sparc32: remove remaining users of btfixup
[deliverable/linux.git] / arch / sparc / kernel / sun4m_smp.c
1 /*
2 * sun4m SMP support.
3 *
4 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
5 */
6
7 #include <linux/clockchips.h>
8 #include <linux/interrupt.h>
9 #include <linux/profile.h>
10 #include <linux/delay.h>
11 #include <linux/sched.h>
12 #include <linux/cpu.h>
13
14 #include <asm/cacheflush.h>
15 #include <asm/switch_to.h>
16 #include <asm/tlbflush.h>
17 #include <asm/timer.h>
18 #include <asm/oplib.h>
19
20 #include "irq.h"
21 #include "kernel.h"
22
23 #define IRQ_IPI_SINGLE 12
24 #define IRQ_IPI_MASK 13
25 #define IRQ_IPI_RESCHED 14
26 #define IRQ_CROSS_CALL 15
27
28 static inline unsigned long
29 swap_ulong(volatile unsigned long *ptr, unsigned long val)
30 {
31 __asm__ __volatile__("swap [%1], %0\n\t" :
32 "=&r" (val), "=&r" (ptr) :
33 "0" (val), "1" (ptr));
34 return val;
35 }
36
37 void __cpuinit smp4m_callin(void)
38 {
39 int cpuid = hard_smp_processor_id();
40
41 local_ops->cache_all();
42 local_ops->tlb_all();
43
44 notify_cpu_starting(cpuid);
45
46 register_percpu_ce(cpuid);
47
48 calibrate_delay();
49 smp_store_cpu_info(cpuid);
50
51 local_ops->cache_all();
52 local_ops->tlb_all();
53
54 /*
55 * Unblock the master CPU _only_ when the scheduler state
56 * of all secondary CPUs will be up-to-date, so after
57 * the SMP initialization the master will be just allowed
58 * to call the scheduler code.
59 */
60 /* Allow master to continue. */
61 swap_ulong(&cpu_callin_map[cpuid], 1);
62
63 /* XXX: What's up with all the flushes? */
64 local_ops->cache_all();
65 local_ops->tlb_all();
66
67 /* Fix idle thread fields. */
68 __asm__ __volatile__("ld [%0], %%g6\n\t"
69 : : "r" (&current_set[cpuid])
70 : "memory" /* paranoid */);
71
72 /* Attach to the address space of init_task. */
73 atomic_inc(&init_mm.mm_count);
74 current->active_mm = &init_mm;
75
76 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
77 mb();
78
79 local_irq_enable();
80
81 set_cpu_online(cpuid, true);
82 }
83
84 /*
85 * Cycle through the processors asking the PROM to start each one.
86 */
87 void __init smp4m_boot_cpus(void)
88 {
89 sun4m_unmask_profile_irq();
90 local_ops->cache_all();
91 }
92
93 int __cpuinit smp4m_boot_one_cpu(int i)
94 {
95 unsigned long *entry = &sun4m_cpu_startup;
96 struct task_struct *p;
97 int timeout;
98 int cpu_node;
99
100 cpu_find_by_mid(i, &cpu_node);
101
102 /* Cook up an idler for this guy. */
103 p = fork_idle(i);
104 current_set[i] = task_thread_info(p);
105 /* See trampoline.S for details... */
106 entry += ((i - 1) * 3);
107
108 /*
109 * Initialize the contexts table
110 * Since the call to prom_startcpu() trashes the structure,
111 * we need to re-initialize it for each cpu
112 */
113 smp_penguin_ctable.which_io = 0;
114 smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys;
115 smp_penguin_ctable.reg_size = 0;
116
117 /* whirrr, whirrr, whirrrrrrrrr... */
118 printk(KERN_INFO "Starting CPU %d at %p\n", i, entry);
119 local_ops->cache_all();
120 prom_startcpu(cpu_node, &smp_penguin_ctable, 0, (char *)entry);
121
122 /* wheee... it's going... */
123 for (timeout = 0; timeout < 10000; timeout++) {
124 if (cpu_callin_map[i])
125 break;
126 udelay(200);
127 }
128
129 if (!(cpu_callin_map[i])) {
130 printk(KERN_ERR "Processor %d is stuck.\n", i);
131 return -ENODEV;
132 }
133
134 local_ops->cache_all();
135 return 0;
136 }
137
138 void __init smp4m_smp_done(void)
139 {
140 int i, first;
141 int *prev;
142
143 /* setup cpu list for irq rotation */
144 first = 0;
145 prev = &first;
146 for_each_online_cpu(i) {
147 *prev = i;
148 prev = &cpu_data(i).next;
149 }
150 *prev = first;
151 local_ops->cache_all();
152
153 /* Ok, they are spinning and ready to go. */
154 }
155
156 static void sun4m_send_ipi(int cpu, int level)
157 {
158 sbus_writel(SUN4M_SOFT_INT(level), &sun4m_irq_percpu[cpu]->set);
159 }
160
161 static void sun4m_ipi_resched(int cpu)
162 {
163 sun4m_send_ipi(cpu, IRQ_IPI_RESCHED);
164 }
165
166 static void sun4m_ipi_single(int cpu)
167 {
168 sun4m_send_ipi(cpu, IRQ_IPI_SINGLE);
169 }
170
171 static void sun4m_ipi_mask_one(int cpu)
172 {
173 sun4m_send_ipi(cpu, IRQ_IPI_MASK);
174 }
175
176 static struct smp_funcall {
177 smpfunc_t func;
178 unsigned long arg1;
179 unsigned long arg2;
180 unsigned long arg3;
181 unsigned long arg4;
182 unsigned long arg5;
183 unsigned long processors_in[SUN4M_NCPUS]; /* Set when ipi entered. */
184 unsigned long processors_out[SUN4M_NCPUS]; /* Set when ipi exited. */
185 } ccall_info;
186
187 static DEFINE_SPINLOCK(cross_call_lock);
188
189 /* Cross calls must be serialized, at least currently. */
190 static void sun4m_cross_call(smpfunc_t func, cpumask_t mask, unsigned long arg1,
191 unsigned long arg2, unsigned long arg3,
192 unsigned long arg4)
193 {
194 register int ncpus = SUN4M_NCPUS;
195 unsigned long flags;
196
197 spin_lock_irqsave(&cross_call_lock, flags);
198
199 /* Init function glue. */
200 ccall_info.func = func;
201 ccall_info.arg1 = arg1;
202 ccall_info.arg2 = arg2;
203 ccall_info.arg3 = arg3;
204 ccall_info.arg4 = arg4;
205 ccall_info.arg5 = 0;
206
207 /* Init receive/complete mapping, plus fire the IPI's off. */
208 {
209 register int i;
210
211 cpumask_clear_cpu(smp_processor_id(), &mask);
212 cpumask_and(&mask, cpu_online_mask, &mask);
213 for (i = 0; i < ncpus; i++) {
214 if (cpumask_test_cpu(i, &mask)) {
215 ccall_info.processors_in[i] = 0;
216 ccall_info.processors_out[i] = 0;
217 sun4m_send_ipi(i, IRQ_CROSS_CALL);
218 } else {
219 ccall_info.processors_in[i] = 1;
220 ccall_info.processors_out[i] = 1;
221 }
222 }
223 }
224
225 {
226 register int i;
227
228 i = 0;
229 do {
230 if (!cpumask_test_cpu(i, &mask))
231 continue;
232 while (!ccall_info.processors_in[i])
233 barrier();
234 } while (++i < ncpus);
235
236 i = 0;
237 do {
238 if (!cpumask_test_cpu(i, &mask))
239 continue;
240 while (!ccall_info.processors_out[i])
241 barrier();
242 } while (++i < ncpus);
243 }
244 spin_unlock_irqrestore(&cross_call_lock, flags);
245 }
246
247 /* Running cross calls. */
248 void smp4m_cross_call_irq(void)
249 {
250 int i = smp_processor_id();
251
252 ccall_info.processors_in[i] = 1;
253 ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3,
254 ccall_info.arg4, ccall_info.arg5);
255 ccall_info.processors_out[i] = 1;
256 }
257
258 void smp4m_percpu_timer_interrupt(struct pt_regs *regs)
259 {
260 struct pt_regs *old_regs;
261 struct clock_event_device *ce;
262 int cpu = smp_processor_id();
263
264 old_regs = set_irq_regs(regs);
265
266 ce = &per_cpu(sparc32_clockevent, cpu);
267
268 if (ce->mode & CLOCK_EVT_MODE_PERIODIC)
269 sun4m_clear_profile_irq(cpu);
270 else
271 sparc_config.load_profile_irq(cpu, 0); /* Is this needless? */
272
273 irq_enter();
274 ce->event_handler(ce);
275 irq_exit();
276
277 set_irq_regs(old_regs);
278 }
279
280 static const struct sparc32_ipi_ops sun4m_ipi_ops = {
281 .cross_call = sun4m_cross_call,
282 .resched = sun4m_ipi_resched,
283 .single = sun4m_ipi_single,
284 .mask_one = sun4m_ipi_mask_one,
285 };
286
287 void __init sun4m_init_smp(void)
288 {
289 sparc32_ipi_ops = &sun4m_ipi_ops;
290 }
This page took 0.045007 seconds and 5 git commands to generate.