sparc,sparc64: unify kernel/
[deliverable/linux.git] / arch / sparc / kernel / smp_64.c
1 /* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 */
5
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/lmb.h>
24 #include <linux/cpu.h>
25
26 #include <asm/head.h>
27 #include <asm/ptrace.h>
28 #include <asm/atomic.h>
29 #include <asm/tlbflush.h>
30 #include <asm/mmu_context.h>
31 #include <asm/cpudata.h>
32 #include <asm/hvtramp.h>
33 #include <asm/io.h>
34 #include <asm/timer.h>
35
36 #include <asm/irq.h>
37 #include <asm/irq_regs.h>
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/oplib.h>
41 #include <asm/uaccess.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/sections.h>
45 #include <asm/prom.h>
46 #include <asm/mdesc.h>
47 #include <asm/ldc.h>
48 #include <asm/hypervisor.h>
49
50 int sparc64_multi_core __read_mostly;
51
52 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE;
53 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
54 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
55 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
56 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
57
58 EXPORT_SYMBOL(cpu_possible_map);
59 EXPORT_SYMBOL(cpu_online_map);
60 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
61 EXPORT_SYMBOL(cpu_core_map);
62
63 static cpumask_t smp_commenced_mask;
64
65 void smp_info(struct seq_file *m)
66 {
67 int i;
68
69 seq_printf(m, "State:\n");
70 for_each_online_cpu(i)
71 seq_printf(m, "CPU%d:\t\tonline\n", i);
72 }
73
74 void smp_bogo(struct seq_file *m)
75 {
76 int i;
77
78 for_each_online_cpu(i)
79 seq_printf(m,
80 "Cpu%dClkTck\t: %016lx\n",
81 i, cpu_data(i).clock_tick);
82 }
83
84 extern void setup_sparc64_timer(void);
85
86 static volatile unsigned long callin_flag = 0;
87
88 void __cpuinit smp_callin(void)
89 {
90 int cpuid = hard_smp_processor_id();
91
92 __local_per_cpu_offset = __per_cpu_offset(cpuid);
93
94 if (tlb_type == hypervisor)
95 sun4v_ktsb_register();
96
97 __flush_tlb_all();
98
99 setup_sparc64_timer();
100
101 if (cheetah_pcache_forced_on)
102 cheetah_enable_pcache();
103
104 local_irq_enable();
105
106 callin_flag = 1;
107 __asm__ __volatile__("membar #Sync\n\t"
108 "flush %%g6" : : : "memory");
109
110 /* Clear this or we will die instantly when we
111 * schedule back to this idler...
112 */
113 current_thread_info()->new_child = 0;
114
115 /* Attach to the address space of init_task. */
116 atomic_inc(&init_mm.mm_count);
117 current->active_mm = &init_mm;
118
119 /* inform the notifiers about the new cpu */
120 notify_cpu_starting(cpuid);
121
122 while (!cpu_isset(cpuid, smp_commenced_mask))
123 rmb();
124
125 ipi_call_lock();
126 cpu_set(cpuid, cpu_online_map);
127 ipi_call_unlock();
128
129 /* idle thread is expected to have preempt disabled */
130 preempt_disable();
131 }
132
133 void cpu_panic(void)
134 {
135 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
136 panic("SMP bolixed\n");
137 }
138
139 /* This tick register synchronization scheme is taken entirely from
140 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
141 *
142 * The only change I've made is to rework it so that the master
143 * initiates the synchonization instead of the slave. -DaveM
144 */
145
146 #define MASTER 0
147 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
148
149 #define NUM_ROUNDS 64 /* magic value */
150 #define NUM_ITERS 5 /* likewise */
151
152 static DEFINE_SPINLOCK(itc_sync_lock);
153 static unsigned long go[SLAVE + 1];
154
155 #define DEBUG_TICK_SYNC 0
156
157 static inline long get_delta (long *rt, long *master)
158 {
159 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
160 unsigned long tcenter, t0, t1, tm;
161 unsigned long i;
162
163 for (i = 0; i < NUM_ITERS; i++) {
164 t0 = tick_ops->get_tick();
165 go[MASTER] = 1;
166 membar_safe("#StoreLoad");
167 while (!(tm = go[SLAVE]))
168 rmb();
169 go[SLAVE] = 0;
170 wmb();
171 t1 = tick_ops->get_tick();
172
173 if (t1 - t0 < best_t1 - best_t0)
174 best_t0 = t0, best_t1 = t1, best_tm = tm;
175 }
176
177 *rt = best_t1 - best_t0;
178 *master = best_tm - best_t0;
179
180 /* average best_t0 and best_t1 without overflow: */
181 tcenter = (best_t0/2 + best_t1/2);
182 if (best_t0 % 2 + best_t1 % 2 == 2)
183 tcenter++;
184 return tcenter - best_tm;
185 }
186
187 void smp_synchronize_tick_client(void)
188 {
189 long i, delta, adj, adjust_latency = 0, done = 0;
190 unsigned long flags, rt, master_time_stamp, bound;
191 #if DEBUG_TICK_SYNC
192 struct {
193 long rt; /* roundtrip time */
194 long master; /* master's timestamp */
195 long diff; /* difference between midpoint and master's timestamp */
196 long lat; /* estimate of itc adjustment latency */
197 } t[NUM_ROUNDS];
198 #endif
199
200 go[MASTER] = 1;
201
202 while (go[MASTER])
203 rmb();
204
205 local_irq_save(flags);
206 {
207 for (i = 0; i < NUM_ROUNDS; i++) {
208 delta = get_delta(&rt, &master_time_stamp);
209 if (delta == 0) {
210 done = 1; /* let's lock on to this... */
211 bound = rt;
212 }
213
214 if (!done) {
215 if (i > 0) {
216 adjust_latency += -delta;
217 adj = -delta + adjust_latency/4;
218 } else
219 adj = -delta;
220
221 tick_ops->add_tick(adj);
222 }
223 #if DEBUG_TICK_SYNC
224 t[i].rt = rt;
225 t[i].master = master_time_stamp;
226 t[i].diff = delta;
227 t[i].lat = adjust_latency/4;
228 #endif
229 }
230 }
231 local_irq_restore(flags);
232
233 #if DEBUG_TICK_SYNC
234 for (i = 0; i < NUM_ROUNDS; i++)
235 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
236 t[i].rt, t[i].master, t[i].diff, t[i].lat);
237 #endif
238
239 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
240 "(last diff %ld cycles, maxerr %lu cycles)\n",
241 smp_processor_id(), delta, rt);
242 }
243
244 static void smp_start_sync_tick_client(int cpu);
245
246 static void smp_synchronize_one_tick(int cpu)
247 {
248 unsigned long flags, i;
249
250 go[MASTER] = 0;
251
252 smp_start_sync_tick_client(cpu);
253
254 /* wait for client to be ready */
255 while (!go[MASTER])
256 rmb();
257
258 /* now let the client proceed into his loop */
259 go[MASTER] = 0;
260 membar_safe("#StoreLoad");
261
262 spin_lock_irqsave(&itc_sync_lock, flags);
263 {
264 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
265 while (!go[MASTER])
266 rmb();
267 go[MASTER] = 0;
268 wmb();
269 go[SLAVE] = tick_ops->get_tick();
270 membar_safe("#StoreLoad");
271 }
272 }
273 spin_unlock_irqrestore(&itc_sync_lock, flags);
274 }
275
276 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
277 /* XXX Put this in some common place. XXX */
278 static unsigned long kimage_addr_to_ra(void *p)
279 {
280 unsigned long val = (unsigned long) p;
281
282 return kern_base + (val - KERNBASE);
283 }
284
285 static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
286 {
287 extern unsigned long sparc64_ttable_tl0;
288 extern unsigned long kern_locked_tte_data;
289 struct hvtramp_descr *hdesc;
290 unsigned long trampoline_ra;
291 struct trap_per_cpu *tb;
292 u64 tte_vaddr, tte_data;
293 unsigned long hv_err;
294 int i;
295
296 hdesc = kzalloc(sizeof(*hdesc) +
297 (sizeof(struct hvtramp_mapping) *
298 num_kernel_image_mappings - 1),
299 GFP_KERNEL);
300 if (!hdesc) {
301 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
302 "hvtramp_descr.\n");
303 return;
304 }
305
306 hdesc->cpu = cpu;
307 hdesc->num_mappings = num_kernel_image_mappings;
308
309 tb = &trap_block[cpu];
310 tb->hdesc = hdesc;
311
312 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
313 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
314
315 hdesc->thread_reg = thread_reg;
316
317 tte_vaddr = (unsigned long) KERNBASE;
318 tte_data = kern_locked_tte_data;
319
320 for (i = 0; i < hdesc->num_mappings; i++) {
321 hdesc->maps[i].vaddr = tte_vaddr;
322 hdesc->maps[i].tte = tte_data;
323 tte_vaddr += 0x400000;
324 tte_data += 0x400000;
325 }
326
327 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
328
329 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
330 kimage_addr_to_ra(&sparc64_ttable_tl0),
331 __pa(hdesc));
332 if (hv_err)
333 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
334 "gives error %lu\n", hv_err);
335 }
336 #endif
337
338 extern unsigned long sparc64_cpu_startup;
339
340 /* The OBP cpu startup callback truncates the 3rd arg cookie to
341 * 32-bits (I think) so to be safe we have it read the pointer
342 * contained here so we work on >4GB machines. -DaveM
343 */
344 static struct thread_info *cpu_new_thread = NULL;
345
346 static int __cpuinit smp_boot_one_cpu(unsigned int cpu)
347 {
348 struct trap_per_cpu *tb = &trap_block[cpu];
349 unsigned long entry =
350 (unsigned long)(&sparc64_cpu_startup);
351 unsigned long cookie =
352 (unsigned long)(&cpu_new_thread);
353 struct task_struct *p;
354 int timeout, ret;
355
356 p = fork_idle(cpu);
357 if (IS_ERR(p))
358 return PTR_ERR(p);
359 callin_flag = 0;
360 cpu_new_thread = task_thread_info(p);
361
362 if (tlb_type == hypervisor) {
363 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
364 if (ldom_domaining_enabled)
365 ldom_startcpu_cpuid(cpu,
366 (unsigned long) cpu_new_thread);
367 else
368 #endif
369 prom_startcpu_cpuid(cpu, entry, cookie);
370 } else {
371 struct device_node *dp = of_find_node_by_cpuid(cpu);
372
373 prom_startcpu(dp->node, entry, cookie);
374 }
375
376 for (timeout = 0; timeout < 50000; timeout++) {
377 if (callin_flag)
378 break;
379 udelay(100);
380 }
381
382 if (callin_flag) {
383 ret = 0;
384 } else {
385 printk("Processor %d is stuck.\n", cpu);
386 ret = -ENODEV;
387 }
388 cpu_new_thread = NULL;
389
390 if (tb->hdesc) {
391 kfree(tb->hdesc);
392 tb->hdesc = NULL;
393 }
394
395 return ret;
396 }
397
398 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
399 {
400 u64 result, target;
401 int stuck, tmp;
402
403 if (this_is_starfire) {
404 /* map to real upaid */
405 cpu = (((cpu & 0x3c) << 1) |
406 ((cpu & 0x40) >> 4) |
407 (cpu & 0x3));
408 }
409
410 target = (cpu << 14) | 0x70;
411 again:
412 /* Ok, this is the real Spitfire Errata #54.
413 * One must read back from a UDB internal register
414 * after writes to the UDB interrupt dispatch, but
415 * before the membar Sync for that write.
416 * So we use the high UDB control register (ASI 0x7f,
417 * ADDR 0x20) for the dummy read. -DaveM
418 */
419 tmp = 0x40;
420 __asm__ __volatile__(
421 "wrpr %1, %2, %%pstate\n\t"
422 "stxa %4, [%0] %3\n\t"
423 "stxa %5, [%0+%8] %3\n\t"
424 "add %0, %8, %0\n\t"
425 "stxa %6, [%0+%8] %3\n\t"
426 "membar #Sync\n\t"
427 "stxa %%g0, [%7] %3\n\t"
428 "membar #Sync\n\t"
429 "mov 0x20, %%g1\n\t"
430 "ldxa [%%g1] 0x7f, %%g0\n\t"
431 "membar #Sync"
432 : "=r" (tmp)
433 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
434 "r" (data0), "r" (data1), "r" (data2), "r" (target),
435 "r" (0x10), "0" (tmp)
436 : "g1");
437
438 /* NOTE: PSTATE_IE is still clear. */
439 stuck = 100000;
440 do {
441 __asm__ __volatile__("ldxa [%%g0] %1, %0"
442 : "=r" (result)
443 : "i" (ASI_INTR_DISPATCH_STAT));
444 if (result == 0) {
445 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
446 : : "r" (pstate));
447 return;
448 }
449 stuck -= 1;
450 if (stuck == 0)
451 break;
452 } while (result & 0x1);
453 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
454 : : "r" (pstate));
455 if (stuck == 0) {
456 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
457 smp_processor_id(), result);
458 } else {
459 udelay(2);
460 goto again;
461 }
462 }
463
464 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
465 {
466 u64 *mondo, data0, data1, data2;
467 u16 *cpu_list;
468 u64 pstate;
469 int i;
470
471 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
472 cpu_list = __va(tb->cpu_list_pa);
473 mondo = __va(tb->cpu_mondo_block_pa);
474 data0 = mondo[0];
475 data1 = mondo[1];
476 data2 = mondo[2];
477 for (i = 0; i < cnt; i++)
478 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
479 }
480
481 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
482 * packet, but we have no use for that. However we do take advantage of
483 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
484 */
485 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
486 {
487 int nack_busy_id, is_jbus, need_more;
488 u64 *mondo, pstate, ver, busy_mask;
489 u16 *cpu_list;
490
491 cpu_list = __va(tb->cpu_list_pa);
492 mondo = __va(tb->cpu_mondo_block_pa);
493
494 /* Unfortunately, someone at Sun had the brilliant idea to make the
495 * busy/nack fields hard-coded by ITID number for this Ultra-III
496 * derivative processor.
497 */
498 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
499 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
500 (ver >> 32) == __SERRANO_ID);
501
502 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
503
504 retry:
505 need_more = 0;
506 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
507 : : "r" (pstate), "i" (PSTATE_IE));
508
509 /* Setup the dispatch data registers. */
510 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
511 "stxa %1, [%4] %6\n\t"
512 "stxa %2, [%5] %6\n\t"
513 "membar #Sync\n\t"
514 : /* no outputs */
515 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
516 "r" (0x40), "r" (0x50), "r" (0x60),
517 "i" (ASI_INTR_W));
518
519 nack_busy_id = 0;
520 busy_mask = 0;
521 {
522 int i;
523
524 for (i = 0; i < cnt; i++) {
525 u64 target, nr;
526
527 nr = cpu_list[i];
528 if (nr == 0xffff)
529 continue;
530
531 target = (nr << 14) | 0x70;
532 if (is_jbus) {
533 busy_mask |= (0x1UL << (nr * 2));
534 } else {
535 target |= (nack_busy_id << 24);
536 busy_mask |= (0x1UL <<
537 (nack_busy_id * 2));
538 }
539 __asm__ __volatile__(
540 "stxa %%g0, [%0] %1\n\t"
541 "membar #Sync\n\t"
542 : /* no outputs */
543 : "r" (target), "i" (ASI_INTR_W));
544 nack_busy_id++;
545 if (nack_busy_id == 32) {
546 need_more = 1;
547 break;
548 }
549 }
550 }
551
552 /* Now, poll for completion. */
553 {
554 u64 dispatch_stat, nack_mask;
555 long stuck;
556
557 stuck = 100000 * nack_busy_id;
558 nack_mask = busy_mask << 1;
559 do {
560 __asm__ __volatile__("ldxa [%%g0] %1, %0"
561 : "=r" (dispatch_stat)
562 : "i" (ASI_INTR_DISPATCH_STAT));
563 if (!(dispatch_stat & (busy_mask | nack_mask))) {
564 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
565 : : "r" (pstate));
566 if (unlikely(need_more)) {
567 int i, this_cnt = 0;
568 for (i = 0; i < cnt; i++) {
569 if (cpu_list[i] == 0xffff)
570 continue;
571 cpu_list[i] = 0xffff;
572 this_cnt++;
573 if (this_cnt == 32)
574 break;
575 }
576 goto retry;
577 }
578 return;
579 }
580 if (!--stuck)
581 break;
582 } while (dispatch_stat & busy_mask);
583
584 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
585 : : "r" (pstate));
586
587 if (dispatch_stat & busy_mask) {
588 /* Busy bits will not clear, continue instead
589 * of freezing up on this cpu.
590 */
591 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
592 smp_processor_id(), dispatch_stat);
593 } else {
594 int i, this_busy_nack = 0;
595
596 /* Delay some random time with interrupts enabled
597 * to prevent deadlock.
598 */
599 udelay(2 * nack_busy_id);
600
601 /* Clear out the mask bits for cpus which did not
602 * NACK us.
603 */
604 for (i = 0; i < cnt; i++) {
605 u64 check_mask, nr;
606
607 nr = cpu_list[i];
608 if (nr == 0xffff)
609 continue;
610
611 if (is_jbus)
612 check_mask = (0x2UL << (2*nr));
613 else
614 check_mask = (0x2UL <<
615 this_busy_nack);
616 if ((dispatch_stat & check_mask) == 0)
617 cpu_list[i] = 0xffff;
618 this_busy_nack += 2;
619 if (this_busy_nack == 64)
620 break;
621 }
622
623 goto retry;
624 }
625 }
626 }
627
628 /* Multi-cpu list version. */
629 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
630 {
631 int retries, this_cpu, prev_sent, i, saw_cpu_error;
632 unsigned long status;
633 u16 *cpu_list;
634
635 this_cpu = smp_processor_id();
636
637 cpu_list = __va(tb->cpu_list_pa);
638
639 saw_cpu_error = 0;
640 retries = 0;
641 prev_sent = 0;
642 do {
643 int forward_progress, n_sent;
644
645 status = sun4v_cpu_mondo_send(cnt,
646 tb->cpu_list_pa,
647 tb->cpu_mondo_block_pa);
648
649 /* HV_EOK means all cpus received the xcall, we're done. */
650 if (likely(status == HV_EOK))
651 break;
652
653 /* First, see if we made any forward progress.
654 *
655 * The hypervisor indicates successful sends by setting
656 * cpu list entries to the value 0xffff.
657 */
658 n_sent = 0;
659 for (i = 0; i < cnt; i++) {
660 if (likely(cpu_list[i] == 0xffff))
661 n_sent++;
662 }
663
664 forward_progress = 0;
665 if (n_sent > prev_sent)
666 forward_progress = 1;
667
668 prev_sent = n_sent;
669
670 /* If we get a HV_ECPUERROR, then one or more of the cpus
671 * in the list are in error state. Use the cpu_state()
672 * hypervisor call to find out which cpus are in error state.
673 */
674 if (unlikely(status == HV_ECPUERROR)) {
675 for (i = 0; i < cnt; i++) {
676 long err;
677 u16 cpu;
678
679 cpu = cpu_list[i];
680 if (cpu == 0xffff)
681 continue;
682
683 err = sun4v_cpu_state(cpu);
684 if (err == HV_CPU_STATE_ERROR) {
685 saw_cpu_error = (cpu + 1);
686 cpu_list[i] = 0xffff;
687 }
688 }
689 } else if (unlikely(status != HV_EWOULDBLOCK))
690 goto fatal_mondo_error;
691
692 /* Don't bother rewriting the CPU list, just leave the
693 * 0xffff and non-0xffff entries in there and the
694 * hypervisor will do the right thing.
695 *
696 * Only advance timeout state if we didn't make any
697 * forward progress.
698 */
699 if (unlikely(!forward_progress)) {
700 if (unlikely(++retries > 10000))
701 goto fatal_mondo_timeout;
702
703 /* Delay a little bit to let other cpus catch up
704 * on their cpu mondo queue work.
705 */
706 udelay(2 * cnt);
707 }
708 } while (1);
709
710 if (unlikely(saw_cpu_error))
711 goto fatal_mondo_cpu_error;
712
713 return;
714
715 fatal_mondo_cpu_error:
716 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
717 "(including %d) were in error state\n",
718 this_cpu, saw_cpu_error - 1);
719 return;
720
721 fatal_mondo_timeout:
722 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
723 " progress after %d retries.\n",
724 this_cpu, retries);
725 goto dump_cpu_list_and_out;
726
727 fatal_mondo_error:
728 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
729 this_cpu, status);
730 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
731 "mondo_block_pa(%lx)\n",
732 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
733
734 dump_cpu_list_and_out:
735 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
736 for (i = 0; i < cnt; i++)
737 printk("%u ", cpu_list[i]);
738 printk("]\n");
739 }
740
741 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
742
743 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
744 {
745 struct trap_per_cpu *tb;
746 int this_cpu, i, cnt;
747 unsigned long flags;
748 u16 *cpu_list;
749 u64 *mondo;
750
751 /* We have to do this whole thing with interrupts fully disabled.
752 * Otherwise if we send an xcall from interrupt context it will
753 * corrupt both our mondo block and cpu list state.
754 *
755 * One consequence of this is that we cannot use timeout mechanisms
756 * that depend upon interrupts being delivered locally. So, for
757 * example, we cannot sample jiffies and expect it to advance.
758 *
759 * Fortunately, udelay() uses %stick/%tick so we can use that.
760 */
761 local_irq_save(flags);
762
763 this_cpu = smp_processor_id();
764 tb = &trap_block[this_cpu];
765
766 mondo = __va(tb->cpu_mondo_block_pa);
767 mondo[0] = data0;
768 mondo[1] = data1;
769 mondo[2] = data2;
770 wmb();
771
772 cpu_list = __va(tb->cpu_list_pa);
773
774 /* Setup the initial cpu list. */
775 cnt = 0;
776 for_each_cpu_mask_nr(i, *mask) {
777 if (i == this_cpu || !cpu_online(i))
778 continue;
779 cpu_list[cnt++] = i;
780 }
781
782 if (cnt)
783 xcall_deliver_impl(tb, cnt);
784
785 local_irq_restore(flags);
786 }
787
788 /* Send cross call to all processors mentioned in MASK_P
789 * except self. Really, there are only two cases currently,
790 * "&cpu_online_map" and "&mm->cpu_vm_mask".
791 */
792 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
793 {
794 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
795
796 xcall_deliver(data0, data1, data2, mask);
797 }
798
799 /* Send cross call to all processors except self. */
800 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
801 {
802 smp_cross_call_masked(func, ctx, data1, data2, &cpu_online_map);
803 }
804
805 extern unsigned long xcall_sync_tick;
806
807 static void smp_start_sync_tick_client(int cpu)
808 {
809 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
810 &cpumask_of_cpu(cpu));
811 }
812
813 extern unsigned long xcall_call_function;
814
815 void arch_send_call_function_ipi(cpumask_t mask)
816 {
817 xcall_deliver((u64) &xcall_call_function, 0, 0, &mask);
818 }
819
820 extern unsigned long xcall_call_function_single;
821
822 void arch_send_call_function_single_ipi(int cpu)
823 {
824 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
825 &cpumask_of_cpu(cpu));
826 }
827
828 void smp_call_function_client(int irq, struct pt_regs *regs)
829 {
830 clear_softint(1 << irq);
831 generic_smp_call_function_interrupt();
832 }
833
834 void smp_call_function_single_client(int irq, struct pt_regs *regs)
835 {
836 clear_softint(1 << irq);
837 generic_smp_call_function_single_interrupt();
838 }
839
840 static void tsb_sync(void *info)
841 {
842 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
843 struct mm_struct *mm = info;
844
845 /* It is not valid to test "currrent->active_mm == mm" here.
846 *
847 * The value of "current" is not changed atomically with
848 * switch_mm(). But that's OK, we just need to check the
849 * current cpu's trap block PGD physical address.
850 */
851 if (tp->pgd_paddr == __pa(mm->pgd))
852 tsb_context_switch(mm);
853 }
854
855 void smp_tsb_sync(struct mm_struct *mm)
856 {
857 smp_call_function_mask(mm->cpu_vm_mask, tsb_sync, mm, 1);
858 }
859
860 extern unsigned long xcall_flush_tlb_mm;
861 extern unsigned long xcall_flush_tlb_pending;
862 extern unsigned long xcall_flush_tlb_kernel_range;
863 extern unsigned long xcall_fetch_glob_regs;
864 extern unsigned long xcall_receive_signal;
865 extern unsigned long xcall_new_mmu_context_version;
866 #ifdef CONFIG_KGDB
867 extern unsigned long xcall_kgdb_capture;
868 #endif
869
870 #ifdef DCACHE_ALIASING_POSSIBLE
871 extern unsigned long xcall_flush_dcache_page_cheetah;
872 #endif
873 extern unsigned long xcall_flush_dcache_page_spitfire;
874
875 #ifdef CONFIG_DEBUG_DCFLUSH
876 extern atomic_t dcpage_flushes;
877 extern atomic_t dcpage_flushes_xcall;
878 #endif
879
880 static inline void __local_flush_dcache_page(struct page *page)
881 {
882 #ifdef DCACHE_ALIASING_POSSIBLE
883 __flush_dcache_page(page_address(page),
884 ((tlb_type == spitfire) &&
885 page_mapping(page) != NULL));
886 #else
887 if (page_mapping(page) != NULL &&
888 tlb_type == spitfire)
889 __flush_icache_page(__pa(page_address(page)));
890 #endif
891 }
892
893 void smp_flush_dcache_page_impl(struct page *page, int cpu)
894 {
895 int this_cpu;
896
897 if (tlb_type == hypervisor)
898 return;
899
900 #ifdef CONFIG_DEBUG_DCFLUSH
901 atomic_inc(&dcpage_flushes);
902 #endif
903
904 this_cpu = get_cpu();
905
906 if (cpu == this_cpu) {
907 __local_flush_dcache_page(page);
908 } else if (cpu_online(cpu)) {
909 void *pg_addr = page_address(page);
910 u64 data0 = 0;
911
912 if (tlb_type == spitfire) {
913 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
914 if (page_mapping(page) != NULL)
915 data0 |= ((u64)1 << 32);
916 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
917 #ifdef DCACHE_ALIASING_POSSIBLE
918 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
919 #endif
920 }
921 if (data0) {
922 xcall_deliver(data0, __pa(pg_addr),
923 (u64) pg_addr, &cpumask_of_cpu(cpu));
924 #ifdef CONFIG_DEBUG_DCFLUSH
925 atomic_inc(&dcpage_flushes_xcall);
926 #endif
927 }
928 }
929
930 put_cpu();
931 }
932
933 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
934 {
935 void *pg_addr;
936 int this_cpu;
937 u64 data0;
938
939 if (tlb_type == hypervisor)
940 return;
941
942 this_cpu = get_cpu();
943
944 #ifdef CONFIG_DEBUG_DCFLUSH
945 atomic_inc(&dcpage_flushes);
946 #endif
947 data0 = 0;
948 pg_addr = page_address(page);
949 if (tlb_type == spitfire) {
950 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
951 if (page_mapping(page) != NULL)
952 data0 |= ((u64)1 << 32);
953 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
954 #ifdef DCACHE_ALIASING_POSSIBLE
955 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
956 #endif
957 }
958 if (data0) {
959 xcall_deliver(data0, __pa(pg_addr),
960 (u64) pg_addr, &cpu_online_map);
961 #ifdef CONFIG_DEBUG_DCFLUSH
962 atomic_inc(&dcpage_flushes_xcall);
963 #endif
964 }
965 __local_flush_dcache_page(page);
966
967 put_cpu();
968 }
969
970 void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
971 {
972 struct mm_struct *mm;
973 unsigned long flags;
974
975 clear_softint(1 << irq);
976
977 /* See if we need to allocate a new TLB context because
978 * the version of the one we are using is now out of date.
979 */
980 mm = current->active_mm;
981 if (unlikely(!mm || (mm == &init_mm)))
982 return;
983
984 spin_lock_irqsave(&mm->context.lock, flags);
985
986 if (unlikely(!CTX_VALID(mm->context)))
987 get_new_mmu_context(mm);
988
989 spin_unlock_irqrestore(&mm->context.lock, flags);
990
991 load_secondary_context(mm);
992 __flush_tlb_mm(CTX_HWBITS(mm->context),
993 SECONDARY_CONTEXT);
994 }
995
996 void smp_new_mmu_context_version(void)
997 {
998 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
999 }
1000
1001 #ifdef CONFIG_KGDB
1002 void kgdb_roundup_cpus(unsigned long flags)
1003 {
1004 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1005 }
1006 #endif
1007
1008 void smp_fetch_global_regs(void)
1009 {
1010 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1011 }
1012
1013 /* We know that the window frames of the user have been flushed
1014 * to the stack before we get here because all callers of us
1015 * are flush_tlb_*() routines, and these run after flush_cache_*()
1016 * which performs the flushw.
1017 *
1018 * The SMP TLB coherency scheme we use works as follows:
1019 *
1020 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1021 * space has (potentially) executed on, this is the heuristic
1022 * we use to avoid doing cross calls.
1023 *
1024 * Also, for flushing from kswapd and also for clones, we
1025 * use cpu_vm_mask as the list of cpus to make run the TLB.
1026 *
1027 * 2) TLB context numbers are shared globally across all processors
1028 * in the system, this allows us to play several games to avoid
1029 * cross calls.
1030 *
1031 * One invariant is that when a cpu switches to a process, and
1032 * that processes tsk->active_mm->cpu_vm_mask does not have the
1033 * current cpu's bit set, that tlb context is flushed locally.
1034 *
1035 * If the address space is non-shared (ie. mm->count == 1) we avoid
1036 * cross calls when we want to flush the currently running process's
1037 * tlb state. This is done by clearing all cpu bits except the current
1038 * processor's in current->active_mm->cpu_vm_mask and performing the
1039 * flush locally only. This will force any subsequent cpus which run
1040 * this task to flush the context from the local tlb if the process
1041 * migrates to another cpu (again).
1042 *
1043 * 3) For shared address spaces (threads) and swapping we bite the
1044 * bullet for most cases and perform the cross call (but only to
1045 * the cpus listed in cpu_vm_mask).
1046 *
1047 * The performance gain from "optimizing" away the cross call for threads is
1048 * questionable (in theory the big win for threads is the massive sharing of
1049 * address space state across processors).
1050 */
1051
1052 /* This currently is only used by the hugetlb arch pre-fault
1053 * hook on UltraSPARC-III+ and later when changing the pagesize
1054 * bits of the context register for an address space.
1055 */
1056 void smp_flush_tlb_mm(struct mm_struct *mm)
1057 {
1058 u32 ctx = CTX_HWBITS(mm->context);
1059 int cpu = get_cpu();
1060
1061 if (atomic_read(&mm->mm_users) == 1) {
1062 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1063 goto local_flush_and_out;
1064 }
1065
1066 smp_cross_call_masked(&xcall_flush_tlb_mm,
1067 ctx, 0, 0,
1068 &mm->cpu_vm_mask);
1069
1070 local_flush_and_out:
1071 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1072
1073 put_cpu();
1074 }
1075
1076 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1077 {
1078 u32 ctx = CTX_HWBITS(mm->context);
1079 int cpu = get_cpu();
1080
1081 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1082 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1083 else
1084 smp_cross_call_masked(&xcall_flush_tlb_pending,
1085 ctx, nr, (unsigned long) vaddrs,
1086 &mm->cpu_vm_mask);
1087
1088 __flush_tlb_pending(ctx, nr, vaddrs);
1089
1090 put_cpu();
1091 }
1092
1093 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1094 {
1095 start &= PAGE_MASK;
1096 end = PAGE_ALIGN(end);
1097 if (start != end) {
1098 smp_cross_call(&xcall_flush_tlb_kernel_range,
1099 0, start, end);
1100
1101 __flush_tlb_kernel_range(start, end);
1102 }
1103 }
1104
1105 /* CPU capture. */
1106 /* #define CAPTURE_DEBUG */
1107 extern unsigned long xcall_capture;
1108
1109 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1110 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1111 static unsigned long penguins_are_doing_time;
1112
1113 void smp_capture(void)
1114 {
1115 int result = atomic_add_ret(1, &smp_capture_depth);
1116
1117 if (result == 1) {
1118 int ncpus = num_online_cpus();
1119
1120 #ifdef CAPTURE_DEBUG
1121 printk("CPU[%d]: Sending penguins to jail...",
1122 smp_processor_id());
1123 #endif
1124 penguins_are_doing_time = 1;
1125 atomic_inc(&smp_capture_registry);
1126 smp_cross_call(&xcall_capture, 0, 0, 0);
1127 while (atomic_read(&smp_capture_registry) != ncpus)
1128 rmb();
1129 #ifdef CAPTURE_DEBUG
1130 printk("done\n");
1131 #endif
1132 }
1133 }
1134
1135 void smp_release(void)
1136 {
1137 if (atomic_dec_and_test(&smp_capture_depth)) {
1138 #ifdef CAPTURE_DEBUG
1139 printk("CPU[%d]: Giving pardon to "
1140 "imprisoned penguins\n",
1141 smp_processor_id());
1142 #endif
1143 penguins_are_doing_time = 0;
1144 membar_safe("#StoreLoad");
1145 atomic_dec(&smp_capture_registry);
1146 }
1147 }
1148
1149 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1150 * set, so they can service tlb flush xcalls...
1151 */
1152 extern void prom_world(int);
1153
1154 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1155 {
1156 clear_softint(1 << irq);
1157
1158 preempt_disable();
1159
1160 __asm__ __volatile__("flushw");
1161 prom_world(1);
1162 atomic_inc(&smp_capture_registry);
1163 membar_safe("#StoreLoad");
1164 while (penguins_are_doing_time)
1165 rmb();
1166 atomic_dec(&smp_capture_registry);
1167 prom_world(0);
1168
1169 preempt_enable();
1170 }
1171
1172 /* /proc/profile writes can call this, don't __init it please. */
1173 int setup_profiling_timer(unsigned int multiplier)
1174 {
1175 return -EINVAL;
1176 }
1177
1178 void __init smp_prepare_cpus(unsigned int max_cpus)
1179 {
1180 }
1181
1182 void __devinit smp_prepare_boot_cpu(void)
1183 {
1184 }
1185
1186 void __init smp_setup_processor_id(void)
1187 {
1188 if (tlb_type == spitfire)
1189 xcall_deliver_impl = spitfire_xcall_deliver;
1190 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1191 xcall_deliver_impl = cheetah_xcall_deliver;
1192 else
1193 xcall_deliver_impl = hypervisor_xcall_deliver;
1194 }
1195
1196 void __devinit smp_fill_in_sib_core_maps(void)
1197 {
1198 unsigned int i;
1199
1200 for_each_present_cpu(i) {
1201 unsigned int j;
1202
1203 cpus_clear(cpu_core_map[i]);
1204 if (cpu_data(i).core_id == 0) {
1205 cpu_set(i, cpu_core_map[i]);
1206 continue;
1207 }
1208
1209 for_each_present_cpu(j) {
1210 if (cpu_data(i).core_id ==
1211 cpu_data(j).core_id)
1212 cpu_set(j, cpu_core_map[i]);
1213 }
1214 }
1215
1216 for_each_present_cpu(i) {
1217 unsigned int j;
1218
1219 cpus_clear(per_cpu(cpu_sibling_map, i));
1220 if (cpu_data(i).proc_id == -1) {
1221 cpu_set(i, per_cpu(cpu_sibling_map, i));
1222 continue;
1223 }
1224
1225 for_each_present_cpu(j) {
1226 if (cpu_data(i).proc_id ==
1227 cpu_data(j).proc_id)
1228 cpu_set(j, per_cpu(cpu_sibling_map, i));
1229 }
1230 }
1231 }
1232
1233 int __cpuinit __cpu_up(unsigned int cpu)
1234 {
1235 int ret = smp_boot_one_cpu(cpu);
1236
1237 if (!ret) {
1238 cpu_set(cpu, smp_commenced_mask);
1239 while (!cpu_isset(cpu, cpu_online_map))
1240 mb();
1241 if (!cpu_isset(cpu, cpu_online_map)) {
1242 ret = -ENODEV;
1243 } else {
1244 /* On SUN4V, writes to %tick and %stick are
1245 * not allowed.
1246 */
1247 if (tlb_type != hypervisor)
1248 smp_synchronize_one_tick(cpu);
1249 }
1250 }
1251 return ret;
1252 }
1253
1254 #ifdef CONFIG_HOTPLUG_CPU
1255 void cpu_play_dead(void)
1256 {
1257 int cpu = smp_processor_id();
1258 unsigned long pstate;
1259
1260 idle_task_exit();
1261
1262 if (tlb_type == hypervisor) {
1263 struct trap_per_cpu *tb = &trap_block[cpu];
1264
1265 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1266 tb->cpu_mondo_pa, 0);
1267 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1268 tb->dev_mondo_pa, 0);
1269 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1270 tb->resum_mondo_pa, 0);
1271 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1272 tb->nonresum_mondo_pa, 0);
1273 }
1274
1275 cpu_clear(cpu, smp_commenced_mask);
1276 membar_safe("#Sync");
1277
1278 local_irq_disable();
1279
1280 __asm__ __volatile__(
1281 "rdpr %%pstate, %0\n\t"
1282 "wrpr %0, %1, %%pstate"
1283 : "=r" (pstate)
1284 : "i" (PSTATE_IE));
1285
1286 while (1)
1287 barrier();
1288 }
1289
1290 int __cpu_disable(void)
1291 {
1292 int cpu = smp_processor_id();
1293 cpuinfo_sparc *c;
1294 int i;
1295
1296 for_each_cpu_mask(i, cpu_core_map[cpu])
1297 cpu_clear(cpu, cpu_core_map[i]);
1298 cpus_clear(cpu_core_map[cpu]);
1299
1300 for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
1301 cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
1302 cpus_clear(per_cpu(cpu_sibling_map, cpu));
1303
1304 c = &cpu_data(cpu);
1305
1306 c->core_id = 0;
1307 c->proc_id = -1;
1308
1309 smp_wmb();
1310
1311 /* Make sure no interrupts point to this cpu. */
1312 fixup_irqs();
1313
1314 local_irq_enable();
1315 mdelay(1);
1316 local_irq_disable();
1317
1318 ipi_call_lock();
1319 cpu_clear(cpu, cpu_online_map);
1320 ipi_call_unlock();
1321
1322 return 0;
1323 }
1324
1325 void __cpu_die(unsigned int cpu)
1326 {
1327 int i;
1328
1329 for (i = 0; i < 100; i++) {
1330 smp_rmb();
1331 if (!cpu_isset(cpu, smp_commenced_mask))
1332 break;
1333 msleep(100);
1334 }
1335 if (cpu_isset(cpu, smp_commenced_mask)) {
1336 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1337 } else {
1338 #if defined(CONFIG_SUN_LDOMS)
1339 unsigned long hv_err;
1340 int limit = 100;
1341
1342 do {
1343 hv_err = sun4v_cpu_stop(cpu);
1344 if (hv_err == HV_EOK) {
1345 cpu_clear(cpu, cpu_present_map);
1346 break;
1347 }
1348 } while (--limit > 0);
1349 if (limit <= 0) {
1350 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1351 hv_err);
1352 }
1353 #endif
1354 }
1355 }
1356 #endif
1357
1358 void __init smp_cpus_done(unsigned int max_cpus)
1359 {
1360 }
1361
1362 void smp_send_reschedule(int cpu)
1363 {
1364 xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1365 &cpumask_of_cpu(cpu));
1366 }
1367
1368 void smp_receive_signal_client(int irq, struct pt_regs *regs)
1369 {
1370 clear_softint(1 << irq);
1371 }
1372
1373 /* This is a nop because we capture all other cpus
1374 * anyways when making the PROM active.
1375 */
1376 void smp_send_stop(void)
1377 {
1378 }
1379
1380 unsigned long __per_cpu_base __read_mostly;
1381 unsigned long __per_cpu_shift __read_mostly;
1382
1383 EXPORT_SYMBOL(__per_cpu_base);
1384 EXPORT_SYMBOL(__per_cpu_shift);
1385
1386 void __init real_setup_per_cpu_areas(void)
1387 {
1388 unsigned long paddr, goal, size, i;
1389 char *ptr;
1390
1391 /* Copy section for each CPU (we discard the original) */
1392 goal = PERCPU_ENOUGH_ROOM;
1393
1394 __per_cpu_shift = PAGE_SHIFT;
1395 for (size = PAGE_SIZE; size < goal; size <<= 1UL)
1396 __per_cpu_shift++;
1397
1398 paddr = lmb_alloc(size * NR_CPUS, PAGE_SIZE);
1399 if (!paddr) {
1400 prom_printf("Cannot allocate per-cpu memory.\n");
1401 prom_halt();
1402 }
1403
1404 ptr = __va(paddr);
1405 __per_cpu_base = ptr - __per_cpu_start;
1406
1407 for (i = 0; i < NR_CPUS; i++, ptr += size)
1408 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1409
1410 /* Setup %g5 for the boot cpu. */
1411 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1412 }
This page took 0.067062 seconds and 6 git commands to generate.