sparc32: generic clockevent support
[deliverable/linux.git] / arch / sparc / kernel / time_32.c
1 /* linux/arch/sparc/kernel/time.c
2 *
3 * Copyright (C) 1995 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
5 *
6 * Chris Davis (cdavis@cois.on.ca) 03/27/1998
7 * Added support for the intersil on the sun4/4200
8 *
9 * Gleb Raiko (rajko@mech.math.msu.su) 08/18/1998
10 * Support for MicroSPARC-IIep, PCI CPU.
11 *
12 * This file handles the Sparc specific time handling details.
13 *
14 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
15 * "A Kernel Model for Precision Timekeeping" by Dave Mills
16 */
17 #include <linux/errno.h>
18 #include <linux/module.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/param.h>
22 #include <linux/string.h>
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/time.h>
26 #include <linux/rtc.h>
27 #include <linux/rtc/m48t59.h>
28 #include <linux/timex.h>
29 #include <linux/clocksource.h>
30 #include <linux/clockchips.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/ioport.h>
34 #include <linux/profile.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 #include <linux/platform_device.h>
38
39 #include <asm/oplib.h>
40 #include <asm/timex.h>
41 #include <asm/timer.h>
42 #include <asm/irq.h>
43 #include <asm/io.h>
44 #include <asm/idprom.h>
45 #include <asm/machines.h>
46 #include <asm/page.h>
47 #include <asm/pcic.h>
48 #include <asm/irq_regs.h>
49 #include <asm/setup.h>
50
51 #include "irq.h"
52
53 static __cacheline_aligned_in_smp DEFINE_SEQLOCK(timer_cs_lock);
54 static __volatile__ u64 timer_cs_internal_counter = 0;
55 static char timer_cs_enabled = 0;
56
57 static struct clock_event_device timer_ce;
58 static char timer_ce_enabled = 0;
59
60 #ifdef CONFIG_SMP
61 DEFINE_PER_CPU(struct clock_event_device, sparc32_clockevent);
62 #endif
63
64 DEFINE_SPINLOCK(rtc_lock);
65 EXPORT_SYMBOL(rtc_lock);
66
67 static int set_rtc_mmss(unsigned long);
68
69 unsigned long profile_pc(struct pt_regs *regs)
70 {
71 extern char __copy_user_begin[], __copy_user_end[];
72 extern char __atomic_begin[], __atomic_end[];
73 extern char __bzero_begin[], __bzero_end[];
74
75 unsigned long pc = regs->pc;
76
77 if (in_lock_functions(pc) ||
78 (pc >= (unsigned long) __copy_user_begin &&
79 pc < (unsigned long) __copy_user_end) ||
80 (pc >= (unsigned long) __atomic_begin &&
81 pc < (unsigned long) __atomic_end) ||
82 (pc >= (unsigned long) __bzero_begin &&
83 pc < (unsigned long) __bzero_end))
84 pc = regs->u_regs[UREG_RETPC];
85 return pc;
86 }
87
88 EXPORT_SYMBOL(profile_pc);
89
90 __volatile__ unsigned int *master_l10_counter;
91
92 int update_persistent_clock(struct timespec now)
93 {
94 return set_rtc_mmss(now.tv_sec);
95 }
96
97 irqreturn_t notrace timer_interrupt(int dummy, void *dev_id)
98 {
99 if (timer_cs_enabled) {
100 write_seqlock(&timer_cs_lock);
101 timer_cs_internal_counter++;
102 clear_clock_irq();
103 write_sequnlock(&timer_cs_lock);
104 } else {
105 clear_clock_irq();
106 }
107
108 if (timer_ce_enabled)
109 timer_ce.event_handler(&timer_ce);
110
111 return IRQ_HANDLED;
112 }
113
114 static void timer_ce_set_mode(enum clock_event_mode mode,
115 struct clock_event_device *evt)
116 {
117 switch (mode) {
118 case CLOCK_EVT_MODE_PERIODIC:
119 case CLOCK_EVT_MODE_RESUME:
120 timer_ce_enabled = 1;
121 break;
122 case CLOCK_EVT_MODE_SHUTDOWN:
123 timer_ce_enabled = 0;
124 break;
125 default:
126 break;
127 }
128 smp_mb();
129 }
130
131 static __init void setup_timer_ce(void)
132 {
133 struct clock_event_device *ce = &timer_ce;
134
135 BUG_ON(smp_processor_id() != boot_cpu_id);
136
137 ce->name = "timer_ce";
138 ce->rating = 100;
139 ce->features = CLOCK_EVT_FEAT_PERIODIC;
140 ce->set_mode = timer_ce_set_mode;
141 ce->cpumask = cpu_possible_mask;
142 ce->shift = 32;
143 ce->mult = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
144 ce->shift);
145 clockevents_register_device(ce);
146 }
147
148 static unsigned int sbus_cycles_offset(void)
149 {
150 unsigned int val, offset;
151
152 val = *master_l10_counter;
153 offset = (val >> TIMER_VALUE_SHIFT) & TIMER_VALUE_MASK;
154
155 /* Limit hit? */
156 if (val & TIMER_LIMIT_BIT)
157 offset += sparc_config.cs_period;
158
159 return offset;
160 }
161
162 static cycle_t timer_cs_read(struct clocksource *cs)
163 {
164 unsigned int seq, offset;
165 u64 cycles;
166
167 do {
168 seq = read_seqbegin(&timer_cs_lock);
169
170 cycles = timer_cs_internal_counter;
171 offset = sparc_config.get_cycles_offset();
172 } while (read_seqretry(&timer_cs_lock, seq));
173
174 /* Count absolute cycles */
175 cycles *= sparc_config.cs_period;
176 cycles += offset;
177
178 return cycles;
179 }
180
181 static struct clocksource timer_cs = {
182 .name = "timer_cs",
183 .rating = 100,
184 .read = timer_cs_read,
185 .mask = CLOCKSOURCE_MASK(64),
186 .shift = 2,
187 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
188 };
189
190 static __init int setup_timer_cs(void)
191 {
192 timer_cs_enabled = 1;
193 timer_cs.mult = clocksource_hz2mult(sparc_config.clock_rate,
194 timer_cs.shift);
195
196 return clocksource_register(&timer_cs);
197 }
198
199 #ifdef CONFIG_SMP
200 static void percpu_ce_setup(enum clock_event_mode mode,
201 struct clock_event_device *evt)
202 {
203 int cpu = __first_cpu(evt->cpumask);
204
205 switch (mode) {
206 case CLOCK_EVT_MODE_PERIODIC:
207 load_profile_irq(cpu, SBUS_CLOCK_RATE / HZ);
208 break;
209 case CLOCK_EVT_MODE_ONESHOT:
210 case CLOCK_EVT_MODE_SHUTDOWN:
211 case CLOCK_EVT_MODE_UNUSED:
212 load_profile_irq(cpu, 0);
213 break;
214 default:
215 break;
216 }
217 }
218
219 static int percpu_ce_set_next_event(unsigned long delta,
220 struct clock_event_device *evt)
221 {
222 int cpu = __first_cpu(evt->cpumask);
223 unsigned int next = (unsigned int)delta;
224
225 load_profile_irq(cpu, next);
226 return 0;
227 }
228
229 void register_percpu_ce(int cpu)
230 {
231 struct clock_event_device *ce = &per_cpu(sparc32_clockevent, cpu);
232 unsigned int features = CLOCK_EVT_FEAT_PERIODIC;
233
234 if (sparc_config.features & FEAT_L14_ONESHOT)
235 features |= CLOCK_EVT_FEAT_ONESHOT;
236
237 ce->name = "percpu_ce";
238 ce->rating = 200;
239 ce->features = features;
240 ce->set_mode = percpu_ce_setup;
241 ce->set_next_event = percpu_ce_set_next_event;
242 ce->cpumask = cpumask_of(cpu);
243 ce->shift = 32;
244 ce->mult = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
245 ce->shift);
246 ce->max_delta_ns = clockevent_delta2ns(sparc_config.clock_rate, ce);
247 ce->min_delta_ns = clockevent_delta2ns(100, ce);
248
249 clockevents_register_device(ce);
250 }
251 #endif
252
253 static unsigned char mostek_read_byte(struct device *dev, u32 ofs)
254 {
255 struct platform_device *pdev = to_platform_device(dev);
256 struct m48t59_plat_data *pdata = pdev->dev.platform_data;
257
258 return readb(pdata->ioaddr + ofs);
259 }
260
261 static void mostek_write_byte(struct device *dev, u32 ofs, u8 val)
262 {
263 struct platform_device *pdev = to_platform_device(dev);
264 struct m48t59_plat_data *pdata = pdev->dev.platform_data;
265
266 writeb(val, pdata->ioaddr + ofs);
267 }
268
269 static struct m48t59_plat_data m48t59_data = {
270 .read_byte = mostek_read_byte,
271 .write_byte = mostek_write_byte,
272 };
273
274 /* resource is set at runtime */
275 static struct platform_device m48t59_rtc = {
276 .name = "rtc-m48t59",
277 .id = 0,
278 .num_resources = 1,
279 .dev = {
280 .platform_data = &m48t59_data,
281 },
282 };
283
284 static int __devinit clock_probe(struct platform_device *op)
285 {
286 struct device_node *dp = op->dev.of_node;
287 const char *model = of_get_property(dp, "model", NULL);
288
289 if (!model)
290 return -ENODEV;
291
292 /* Only the primary RTC has an address property */
293 if (!of_find_property(dp, "address", NULL))
294 return -ENODEV;
295
296 m48t59_rtc.resource = &op->resource[0];
297 if (!strcmp(model, "mk48t02")) {
298 /* Map the clock register io area read-only */
299 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
300 2048, "rtc-m48t59");
301 m48t59_data.type = M48T59RTC_TYPE_M48T02;
302 } else if (!strcmp(model, "mk48t08")) {
303 m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
304 8192, "rtc-m48t59");
305 m48t59_data.type = M48T59RTC_TYPE_M48T08;
306 } else
307 return -ENODEV;
308
309 if (platform_device_register(&m48t59_rtc) < 0)
310 printk(KERN_ERR "Registering RTC device failed\n");
311
312 return 0;
313 }
314
315 static struct of_device_id clock_match[] = {
316 {
317 .name = "eeprom",
318 },
319 {},
320 };
321
322 static struct platform_driver clock_driver = {
323 .probe = clock_probe,
324 .driver = {
325 .name = "rtc",
326 .owner = THIS_MODULE,
327 .of_match_table = clock_match,
328 },
329 };
330
331
332 /* Probe for the mostek real time clock chip. */
333 static int __init clock_init(void)
334 {
335 return platform_driver_register(&clock_driver);
336 }
337 /* Must be after subsys_initcall() so that busses are probed. Must
338 * be before device_initcall() because things like the RTC driver
339 * need to see the clock registers.
340 */
341 fs_initcall(clock_init);
342
343 static void __init sparc32_late_time_init(void)
344 {
345 if (sparc_config.features & FEAT_L10_CLOCKEVENT)
346 setup_timer_ce();
347 if (sparc_config.features & FEAT_L10_CLOCKSOURCE)
348 setup_timer_cs();
349 #ifdef CONFIG_SMP
350 register_percpu_ce(smp_processor_id());
351 #endif
352 }
353
354 static void __init sbus_time_init(void)
355 {
356 sparc_config.get_cycles_offset = sbus_cycles_offset;
357 sparc_config.init_timers();
358 }
359
360 void __init time_init(void)
361 {
362 btfixup();
363
364 sparc_config.features = 0;
365 late_time_init = sparc32_late_time_init;
366
367 if (pcic_present())
368 pci_time_init();
369 else
370 sbus_time_init();
371 }
372
373
374 static int set_rtc_mmss(unsigned long secs)
375 {
376 struct rtc_device *rtc = rtc_class_open("rtc0");
377 int err = -1;
378
379 if (rtc) {
380 err = rtc_set_mmss(rtc, secs);
381 rtc_class_close(rtc);
382 }
383
384 return err;
385 }
This page took 0.037136 seconds and 5 git commands to generate.