delay a little bit to let other cpus catch up
695 * on their cpu mondo queue work.
696 */
697 udelay(2 * cnt);
698 }
699 } while (1);
700
701 if (unlikely(saw_cpu_error))
702 goto fatal_mondo_cpu_error;
703
704 return;
705
706 fatal_mondo_cpu_error:
707 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
708 "(including %d) were in error state\n",
709 this_cpu, saw_cpu_error - 1);
710 return;
711
712 fatal_mondo_timeout:
713 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
714 " progress after %d retries.\n",
715 this_cpu, retries);
716 goto dump_cpu_list_and_out;
717
718 fatal_mondo_error:
719 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
720 this_cpu, status);
721 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
722 "mondo_block_pa(%lx)\n",
723 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
724
725 dump_cpu_list_and_out:
726 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
727 for (i = 0; i < cnt; i++)
728 printk("%u ", cpu_list[i]);
729 printk("]\n");
730 }
731
732 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
733
734 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
735 {
736 struct trap_per_cpu *tb;
737 int this_cpu, i, cnt;
738 unsigned long flags;
739 u16 *cpu_list;
740 u64 *mondo;
741
742 /* We have to do this whole thing with interrupts fully disabled.
743 * Otherwise if we send an xcall from interrupt context it will
744 * corrupt both our mondo block and cpu list state.
745 *
746 * One consequence of this is that we cannot use timeout mechanisms
747 * that depend upon interrupts being delivered locally. So, for
748 * example, we cannot sample jiffies and expect it to advance.
749 *
750 * Fortunately, udelay() uses %stick/%tick so we can use that.
751 */
752 local_irq_save(flags);
753
754 this_cpu = smp_processor_id();
755 tb = &trap_block[this_cpu];
756
757 mondo = __va(tb->cpu_mondo_block_pa);
758 mondo[0] = data0;
759 mondo[1] = data1;
760 mondo[2] = data2;
761 wmb();
762
763 cpu_list = __va(tb->cpu_list_pa);
764
765 /* Setup the initial cpu list. */
766 cnt = 0;
767 for_each_cpu(i, mask) {
768 if (i == this_cpu || !cpu_online(i))
769 continue;
770 cpu_list[cnt++] = i;
771 }
772
773 if (cnt)
774 xcall_deliver_impl(tb, cnt);
775
776 local_irq_restore(flags);
777 }
778
779 /* Send cross call to all processors mentioned in MASK_P
780 * except self. Really, there are only two cases currently,
781 * "cpu_online_mask" and "mm_cpumask(mm)".
782 */
783 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
784 {
785 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
786
787 xcall_deliver(data0, data1, data2, mask);
788 }
789
790 /* Send cross call to all processors except self. */
791 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
792 {
793 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
794 }
795
796 extern unsigned long xcall_sync_tick;
797
798 static void smp_start_sync_tick_client(int cpu)
799 {
800 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
801 cpumask_of(cpu));
802 }
803
804 extern unsigned long xcall_call_function;
805
806 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
807 {
808 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
809 }
810
811 extern unsigned long xcall_call_function_single;
812
813 void arch_send_call_function_single_ipi(int cpu)
814 {
815 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
816 cpumask_of(cpu));
817 }
818
819 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
820 {
821 clear_softint(1 << irq);
822 generic_smp_call_function_interrupt();
823 }
824
825 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
826 {
827 clear_softint(1 << irq);
828 generic_smp_call_function_single_interrupt();
829 }
830
831 static void tsb_sync(void *info)
832 {
833 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
834 struct mm_struct *mm = info;
835
836 /* It is not valid to test "current->active_mm == mm" here.
837 *
838 * The value of "current" is not changed atomically with
839 * switch_mm(). But that's OK, we just need to check the
840 * current cpu's trap block PGD physical address.
841 */
842 if (tp->pgd_paddr == __pa(mm->pgd))
843 tsb_context_switch(mm);
844 }
845
846 void smp_tsb_sync(struct mm_struct *mm)
847 {
848 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
849 }
850
851 extern unsigned long xcall_flush_tlb_mm;
852 extern unsigned long xcall_flush_tlb_pending;
853 extern unsigned long xcall_flush_tlb_kernel_range;
854 extern unsigned long xcall_fetch_glob_regs;
855 extern unsigned long xcall_receive_signal;
856 extern unsigned long xcall_new_mmu_context_version;
857 #ifdef CONFIG_KGDB
858 extern unsigned long xcall_kgdb_capture;
859 #endif
860
861 #ifdef DCACHE_ALIASING_POSSIBLE
862 extern unsigned long xcall_flush_dcache_page_cheetah;
863 #endif
864 extern unsigned long xcall_flush_dcache_page_spitfire;
865
866 #ifdef CONFIG_DEBUG_DCFLUSH
867 extern atomic_t dcpage_flushes;
868 extern atomic_t dcpage_flushes_xcall;
869 #endif
870
871 static inline void __local_flush_dcache_page(struct page *page)
872 {
873 #ifdef DCACHE_ALIASING_POSSIBLE
874 __flush_dcache_page(page_address(page),
875 ((tlb_type == spitfire) &&
876 page_mapping(page) != NULL));
877 #else
878 if (page_mapping(page) != NULL &&
879 tlb_type == spitfire)
880 __flush_icache_page(__pa(page_address(page)));
881 #endif
882 }
883
884 void smp_flush_dcache_page_impl(struct page *page, int cpu)
885 {
886 int this_cpu;
887
888 if (tlb_type == hypervisor)
889 return;
890
891 #ifdef CONFIG_DEBUG_DCFLUSH
892 atomic_inc(&dcpage_flushes);
893 #endif
894
895 this_cpu = get_cpu();
896
897 if (cpu == this_cpu) {
898 __local_flush_dcache_page(page);
899 } else if (cpu_online(cpu)) {
900 void *pg_addr = page_address(page);
901 u64 data0 = 0;
902
903 if (tlb_type == spitfire) {
904 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
905 if (page_mapping(page) != NULL)
906 data0 |= ((u64)1 << 32);
907 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
908 #ifdef DCACHE_ALIASING_POSSIBLE
909 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
910 #endif
911 }
912 if (data0) {
913 xcall_deliver(data0, __pa(pg_addr),
914 (u64) pg_addr, cpumask_of(cpu));
915 #ifdef CONFIG_DEBUG_DCFLUSH
916 atomic_inc(&dcpage_flushes_xcall);
917 #endif
918 }
919 }
920
921 put_cpu();
922 }
923
924 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
925 {
926 void *pg_addr;
927 u64 data0;
928
929 if (tlb_type == hypervisor)
930 return;
931
932 preempt_disable();
933
934 #ifdef CONFIG_DEBUG_DCFLUSH
935 atomic_inc(&dcpage_flushes);
936 #endif
937 data0 = 0;
938 pg_addr = page_address(page);
939 if (tlb_type == spitfire) {
940 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
941 if (page_mapping(page) != NULL)
942 data0 |= ((u64)1 << 32);
943 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
944 #ifdef DCACHE_ALIASING_POSSIBLE
945 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
946 #endif
947 }
948 if (data0) {
949 xcall_deliver(data0, __pa(pg_addr),
950 (u64) pg_addr, cpu_online_mask);
951 #ifdef CONFIG_DEBUG_DCFLUSH
952 atomic_inc(&dcpage_flushes_xcall);
953 #endif
954 }
955 __local_flush_dcache_page(page);
956
957 preempt_enable();
958 }
959
960 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
961 {
962 struct mm_struct *mm;
963 unsigned long flags;
964
965 clear_softint(1 << irq);
966
967 /* See if we need to allocate a new TLB context because
968 * the version of the one we are using is now out of date.
969 */
970 mm = current->active_mm;
971 if (unlikely(!mm || (mm == &init_mm)))
972 return;
973
974 spin_lock_irqsave(&mm->context.lock, flags);
975
976 if (unlikely(!CTX_VALID(mm->context)))
977 get_new_mmu_context(mm);
978
979 spin_unlock_irqrestore(&mm->context.lock, flags);
980
981 load_secondary_context(mm);
982 __flush_tlb_mm(CTX_HWBITS(mm->context),
983 SECONDARY_CONTEXT);
984 }
985
986 void smp_new_mmu_context_version(void)
987 {
988 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
989 }
990
991 #ifdef CONFIG_KGDB
992 void kgdb_roundup_cpus(unsigned long flags)
993 {
994 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
995 }
996 #endif
997
998 void smp_fetch_global_regs(void)
999 {
1000 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1001 }
1002
1003 /* We know that the window frames of the user have been flushed
1004 * to the stack before we get here because all callers of us
1005 * are flush_tlb_*() routines, and these run after flush_cache_*()
1006 * which performs the flushw.
1007 *
1008 * The SMP TLB coherency scheme we use works as follows:
1009 *
1010 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1011 * space has (potentially) executed on, this is the heuristic
1012 * we use to avoid doing cross calls.
1013 *
1014 * Also, for flushing from kswapd and also for clones, we
1015 * use cpu_vm_mask as the list of cpus to make run the TLB.
1016 *
1017 * 2) TLB context numbers are shared globally across all processors
1018 * in the system, this allows us to play several games to avoid
1019 * cross calls.
1020 *
1021 * One invariant is that when a cpu switches to a process, and
1022 * that processes tsk->active_mm->cpu_vm_mask does not have the
1023 * current cpu's bit set, that tlb context is flushed locally.
1024 *
1025 * If the address space is non-shared (ie. mm->count == 1) we avoid
1026 * cross calls when we want to flush the currently running process's
1027 * tlb state. This is done by clearing all cpu bits except the current
1028 * processor's in current->mm->cpu_vm_mask and performing the
1029 * flush locally only. This will force any subsequent cpus which run
1030 * this task to flush the context from the local tlb if the process
1031 * migrates to another cpu (again).
1032 *
1033 * 3) For shared address spaces (threads) and swapping we bite the
1034 * bullet for most cases and perform the cross call (but only to
1035 * the cpus listed in cpu_vm_mask).
1036 *
1037 * The performance gain from "optimizing" away the cross call for threads is
1038 * questionable (in theory the big win for threads is the massive sharing of
1039 * address space state across processors).
1040 */
1041
1042 /* This currently is only used by the hugetlb arch pre-fault
1043 * hook on UltraSPARC-III+ and later when changing the pagesize
1044 * bits of the context register for an address space.
1045 */
1046 void smp_flush_tlb_mm(struct mm_struct *mm)
1047 {
1048 u32 ctx = CTX_HWBITS(mm->context);
1049 int cpu = get_cpu();
1050
1051 if (atomic_read(&mm->mm_users) == 1) {
1052 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1053 goto local_flush_and_out;
1054 }
1055
1056 smp_cross_call_masked(&xcall_flush_tlb_mm,
1057 ctx, 0, 0,
1058 mm_cpumask(mm));
1059
1060 local_flush_and_out:
1061 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1062
1063 put_cpu();
1064 }
1065
1066 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1067 {
1068 u32 ctx = CTX_HWBITS(mm->context);
1069 int cpu = get_cpu();
1070
1071 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1072 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1073 else
1074 smp_cross_call_masked(&xcall_flush_tlb_pending,
1075 ctx, nr, (unsigned long) vaddrs,
1076 mm_cpumask(mm));
1077
1078 __flush_tlb_pending(ctx, nr, vaddrs);
1079
1080 put_cpu();
1081 }
1082
1083 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1084 {
1085 start &= PAGE_MASK;
1086 end = PAGE_ALIGN(end);
1087 if (start != end) {
1088 smp_cross_call(&xcall_flush_tlb_kernel_range,
1089 0, start, end);
1090
1091 __flush_tlb_kernel_range(start, end);
1092 }
1093 }
1094
1095 /* CPU capture. */
1096 /* #define CAPTURE_DEBUG */
1097 extern unsigned long xcall_capture;
1098
1099 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1100 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1101 static unsigned long penguins_are_doing_time;
1102
1103 void smp_capture(void)
1104 {
1105 int result = atomic_add_ret(1, &smp_capture_depth);
1106
1107 if (result == 1) {
1108 int ncpus = num_online_cpus();
1109
1110 #ifdef CAPTURE_DEBUG
1111 printk("CPU[%d]: Sending penguins to jail...",
1112 smp_processor_id());
1113 #endif
1114 penguins_are_doing_time = 1;
1115 atomic_inc(&smp_capture_registry);
1116 smp_cross_call(&xcall_capture, 0, 0, 0);
1117 while (atomic_read(&smp_capture_registry) != ncpus)
1118 rmb();
1119 #ifdef CAPTURE_DEBUG
1120 printk("done\n");
1121 #endif
1122 }
1123 }
1124
1125 void smp_release(void)
1126 {
1127 if (atomic_dec_and_test(&smp_capture_depth)) {
1128 #ifdef CAPTURE_DEBUG
1129 printk("CPU[%d]: Giving pardon to "
1130 "imprisoned penguins\n",
1131 smp_processor_id());
1132 #endif
1133 penguins_are_doing_time = 0;
1134 membar_safe("#StoreLoad");
1135 atomic_dec(&smp_capture_registry);
1136 }
1137 }
1138
1139 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1140 * set, so they can service tlb flush xcalls...
1141 */
1142 extern void prom_world(int);
1143
1144 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1145 {
1146 clear_softint(1 << irq);
1147
1148 preempt_disable();
1149
1150 __asm__ __volatile__("flushw");
1151 prom_world(1);
1152 atomic_inc(&smp_capture_registry);
1153 membar_safe("#StoreLoad");
1154 while (penguins_are_doing_time)
1155 rmb();
1156 atomic_dec(&smp_capture_registry);
1157 prom_world(0);
1158
1159 preempt_enable();
1160 }
1161
1162 /* /proc/profile writes can call this, don't __init it please. */
1163 int setup_profiling_timer(unsigned int multiplier)
1164 {
1165 return -EINVAL;
1166 }
1167
1168 void __init smp_prepare_cpus(unsigned int max_cpus)
1169 {
1170 }
1171
1172 void __devinit smp_prepare_boot_cpu(void)
1173 {
1174 }
1175
1176 void __init smp_setup_processor_id(void)
1177 {
1178 if (tlb_type == spitfire)
1179 xcall_deliver_impl = spitfire_xcall_deliver;
1180 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1181 xcall_deliver_impl = cheetah_xcall_deliver;
1182 else
1183 xcall_deliver_impl = hypervisor_xcall_deliver;
1184 }
1185
1186 void __devinit smp_fill_in_sib_core_maps(void)
1187 {
1188 unsigned int i;
1189
1190 for_each_present_cpu(i) {
1191 unsigned int j;
1192
1193 cpumask_clear(&cpu_core_map[i]);
1194 if (cpu_data(i).core_id == 0) {
1195 cpumask_set_cpu(i, &cpu_core_map[i]);
1196 continue;
1197 }
1198
1199 for_each_present_cpu(j) {
1200 if (cpu_data(i).core_id ==
1201 cpu_data(j).core_id)
1202 cpumask_set_cpu(j, &cpu_core_map[i]);
1203 }
1204 }
1205
1206 for_each_present_cpu(i) {
1207 unsigned int j;
1208
1209 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1210 if (cpu_data(i).proc_id == -1) {
1211 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1212 continue;
1213 }
1214
1215 for_each_present_cpu(j) {
1216 if (cpu_data(i).proc_id ==
1217 cpu_data(j).proc_id)
1218 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1219 }
1220 }
1221 }
1222
1223 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
1224 {
1225 int ret = smp_boot_one_cpu(cpu, tidle);
1226
1227 if (!ret) {
1228 cpumask_set_cpu(cpu, &smp_commenced_mask);
1229 while (!cpu_online(cpu))
1230 mb();
1231 if (!cpu_online(cpu)) {
1232 ret = -ENODEV;
1233 } else {
1234 /* On SUN4V, writes to %tick and %stick are
1235 * not allowed.
1236 */
1237 if (tlb_type != hypervisor)
1238 smp_synchronize_one_tick(cpu);
1239 }
1240 }
1241 return ret;
1242 }
1243
1244 #ifdef CONFIG_HOTPLUG_CPU
1245 void cpu_play_dead(void)
1246 {
1247 int cpu = smp_processor_id();
1248 unsigned long pstate;
1249
1250 idle_task_exit();
1251
1252 if (tlb_type == hypervisor) {
1253 struct trap_per_cpu *tb = &trap_block[cpu];
1254
1255 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1256 tb->cpu_mondo_pa, 0);
1257 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1258 tb->dev_mondo_pa, 0);
1259 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1260 tb->resum_mondo_pa, 0);
1261 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1262 tb->nonresum_mondo_pa, 0);
1263 }
1264
1265 cpumask_clear_cpu(cpu, &smp_commenced_mask);
1266 membar_safe("#Sync");
1267
1268 local_irq_disable();
1269
1270 __asm__ __volatile__(
1271 "rdpr %%pstate, %0\n\t"
1272 "wrpr %0, %1, %%pstate"
1273 : "=r" (pstate)
1274 : "i" (PSTATE_IE));
1275
1276 while (1)
1277 barrier();
1278 }
1279
1280 int __cpu_disable(void)
1281 {
1282 int cpu = smp_processor_id();
1283 cpuinfo_sparc *c;
1284 int i;
1285
1286 for_each_cpu(i, &cpu_core_map[cpu])
1287 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1288 cpumask_clear(&cpu_core_map[cpu]);
1289
1290 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1291 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1292 cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1293
1294 c = &cpu_data(cpu);
1295
1296 c->core_id = 0;
1297 c->proc_id = -1;
1298
1299 smp_wmb();
1300
1301 /* Make sure no interrupts point to this cpu. */
1302 fixup_irqs();
1303
1304 local_irq_enable();
1305 mdelay(1);
1306 local_irq_disable();
1307
1308 set_cpu_online(cpu, false);
1309
1310 cpu_map_rebuild();
1311
1312 return 0;
1313 }
1314
1315 void __cpu_die(unsigned int cpu)
1316 {
1317 int i;
1318
1319 for (i = 0; i < 100; i++) {
1320 smp_rmb();
1321 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1322 break;
1323 msleep(100);
1324 }
1325 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1326 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1327 } else {
1328 #if defined(CONFIG_SUN_LDOMS)
1329 unsigned long hv_err;
1330 int limit = 100;
1331
1332 do {
1333 hv_err = sun4v_cpu_stop(cpu);
1334 if (hv_err == HV_EOK) {
1335 set_cpu_present(cpu, false);
1336 break;
1337 }
1338 } while (--limit > 0);
1339 if (limit <= 0) {
1340 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1341 hv_err);
1342 }
1343 #endif
1344 }
1345 }
1346 #endif
1347
1348 void __init smp_cpus_done(unsigned int max_cpus)
1349 {
1350 pcr_arch_init();
1351 }
1352
1353 void smp_send_reschedule(int cpu)
1354 {
1355 xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1356 cpumask_of(cpu));
1357 }
1358
1359 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1360 {
1361 clear_softint(1 << irq);
1362 scheduler_ipi();
1363 }
1364
1365 /* This is a nop because we capture all other cpus
1366 * anyways when making the PROM active.
1367 */
1368 void smp_send_stop(void)
1369 {
1370 }
1371
1372 /**
1373 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1374 * @cpu: cpu to allocate for
1375 * @size: size allocation in bytes
1376 * @align: alignment
1377 *
1378 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
1379 * does the right thing for NUMA regardless of the current
1380 * configuration.
1381 *
1382 * RETURNS:
1383 * Pointer to the allocated area on success, NULL on failure.
1384 */
1385 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1386 size_t align)
1387 {
1388 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1389 #ifdef CONFIG_NEED_MULTIPLE_NODES
1390 int node = cpu_to_node(cpu);
1391 void *ptr;
1392
1393 if (!node_online(node) || !NODE_DATA(node)) {
1394 ptr = __alloc_bootmem(size, align, goal);
1395 pr_info("cpu %d has no node %d or node-local memory\n",
1396 cpu, node);
1397 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1398 cpu, size, __pa(ptr));
1399 } else {
1400 ptr = __alloc_bootmem_node(NODE_DATA(node),
1401 size, align, goal);
1402 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1403 "%016lx\n", cpu, size, node, __pa(ptr));
1404 }
1405 return ptr;
1406 #else
1407 return __alloc_bootmem(size, align, goal);
1408 #endif
1409 }
1410
1411 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1412 {
1413 free_bootmem(__pa(ptr), size);
1414 }
1415
1416 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1417 {
1418 if (cpu_to_node(from) == cpu_to_node(to))
1419 return LOCAL_DISTANCE;
1420 else
1421 return REMOTE_DISTANCE;
1422 }
1423
1424 static void __init pcpu_populate_pte(unsigned long addr)
1425 {
1426 pgd_t *pgd = pgd_offset_k(addr);
1427 pud_t *pud;
1428 pmd_t *pmd;
1429
1430 pud = pud_offset(pgd, addr);
1431 if (pud_none(*pud)) {
1432 pmd_t *new;
1433
1434 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1435 pud_populate(&init_mm, pud, new);
1436 }
1437
1438 pmd = pmd_offset(pud, addr);
1439 if (!pmd_present(*pmd)) {
1440 pte_t *new;
1441
1442 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1443 pmd_populate_kernel(&init_mm, pmd, new);
1444 }
1445 }
1446
1447 void __init setup_per_cpu_areas(void)
1448 {
1449 unsigned long delta;
1450 unsigned int cpu;
1451 int rc = -EINVAL;
1452
1453 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1454 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1455 PERCPU_DYNAMIC_RESERVE, 4 << 20,
1456 pcpu_cpu_distance,
1457 pcpu_alloc_bootmem,
1458 pcpu_free_bootmem);
1459 if (rc)
1460 pr_warning("PERCPU: %s allocator failed (%d), "
1461 "falling back to page size\n",
1462 pcpu_fc_names[pcpu_chosen_fc], rc);
1463 }
1464 if (rc < 0)
1465 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1466 pcpu_alloc_bootmem,
1467 pcpu_free_bootmem,
1468 pcpu_populate_pte);
1469 if (rc < 0)
1470 panic("cannot initialize percpu area (err=%d)", rc);
1471
1472 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1473 for_each_possible_cpu(cpu)
1474 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1475
1476 /* Setup %g5 for the boot cpu. */
1477 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1478
1479 of_fill_in_cpu_data();
1480 if (tlb_type == hypervisor)
1481 mdesc_fill_in_cpu_data(cpu_all_mask);
1482 }
This page took 0.064804 seconds and 5 git commands to generate.