Merge branch 'pm-cpufreq-fixes'
[deliverable/linux.git] / arch / sparc / kernel / time_32.c
1 /* linux/arch/sparc/kernel/time.c
2 *
3 * Copyright (C) 1995 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
5 *
6 * Chris Davis (cdavis@cois.on.ca) 03/27/1998
7 * Added support for the intersil on the sun4/4200
8 *
9 * Gleb Raiko (rajko@mech.math.msu.su) 08/18/1998
10 * Support for MicroSPARC-IIep, PCI CPU.
11 *
12 * This file handles the Sparc specific time handling details.
13 *
14 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
15 * "A Kernel Model for Precision Timekeeping" by Dave Mills
16 */
17 #include <linux/errno.h>
18 #include <linux/module.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/param.h>
22 #include <linux/string.h>
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/time.h>
26 #include <linux/rtc/m48t59.h>
27 #include <linux/timex.h>
28 #include <linux/clocksource.h>
29 #include <linux/clockchips.h>
30 #include <linux/init.h>
31 #include <linux/pci.h>
32 #include <linux/ioport.h>
33 #include <linux/profile.h>
34 #include <linux/of.h>
35 #include <linux/of_device.h>
36 #include <linux/platform_device.h>
37
38 #include <asm/mc146818rtc.h>
39 #include <asm/oplib.h>
40 #include <asm/timex.h>
41 #include <asm/timer.h>
42 #include <asm/irq.h>
43 #include <asm/io.h>
44 #include <asm/idprom.h>
45 #include <asm/page.h>
46 #include <asm/pcic.h>
47 #include <asm/irq_regs.h>
48 #include <asm/setup.h>
49
50 #include "kernel.h"
51 #include "irq.h"
52
53 static __cacheline_aligned_in_smp DEFINE_SEQLOCK(timer_cs_lock);
54 static __volatile__ u64 timer_cs_internal_counter = 0;
55 static char timer_cs_enabled = 0;
56
57 static struct clock_event_device timer_ce;
58 static char timer_ce_enabled = 0;
59
60 #ifdef CONFIG_SMP
61 DEFINE_PER_CPU(struct clock_event_device, sparc32_clockevent);
62 #endif
63
64 DEFINE_SPINLOCK(rtc_lock);
65 EXPORT_SYMBOL(rtc_lock);
66
67 unsigned long profile_pc(struct pt_regs *regs)
68 {
69 extern char __copy_user_begin[], __copy_user_end[];
70 extern char __bzero_begin[], __bzero_end[];
71
72 unsigned long pc = regs->pc;
73
74 if (in_lock_functions(pc) ||
75 (pc >= (unsigned long) __copy_user_begin &&
76 pc < (unsigned long) __copy_user_end) ||
77 (pc >= (unsigned long) __bzero_begin &&
78 pc < (unsigned long) __bzero_end))
79 pc = regs->u_regs[UREG_RETPC];
80 return pc;
81 }
82
83 EXPORT_SYMBOL(profile_pc);
84
85 volatile u32 __iomem *master_l10_counter;
86
87 irqreturn_t notrace timer_interrupt(int dummy, void *dev_id)
88 {
89 if (timer_cs_enabled) {
90 write_seqlock(&timer_cs_lock);
91 timer_cs_internal_counter++;
92 sparc_config.clear_clock_irq();
93 write_sequnlock(&timer_cs_lock);
94 } else {
95 sparc_config.clear_clock_irq();
96 }
97
98 if (timer_ce_enabled)
99 timer_ce.event_handler(&timer_ce);
100
101 return IRQ_HANDLED;
102 }
103
104 static int timer_ce_shutdown(struct clock_event_device *evt)
105 {
106 timer_ce_enabled = 0;
107 smp_mb();
108 return 0;
109 }
110
111 static int timer_ce_set_periodic(struct clock_event_device *evt)
112 {
113 timer_ce_enabled = 1;
114 smp_mb();
115 return 0;
116 }
117
118 static __init void setup_timer_ce(void)
119 {
120 struct clock_event_device *ce = &timer_ce;
121
122 BUG_ON(smp_processor_id() != boot_cpu_id);
123
124 ce->name = "timer_ce";
125 ce->rating = 100;
126 ce->features = CLOCK_EVT_FEAT_PERIODIC;
127 ce->set_state_shutdown = timer_ce_shutdown;
128 ce->set_state_periodic = timer_ce_set_periodic;
129 ce->tick_resume = timer_ce_set_periodic;
130 ce->cpumask = cpu_possible_mask;
131 ce->shift = 32;
132 ce->mult = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
133 ce->shift);
134 clockevents_register_device(ce);
135 }
136
137 static unsigned int sbus_cycles_offset(void)
138 {
139 u32 val, offset;
140
141 val = sbus_readl(master_l10_counter);
142 offset = (val >> TIMER_VALUE_SHIFT) & TIMER_VALUE_MASK;
143
144 /* Limit hit? */
145 if (val & TIMER_LIMIT_BIT)
146 offset += sparc_config.cs_period;
147
148 return offset;
149 }
150
151 static cycle_t timer_cs_read(struct clocksource *cs)
152 {
153 unsigned int seq, offset;
154 u64 cycles;
155
156 do {
157 seq = read_seqbegin(&timer_cs_lock);
158
159 cycles = timer_cs_internal_counter;
160 offset = sparc_config.get_cycles_offset();
161 } while (read_seqretry(&timer_cs_lock, seq));
162
163 /* Count absolute cycles */
164 cycles *= sparc_config.cs_period;
165 cycles += offset;
166
167 return cycles;
168 }
169
170 static struct clocksource timer_cs = {
171 .name = "timer_cs",
172 .rating = 100,
173 .read = timer_cs_read,
174 .mask = CLOCKSOURCE_MASK(64),
175 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
176 };
177
178 static __init int setup_timer_cs(void)
179 {
180 timer_cs_enabled = 1;
181 return clocksource_register_hz(&timer_cs, sparc_config.clock_rate);
182 }
183
184 #ifdef CONFIG_SMP
185 static int percpu_ce_shutdown(struct clock_event_device *evt)
186 {
187 int cpu = cpumask_first(evt->cpumask);
188
189 sparc_config.load_profile_irq(cpu, 0);
190 return 0;
191 }
192
193 static int percpu_ce_set_periodic(struct clock_event_device *evt)
194 {
195 int cpu = cpumask_first(evt->cpumask);
196
197 sparc_config.load_profile_irq(cpu, SBUS_CLOCK_RATE / HZ);
198 return 0;
199 }
200
201 static int percpu_ce_set_next_event(unsigned long delta,
202 struct clock_event_device *evt)
203 {
204 int cpu = cpumask_first(evt->cpumask);
205 unsigned int next = (unsigned int)delta;
206
207 sparc_config.load_profile_irq(cpu, next);
208 return 0;
209 }
210
211 void register_percpu_ce(int cpu)
212 {
213 struct clock_event_device *ce = &per_cpu(sparc32_clockevent, cpu);
214 unsigned int features = CLOCK_EVT_FEAT_PERIODIC;
215
216 if (sparc_config.features & FEAT_L14_ONESHOT)
217 features |= CLOCK_EVT_FEAT_ONESHOT;
218
219 ce->name = "percpu_ce";
220 ce->rating = 200;
221 ce->features = features;
222 ce->set_state_shutdown = percpu_ce_shutdown;
223 ce->set_state_periodic = percpu_ce_set_periodic;
224 ce->set_state_oneshot = percpu_ce_shutdown;
225 ce->set_next_event = percpu_ce_set_next_event;
226 ce->cpumask = cpumask_of(cpu);
227 ce->shift = 32;
228 ce->mult = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
229 ce->shift);
230 ce->max_delta_ns = clockevent_delta2ns(sparc_config.clock_rate, ce);
231 ce->min_delta_ns = clockevent_delta2ns(100, ce);
232
233 clockevents_register_device(ce);
234 }
235 #endif
236
237 static unsigned char mostek_read_byte(struct device *dev, u32 ofs)
238 {
239 struct platform_device *pdev = to_platform_device(dev);
240 struct m48t59_plat_data *pdata = pdev->dev.platform_data;
241
242 return readb(pdata->ioaddr + ofs);
243 }
244
245 static void mostek_write_byte(struct device *dev, u32 ofs, u8 val)
246 {
247 struct platform_device *pdev = to_platform_device(dev);
248 struct m48t59_plat_data *pdata = pdev->dev.platform_data;
249
250 writeb(val, pdata->ioaddr + ofs);
251 }
252
253 static struct m48t59_plat_data m48t59_data = {
254 .read_byte = mostek_read_byte,
255 .write_byte = mostek_write_byte,
256 };
257
258 /* resource is set at runtime */
259 static struct platform_device m48t59_rtc = {
260 .name = "rtc-m48t59",
261 .id = 0,
262 .num_resources = 1,
263 .dev = {
264 .platform_data = &m48t59_data,
265 },
266 };
267
268 static int clock_probe(struct platform_device *op)
269 {
270 struct device_node *dp = op->dev.of_node;
271 const char *model = of_get_property(dp, "model", NULL);
272
273 if (!model)
274 return -ENODEV;
275
276 /* Only the primary RTC has an address property */
277 if (!of_find_property(dp, "address", NULL))
278 return -ENODEV;
279
280 m48t59_rtc.resource = &op->resource[0];
281 if (!strcmp(model, "mk48t02")) {
282 /* Map the clock register io area read-only */
283 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
284 2048, "rtc-m48t59");
285 m48t59_data.type = M48T59RTC_TYPE_M48T02;
286 } else if (!strcmp(model, "mk48t08")) {
287 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
288 8192, "rtc-m48t59");
289 m48t59_data.type = M48T59RTC_TYPE_M48T08;
290 } else
291 return -ENODEV;
292
293 if (platform_device_register(&m48t59_rtc) < 0)
294 printk(KERN_ERR "Registering RTC device failed\n");
295
296 return 0;
297 }
298
299 static struct of_device_id clock_match[] = {
300 {
301 .name = "eeprom",
302 },
303 {},
304 };
305
306 static struct platform_driver clock_driver = {
307 .probe = clock_probe,
308 .driver = {
309 .name = "rtc",
310 .of_match_table = clock_match,
311 },
312 };
313
314
315 /* Probe for the mostek real time clock chip. */
316 static int __init clock_init(void)
317 {
318 return platform_driver_register(&clock_driver);
319 }
320 /* Must be after subsys_initcall() so that busses are probed. Must
321 * be before device_initcall() because things like the RTC driver
322 * need to see the clock registers.
323 */
324 fs_initcall(clock_init);
325
326 static void __init sparc32_late_time_init(void)
327 {
328 if (sparc_config.features & FEAT_L10_CLOCKEVENT)
329 setup_timer_ce();
330 if (sparc_config.features & FEAT_L10_CLOCKSOURCE)
331 setup_timer_cs();
332 #ifdef CONFIG_SMP
333 register_percpu_ce(smp_processor_id());
334 #endif
335 }
336
337 static void __init sbus_time_init(void)
338 {
339 sparc_config.get_cycles_offset = sbus_cycles_offset;
340 sparc_config.init_timers();
341 }
342
343 void __init time_init(void)
344 {
345 sparc_config.features = 0;
346 late_time_init = sparc32_late_time_init;
347
348 if (pcic_present())
349 pci_time_init();
350 else
351 sbus_time_init();
352 }
353
This page took 0.038487 seconds and 5 git commands to generate.