propogate_mnt: Handle the first propogated copy being a slave
[deliverable/linux.git] / arch / sparc / mm / init_64.c
1 /*
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/ioport.h>
26 #include <linux/percpu.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53
54 #include "init_64.h"
55
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58
59 /* A bitmap, two bits for every 256MB of physical memory. These two
60 * bits determine what page size we use for kernel linear
61 * translations. They form an index into kern_linear_pte_xor[]. The
62 * value in the indexed slot is XOR'd with the TLB miss virtual
63 * address to form the resulting TTE. The mapping is:
64 *
65 * 0 ==> 4MB
66 * 1 ==> 256MB
67 * 2 ==> 2GB
68 * 3 ==> 16GB
69 *
70 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
71 * support 2GB pages, and hopefully future cpus will support the 16GB
72 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
73 * if these larger page sizes are not supported by the cpu.
74 *
75 * It would be nice to determine this from the machine description
76 * 'cpu' properties, but we need to have this table setup before the
77 * MDESC is initialized.
78 */
79
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82 * Space is allocated for this right after the trap table in
83 * arch/sparc64/kernel/head.S
84 */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88
89 static unsigned long cpu_pgsz_mask;
90
91 #define MAX_BANKS 1024
92
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97
98 static int cmp_p64(const void *a, const void *b)
99 {
100 const struct linux_prom64_registers *x = a, *y = b;
101
102 if (x->phys_addr > y->phys_addr)
103 return 1;
104 if (x->phys_addr < y->phys_addr)
105 return -1;
106 return 0;
107 }
108
109 static void __init read_obp_memory(const char *property,
110 struct linux_prom64_registers *regs,
111 int *num_ents)
112 {
113 phandle node = prom_finddevice("/memory");
114 int prop_size = prom_getproplen(node, property);
115 int ents, ret, i;
116
117 ents = prop_size / sizeof(struct linux_prom64_registers);
118 if (ents > MAX_BANKS) {
119 prom_printf("The machine has more %s property entries than "
120 "this kernel can support (%d).\n",
121 property, MAX_BANKS);
122 prom_halt();
123 }
124
125 ret = prom_getproperty(node, property, (char *) regs, prop_size);
126 if (ret == -1) {
127 prom_printf("Couldn't get %s property from /memory.\n",
128 property);
129 prom_halt();
130 }
131
132 /* Sanitize what we got from the firmware, by page aligning
133 * everything.
134 */
135 for (i = 0; i < ents; i++) {
136 unsigned long base, size;
137
138 base = regs[i].phys_addr;
139 size = regs[i].reg_size;
140
141 size &= PAGE_MASK;
142 if (base & ~PAGE_MASK) {
143 unsigned long new_base = PAGE_ALIGN(base);
144
145 size -= new_base - base;
146 if ((long) size < 0L)
147 size = 0UL;
148 base = new_base;
149 }
150 if (size == 0UL) {
151 /* If it is empty, simply get rid of it.
152 * This simplifies the logic of the other
153 * functions that process these arrays.
154 */
155 memmove(&regs[i], &regs[i + 1],
156 (ents - i - 1) * sizeof(regs[0]));
157 i--;
158 ents--;
159 continue;
160 }
161 regs[i].phys_addr = base;
162 regs[i].reg_size = size;
163 }
164
165 *num_ents = ents;
166
167 sort(regs, ents, sizeof(struct linux_prom64_registers),
168 cmp_p64, NULL);
169 }
170
171 /* Kernel physical address base and size in bytes. */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188
189 int num_kernel_image_mappings;
190
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197
198 inline void flush_dcache_page_impl(struct page *page)
199 {
200 BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202 atomic_inc(&dcpage_flushes);
203 #endif
204
205 #ifdef DCACHE_ALIASING_POSSIBLE
206 __flush_dcache_page(page_address(page),
207 ((tlb_type == spitfire) &&
208 page_mapping(page) != NULL));
209 #else
210 if (page_mapping(page) != NULL &&
211 tlb_type == spitfire)
212 __flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215
216 #define PG_dcache_dirty PG_arch_1
217 #define PG_dcache_cpu_shift 32UL
218 #define PG_dcache_cpu_mask \
219 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220
221 #define dcache_dirty_cpu(page) \
222 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223
224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226 unsigned long mask = this_cpu;
227 unsigned long non_cpu_bits;
228
229 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231
232 __asm__ __volatile__("1:\n\t"
233 "ldx [%2], %%g7\n\t"
234 "and %%g7, %1, %%g1\n\t"
235 "or %%g1, %0, %%g1\n\t"
236 "casx [%2], %%g7, %%g1\n\t"
237 "cmp %%g7, %%g1\n\t"
238 "bne,pn %%xcc, 1b\n\t"
239 " nop"
240 : /* no outputs */
241 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242 : "g1", "g7");
243 }
244
245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247 unsigned long mask = (1UL << PG_dcache_dirty);
248
249 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250 "1:\n\t"
251 "ldx [%2], %%g7\n\t"
252 "srlx %%g7, %4, %%g1\n\t"
253 "and %%g1, %3, %%g1\n\t"
254 "cmp %%g1, %0\n\t"
255 "bne,pn %%icc, 2f\n\t"
256 " andn %%g7, %1, %%g1\n\t"
257 "casx [%2], %%g7, %%g1\n\t"
258 "cmp %%g7, %%g1\n\t"
259 "bne,pn %%xcc, 1b\n\t"
260 " nop\n"
261 "2:"
262 : /* no outputs */
263 : "r" (cpu), "r" (mask), "r" (&page->flags),
264 "i" (PG_dcache_cpu_mask),
265 "i" (PG_dcache_cpu_shift)
266 : "g1", "g7");
267 }
268
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271 unsigned long tsb_addr = (unsigned long) ent;
272
273 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274 tsb_addr = __pa(tsb_addr);
275
276 __tsb_insert(tsb_addr, tag, pte);
277 }
278
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280
281 static void flush_dcache(unsigned long pfn)
282 {
283 struct page *page;
284
285 page = pfn_to_page(pfn);
286 if (page) {
287 unsigned long pg_flags;
288
289 pg_flags = page->flags;
290 if (pg_flags & (1UL << PG_dcache_dirty)) {
291 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292 PG_dcache_cpu_mask);
293 int this_cpu = get_cpu();
294
295 /* This is just to optimize away some function calls
296 * in the SMP case.
297 */
298 if (cpu == this_cpu)
299 flush_dcache_page_impl(page);
300 else
301 smp_flush_dcache_page_impl(page, cpu);
302
303 clear_dcache_dirty_cpu(page, cpu);
304
305 put_cpu();
306 }
307 }
308 }
309
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312 unsigned long tsb_hash_shift, unsigned long address,
313 unsigned long tte)
314 {
315 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316 unsigned long tag;
317
318 if (unlikely(!tsb))
319 return;
320
321 tsb += ((address >> tsb_hash_shift) &
322 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323 tag = (address >> 22UL);
324 tsb_insert(tsb, tag, tte);
325 }
326
327 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
328 static inline bool is_hugetlb_pte(pte_t pte)
329 {
330 if ((tlb_type == hypervisor &&
331 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
332 (tlb_type != hypervisor &&
333 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
334 return true;
335 return false;
336 }
337 #endif
338
339 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
340 {
341 struct mm_struct *mm;
342 unsigned long flags;
343 pte_t pte = *ptep;
344
345 if (tlb_type != hypervisor) {
346 unsigned long pfn = pte_pfn(pte);
347
348 if (pfn_valid(pfn))
349 flush_dcache(pfn);
350 }
351
352 mm = vma->vm_mm;
353
354 /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */
355 if (!pte_accessible(mm, pte))
356 return;
357
358 spin_lock_irqsave(&mm->context.lock, flags);
359
360 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
361 if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
362 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
363 address, pte_val(pte));
364 else
365 #endif
366 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
367 address, pte_val(pte));
368
369 spin_unlock_irqrestore(&mm->context.lock, flags);
370 }
371
372 void flush_dcache_page(struct page *page)
373 {
374 struct address_space *mapping;
375 int this_cpu;
376
377 if (tlb_type == hypervisor)
378 return;
379
380 /* Do not bother with the expensive D-cache flush if it
381 * is merely the zero page. The 'bigcore' testcase in GDB
382 * causes this case to run millions of times.
383 */
384 if (page == ZERO_PAGE(0))
385 return;
386
387 this_cpu = get_cpu();
388
389 mapping = page_mapping(page);
390 if (mapping && !mapping_mapped(mapping)) {
391 int dirty = test_bit(PG_dcache_dirty, &page->flags);
392 if (dirty) {
393 int dirty_cpu = dcache_dirty_cpu(page);
394
395 if (dirty_cpu == this_cpu)
396 goto out;
397 smp_flush_dcache_page_impl(page, dirty_cpu);
398 }
399 set_dcache_dirty(page, this_cpu);
400 } else {
401 /* We could delay the flush for the !page_mapping
402 * case too. But that case is for exec env/arg
403 * pages and those are %99 certainly going to get
404 * faulted into the tlb (and thus flushed) anyways.
405 */
406 flush_dcache_page_impl(page);
407 }
408
409 out:
410 put_cpu();
411 }
412 EXPORT_SYMBOL(flush_dcache_page);
413
414 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
415 {
416 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
417 if (tlb_type == spitfire) {
418 unsigned long kaddr;
419
420 /* This code only runs on Spitfire cpus so this is
421 * why we can assume _PAGE_PADDR_4U.
422 */
423 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
424 unsigned long paddr, mask = _PAGE_PADDR_4U;
425
426 if (kaddr >= PAGE_OFFSET)
427 paddr = kaddr & mask;
428 else {
429 pgd_t *pgdp = pgd_offset_k(kaddr);
430 pud_t *pudp = pud_offset(pgdp, kaddr);
431 pmd_t *pmdp = pmd_offset(pudp, kaddr);
432 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
433
434 paddr = pte_val(*ptep) & mask;
435 }
436 __flush_icache_page(paddr);
437 }
438 }
439 }
440 EXPORT_SYMBOL(flush_icache_range);
441
442 void mmu_info(struct seq_file *m)
443 {
444 static const char *pgsz_strings[] = {
445 "8K", "64K", "512K", "4MB", "32MB",
446 "256MB", "2GB", "16GB",
447 };
448 int i, printed;
449
450 if (tlb_type == cheetah)
451 seq_printf(m, "MMU Type\t: Cheetah\n");
452 else if (tlb_type == cheetah_plus)
453 seq_printf(m, "MMU Type\t: Cheetah+\n");
454 else if (tlb_type == spitfire)
455 seq_printf(m, "MMU Type\t: Spitfire\n");
456 else if (tlb_type == hypervisor)
457 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
458 else
459 seq_printf(m, "MMU Type\t: ???\n");
460
461 seq_printf(m, "MMU PGSZs\t: ");
462 printed = 0;
463 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
464 if (cpu_pgsz_mask & (1UL << i)) {
465 seq_printf(m, "%s%s",
466 printed ? "," : "", pgsz_strings[i]);
467 printed++;
468 }
469 }
470 seq_putc(m, '\n');
471
472 #ifdef CONFIG_DEBUG_DCFLUSH
473 seq_printf(m, "DCPageFlushes\t: %d\n",
474 atomic_read(&dcpage_flushes));
475 #ifdef CONFIG_SMP
476 seq_printf(m, "DCPageFlushesXC\t: %d\n",
477 atomic_read(&dcpage_flushes_xcall));
478 #endif /* CONFIG_SMP */
479 #endif /* CONFIG_DEBUG_DCFLUSH */
480 }
481
482 struct linux_prom_translation prom_trans[512] __read_mostly;
483 unsigned int prom_trans_ents __read_mostly;
484
485 unsigned long kern_locked_tte_data;
486
487 /* The obp translations are saved based on 8k pagesize, since obp can
488 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
489 * HI_OBP_ADDRESS range are handled in ktlb.S.
490 */
491 static inline int in_obp_range(unsigned long vaddr)
492 {
493 return (vaddr >= LOW_OBP_ADDRESS &&
494 vaddr < HI_OBP_ADDRESS);
495 }
496
497 static int cmp_ptrans(const void *a, const void *b)
498 {
499 const struct linux_prom_translation *x = a, *y = b;
500
501 if (x->virt > y->virt)
502 return 1;
503 if (x->virt < y->virt)
504 return -1;
505 return 0;
506 }
507
508 /* Read OBP translations property into 'prom_trans[]'. */
509 static void __init read_obp_translations(void)
510 {
511 int n, node, ents, first, last, i;
512
513 node = prom_finddevice("/virtual-memory");
514 n = prom_getproplen(node, "translations");
515 if (unlikely(n == 0 || n == -1)) {
516 prom_printf("prom_mappings: Couldn't get size.\n");
517 prom_halt();
518 }
519 if (unlikely(n > sizeof(prom_trans))) {
520 prom_printf("prom_mappings: Size %d is too big.\n", n);
521 prom_halt();
522 }
523
524 if ((n = prom_getproperty(node, "translations",
525 (char *)&prom_trans[0],
526 sizeof(prom_trans))) == -1) {
527 prom_printf("prom_mappings: Couldn't get property.\n");
528 prom_halt();
529 }
530
531 n = n / sizeof(struct linux_prom_translation);
532
533 ents = n;
534
535 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
536 cmp_ptrans, NULL);
537
538 /* Now kick out all the non-OBP entries. */
539 for (i = 0; i < ents; i++) {
540 if (in_obp_range(prom_trans[i].virt))
541 break;
542 }
543 first = i;
544 for (; i < ents; i++) {
545 if (!in_obp_range(prom_trans[i].virt))
546 break;
547 }
548 last = i;
549
550 for (i = 0; i < (last - first); i++) {
551 struct linux_prom_translation *src = &prom_trans[i + first];
552 struct linux_prom_translation *dest = &prom_trans[i];
553
554 *dest = *src;
555 }
556 for (; i < ents; i++) {
557 struct linux_prom_translation *dest = &prom_trans[i];
558 dest->virt = dest->size = dest->data = 0x0UL;
559 }
560
561 prom_trans_ents = last - first;
562
563 if (tlb_type == spitfire) {
564 /* Clear diag TTE bits. */
565 for (i = 0; i < prom_trans_ents; i++)
566 prom_trans[i].data &= ~0x0003fe0000000000UL;
567 }
568
569 /* Force execute bit on. */
570 for (i = 0; i < prom_trans_ents; i++)
571 prom_trans[i].data |= (tlb_type == hypervisor ?
572 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
573 }
574
575 static void __init hypervisor_tlb_lock(unsigned long vaddr,
576 unsigned long pte,
577 unsigned long mmu)
578 {
579 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
580
581 if (ret != 0) {
582 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
583 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
584 prom_halt();
585 }
586 }
587
588 static unsigned long kern_large_tte(unsigned long paddr);
589
590 static void __init remap_kernel(void)
591 {
592 unsigned long phys_page, tte_vaddr, tte_data;
593 int i, tlb_ent = sparc64_highest_locked_tlbent();
594
595 tte_vaddr = (unsigned long) KERNBASE;
596 phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
597 tte_data = kern_large_tte(phys_page);
598
599 kern_locked_tte_data = tte_data;
600
601 /* Now lock us into the TLBs via Hypervisor or OBP. */
602 if (tlb_type == hypervisor) {
603 for (i = 0; i < num_kernel_image_mappings; i++) {
604 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
605 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
606 tte_vaddr += 0x400000;
607 tte_data += 0x400000;
608 }
609 } else {
610 for (i = 0; i < num_kernel_image_mappings; i++) {
611 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
612 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
613 tte_vaddr += 0x400000;
614 tte_data += 0x400000;
615 }
616 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
617 }
618 if (tlb_type == cheetah_plus) {
619 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
620 CTX_CHEETAH_PLUS_NUC);
621 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
622 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
623 }
624 }
625
626
627 static void __init inherit_prom_mappings(void)
628 {
629 /* Now fixup OBP's idea about where we really are mapped. */
630 printk("Remapping the kernel... ");
631 remap_kernel();
632 printk("done.\n");
633 }
634
635 void prom_world(int enter)
636 {
637 if (!enter)
638 set_fs(get_fs());
639
640 __asm__ __volatile__("flushw");
641 }
642
643 void __flush_dcache_range(unsigned long start, unsigned long end)
644 {
645 unsigned long va;
646
647 if (tlb_type == spitfire) {
648 int n = 0;
649
650 for (va = start; va < end; va += 32) {
651 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
652 if (++n >= 512)
653 break;
654 }
655 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
656 start = __pa(start);
657 end = __pa(end);
658 for (va = start; va < end; va += 32)
659 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
660 "membar #Sync"
661 : /* no outputs */
662 : "r" (va),
663 "i" (ASI_DCACHE_INVALIDATE));
664 }
665 }
666 EXPORT_SYMBOL(__flush_dcache_range);
667
668 /* get_new_mmu_context() uses "cache + 1". */
669 DEFINE_SPINLOCK(ctx_alloc_lock);
670 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
671 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
672 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
673 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
674
675 /* Caller does TLB context flushing on local CPU if necessary.
676 * The caller also ensures that CTX_VALID(mm->context) is false.
677 *
678 * We must be careful about boundary cases so that we never
679 * let the user have CTX 0 (nucleus) or we ever use a CTX
680 * version of zero (and thus NO_CONTEXT would not be caught
681 * by version mis-match tests in mmu_context.h).
682 *
683 * Always invoked with interrupts disabled.
684 */
685 void get_new_mmu_context(struct mm_struct *mm)
686 {
687 unsigned long ctx, new_ctx;
688 unsigned long orig_pgsz_bits;
689 int new_version;
690
691 spin_lock(&ctx_alloc_lock);
692 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
693 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
694 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
695 new_version = 0;
696 if (new_ctx >= (1 << CTX_NR_BITS)) {
697 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
698 if (new_ctx >= ctx) {
699 int i;
700 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
701 CTX_FIRST_VERSION;
702 if (new_ctx == 1)
703 new_ctx = CTX_FIRST_VERSION;
704
705 /* Don't call memset, for 16 entries that's just
706 * plain silly...
707 */
708 mmu_context_bmap[0] = 3;
709 mmu_context_bmap[1] = 0;
710 mmu_context_bmap[2] = 0;
711 mmu_context_bmap[3] = 0;
712 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
713 mmu_context_bmap[i + 0] = 0;
714 mmu_context_bmap[i + 1] = 0;
715 mmu_context_bmap[i + 2] = 0;
716 mmu_context_bmap[i + 3] = 0;
717 }
718 new_version = 1;
719 goto out;
720 }
721 }
722 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
723 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
724 out:
725 tlb_context_cache = new_ctx;
726 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
727 spin_unlock(&ctx_alloc_lock);
728
729 if (unlikely(new_version))
730 smp_new_mmu_context_version();
731 }
732
733 static int numa_enabled = 1;
734 static int numa_debug;
735
736 static int __init early_numa(char *p)
737 {
738 if (!p)
739 return 0;
740
741 if (strstr(p, "off"))
742 numa_enabled = 0;
743
744 if (strstr(p, "debug"))
745 numa_debug = 1;
746
747 return 0;
748 }
749 early_param("numa", early_numa);
750
751 #define numadbg(f, a...) \
752 do { if (numa_debug) \
753 printk(KERN_INFO f, ## a); \
754 } while (0)
755
756 static void __init find_ramdisk(unsigned long phys_base)
757 {
758 #ifdef CONFIG_BLK_DEV_INITRD
759 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
760 unsigned long ramdisk_image;
761
762 /* Older versions of the bootloader only supported a
763 * 32-bit physical address for the ramdisk image
764 * location, stored at sparc_ramdisk_image. Newer
765 * SILO versions set sparc_ramdisk_image to zero and
766 * provide a full 64-bit physical address at
767 * sparc_ramdisk_image64.
768 */
769 ramdisk_image = sparc_ramdisk_image;
770 if (!ramdisk_image)
771 ramdisk_image = sparc_ramdisk_image64;
772
773 /* Another bootloader quirk. The bootloader normalizes
774 * the physical address to KERNBASE, so we have to
775 * factor that back out and add in the lowest valid
776 * physical page address to get the true physical address.
777 */
778 ramdisk_image -= KERNBASE;
779 ramdisk_image += phys_base;
780
781 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
782 ramdisk_image, sparc_ramdisk_size);
783
784 initrd_start = ramdisk_image;
785 initrd_end = ramdisk_image + sparc_ramdisk_size;
786
787 memblock_reserve(initrd_start, sparc_ramdisk_size);
788
789 initrd_start += PAGE_OFFSET;
790 initrd_end += PAGE_OFFSET;
791 }
792 #endif
793 }
794
795 struct node_mem_mask {
796 unsigned long mask;
797 unsigned long val;
798 };
799 static struct node_mem_mask node_masks[MAX_NUMNODES];
800 static int num_node_masks;
801
802 #ifdef CONFIG_NEED_MULTIPLE_NODES
803
804 int numa_cpu_lookup_table[NR_CPUS];
805 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
806
807 struct mdesc_mblock {
808 u64 base;
809 u64 size;
810 u64 offset; /* RA-to-PA */
811 };
812 static struct mdesc_mblock *mblocks;
813 static int num_mblocks;
814
815 static unsigned long ra_to_pa(unsigned long addr)
816 {
817 int i;
818
819 for (i = 0; i < num_mblocks; i++) {
820 struct mdesc_mblock *m = &mblocks[i];
821
822 if (addr >= m->base &&
823 addr < (m->base + m->size)) {
824 addr += m->offset;
825 break;
826 }
827 }
828 return addr;
829 }
830
831 static int find_node(unsigned long addr)
832 {
833 int i;
834
835 addr = ra_to_pa(addr);
836 for (i = 0; i < num_node_masks; i++) {
837 struct node_mem_mask *p = &node_masks[i];
838
839 if ((addr & p->mask) == p->val)
840 return i;
841 }
842 /* The following condition has been observed on LDOM guests.*/
843 WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node"
844 " rule. Some physical memory will be owned by node 0.");
845 return 0;
846 }
847
848 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
849 {
850 *nid = find_node(start);
851 start += PAGE_SIZE;
852 while (start < end) {
853 int n = find_node(start);
854
855 if (n != *nid)
856 break;
857 start += PAGE_SIZE;
858 }
859
860 if (start > end)
861 start = end;
862
863 return start;
864 }
865 #endif
866
867 /* This must be invoked after performing all of the necessary
868 * memblock_set_node() calls for 'nid'. We need to be able to get
869 * correct data from get_pfn_range_for_nid().
870 */
871 static void __init allocate_node_data(int nid)
872 {
873 struct pglist_data *p;
874 unsigned long start_pfn, end_pfn;
875 #ifdef CONFIG_NEED_MULTIPLE_NODES
876 unsigned long paddr;
877
878 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
879 if (!paddr) {
880 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
881 prom_halt();
882 }
883 NODE_DATA(nid) = __va(paddr);
884 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
885
886 NODE_DATA(nid)->node_id = nid;
887 #endif
888
889 p = NODE_DATA(nid);
890
891 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
892 p->node_start_pfn = start_pfn;
893 p->node_spanned_pages = end_pfn - start_pfn;
894 }
895
896 static void init_node_masks_nonnuma(void)
897 {
898 #ifdef CONFIG_NEED_MULTIPLE_NODES
899 int i;
900 #endif
901
902 numadbg("Initializing tables for non-numa.\n");
903
904 node_masks[0].mask = node_masks[0].val = 0;
905 num_node_masks = 1;
906
907 #ifdef CONFIG_NEED_MULTIPLE_NODES
908 for (i = 0; i < NR_CPUS; i++)
909 numa_cpu_lookup_table[i] = 0;
910
911 cpumask_setall(&numa_cpumask_lookup_table[0]);
912 #endif
913 }
914
915 #ifdef CONFIG_NEED_MULTIPLE_NODES
916 struct pglist_data *node_data[MAX_NUMNODES];
917
918 EXPORT_SYMBOL(numa_cpu_lookup_table);
919 EXPORT_SYMBOL(numa_cpumask_lookup_table);
920 EXPORT_SYMBOL(node_data);
921
922 struct mdesc_mlgroup {
923 u64 node;
924 u64 latency;
925 u64 match;
926 u64 mask;
927 };
928 static struct mdesc_mlgroup *mlgroups;
929 static int num_mlgroups;
930
931 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
932 u32 cfg_handle)
933 {
934 u64 arc;
935
936 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
937 u64 target = mdesc_arc_target(md, arc);
938 const u64 *val;
939
940 val = mdesc_get_property(md, target,
941 "cfg-handle", NULL);
942 if (val && *val == cfg_handle)
943 return 0;
944 }
945 return -ENODEV;
946 }
947
948 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
949 u32 cfg_handle)
950 {
951 u64 arc, candidate, best_latency = ~(u64)0;
952
953 candidate = MDESC_NODE_NULL;
954 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
955 u64 target = mdesc_arc_target(md, arc);
956 const char *name = mdesc_node_name(md, target);
957 const u64 *val;
958
959 if (strcmp(name, "pio-latency-group"))
960 continue;
961
962 val = mdesc_get_property(md, target, "latency", NULL);
963 if (!val)
964 continue;
965
966 if (*val < best_latency) {
967 candidate = target;
968 best_latency = *val;
969 }
970 }
971
972 if (candidate == MDESC_NODE_NULL)
973 return -ENODEV;
974
975 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
976 }
977
978 int of_node_to_nid(struct device_node *dp)
979 {
980 const struct linux_prom64_registers *regs;
981 struct mdesc_handle *md;
982 u32 cfg_handle;
983 int count, nid;
984 u64 grp;
985
986 /* This is the right thing to do on currently supported
987 * SUN4U NUMA platforms as well, as the PCI controller does
988 * not sit behind any particular memory controller.
989 */
990 if (!mlgroups)
991 return -1;
992
993 regs = of_get_property(dp, "reg", NULL);
994 if (!regs)
995 return -1;
996
997 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
998
999 md = mdesc_grab();
1000
1001 count = 0;
1002 nid = -1;
1003 mdesc_for_each_node_by_name(md, grp, "group") {
1004 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1005 nid = count;
1006 break;
1007 }
1008 count++;
1009 }
1010
1011 mdesc_release(md);
1012
1013 return nid;
1014 }
1015
1016 static void __init add_node_ranges(void)
1017 {
1018 struct memblock_region *reg;
1019
1020 for_each_memblock(memory, reg) {
1021 unsigned long size = reg->size;
1022 unsigned long start, end;
1023
1024 start = reg->base;
1025 end = start + size;
1026 while (start < end) {
1027 unsigned long this_end;
1028 int nid;
1029
1030 this_end = memblock_nid_range(start, end, &nid);
1031
1032 numadbg("Setting memblock NUMA node nid[%d] "
1033 "start[%lx] end[%lx]\n",
1034 nid, start, this_end);
1035
1036 memblock_set_node(start, this_end - start,
1037 &memblock.memory, nid);
1038 start = this_end;
1039 }
1040 }
1041 }
1042
1043 static int __init grab_mlgroups(struct mdesc_handle *md)
1044 {
1045 unsigned long paddr;
1046 int count = 0;
1047 u64 node;
1048
1049 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1050 count++;
1051 if (!count)
1052 return -ENOENT;
1053
1054 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1055 SMP_CACHE_BYTES);
1056 if (!paddr)
1057 return -ENOMEM;
1058
1059 mlgroups = __va(paddr);
1060 num_mlgroups = count;
1061
1062 count = 0;
1063 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1064 struct mdesc_mlgroup *m = &mlgroups[count++];
1065 const u64 *val;
1066
1067 m->node = node;
1068
1069 val = mdesc_get_property(md, node, "latency", NULL);
1070 m->latency = *val;
1071 val = mdesc_get_property(md, node, "address-match", NULL);
1072 m->match = *val;
1073 val = mdesc_get_property(md, node, "address-mask", NULL);
1074 m->mask = *val;
1075
1076 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1077 "match[%llx] mask[%llx]\n",
1078 count - 1, m->node, m->latency, m->match, m->mask);
1079 }
1080
1081 return 0;
1082 }
1083
1084 static int __init grab_mblocks(struct mdesc_handle *md)
1085 {
1086 unsigned long paddr;
1087 int count = 0;
1088 u64 node;
1089
1090 mdesc_for_each_node_by_name(md, node, "mblock")
1091 count++;
1092 if (!count)
1093 return -ENOENT;
1094
1095 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1096 SMP_CACHE_BYTES);
1097 if (!paddr)
1098 return -ENOMEM;
1099
1100 mblocks = __va(paddr);
1101 num_mblocks = count;
1102
1103 count = 0;
1104 mdesc_for_each_node_by_name(md, node, "mblock") {
1105 struct mdesc_mblock *m = &mblocks[count++];
1106 const u64 *val;
1107
1108 val = mdesc_get_property(md, node, "base", NULL);
1109 m->base = *val;
1110 val = mdesc_get_property(md, node, "size", NULL);
1111 m->size = *val;
1112 val = mdesc_get_property(md, node,
1113 "address-congruence-offset", NULL);
1114
1115 /* The address-congruence-offset property is optional.
1116 * Explicity zero it be identifty this.
1117 */
1118 if (val)
1119 m->offset = *val;
1120 else
1121 m->offset = 0UL;
1122
1123 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1124 count - 1, m->base, m->size, m->offset);
1125 }
1126
1127 return 0;
1128 }
1129
1130 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1131 u64 grp, cpumask_t *mask)
1132 {
1133 u64 arc;
1134
1135 cpumask_clear(mask);
1136
1137 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1138 u64 target = mdesc_arc_target(md, arc);
1139 const char *name = mdesc_node_name(md, target);
1140 const u64 *id;
1141
1142 if (strcmp(name, "cpu"))
1143 continue;
1144 id = mdesc_get_property(md, target, "id", NULL);
1145 if (*id < nr_cpu_ids)
1146 cpumask_set_cpu(*id, mask);
1147 }
1148 }
1149
1150 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1151 {
1152 int i;
1153
1154 for (i = 0; i < num_mlgroups; i++) {
1155 struct mdesc_mlgroup *m = &mlgroups[i];
1156 if (m->node == node)
1157 return m;
1158 }
1159 return NULL;
1160 }
1161
1162 int __node_distance(int from, int to)
1163 {
1164 if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1165 pr_warn("Returning default NUMA distance value for %d->%d\n",
1166 from, to);
1167 return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1168 }
1169 return numa_latency[from][to];
1170 }
1171
1172 static int find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1173 {
1174 int i;
1175
1176 for (i = 0; i < MAX_NUMNODES; i++) {
1177 struct node_mem_mask *n = &node_masks[i];
1178
1179 if ((grp->mask == n->mask) && (grp->match == n->val))
1180 break;
1181 }
1182 return i;
1183 }
1184
1185 static void find_numa_latencies_for_group(struct mdesc_handle *md, u64 grp,
1186 int index)
1187 {
1188 u64 arc;
1189
1190 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1191 int tnode;
1192 u64 target = mdesc_arc_target(md, arc);
1193 struct mdesc_mlgroup *m = find_mlgroup(target);
1194
1195 if (!m)
1196 continue;
1197 tnode = find_best_numa_node_for_mlgroup(m);
1198 if (tnode == MAX_NUMNODES)
1199 continue;
1200 numa_latency[index][tnode] = m->latency;
1201 }
1202 }
1203
1204 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1205 int index)
1206 {
1207 struct mdesc_mlgroup *candidate = NULL;
1208 u64 arc, best_latency = ~(u64)0;
1209 struct node_mem_mask *n;
1210
1211 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1212 u64 target = mdesc_arc_target(md, arc);
1213 struct mdesc_mlgroup *m = find_mlgroup(target);
1214 if (!m)
1215 continue;
1216 if (m->latency < best_latency) {
1217 candidate = m;
1218 best_latency = m->latency;
1219 }
1220 }
1221 if (!candidate)
1222 return -ENOENT;
1223
1224 if (num_node_masks != index) {
1225 printk(KERN_ERR "Inconsistent NUMA state, "
1226 "index[%d] != num_node_masks[%d]\n",
1227 index, num_node_masks);
1228 return -EINVAL;
1229 }
1230
1231 n = &node_masks[num_node_masks++];
1232
1233 n->mask = candidate->mask;
1234 n->val = candidate->match;
1235
1236 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1237 index, n->mask, n->val, candidate->latency);
1238
1239 return 0;
1240 }
1241
1242 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1243 int index)
1244 {
1245 cpumask_t mask;
1246 int cpu;
1247
1248 numa_parse_mdesc_group_cpus(md, grp, &mask);
1249
1250 for_each_cpu(cpu, &mask)
1251 numa_cpu_lookup_table[cpu] = index;
1252 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1253
1254 if (numa_debug) {
1255 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1256 for_each_cpu(cpu, &mask)
1257 printk("%d ", cpu);
1258 printk("]\n");
1259 }
1260
1261 return numa_attach_mlgroup(md, grp, index);
1262 }
1263
1264 static int __init numa_parse_mdesc(void)
1265 {
1266 struct mdesc_handle *md = mdesc_grab();
1267 int i, j, err, count;
1268 u64 node;
1269
1270 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1271 if (node == MDESC_NODE_NULL) {
1272 mdesc_release(md);
1273 return -ENOENT;
1274 }
1275
1276 err = grab_mblocks(md);
1277 if (err < 0)
1278 goto out;
1279
1280 err = grab_mlgroups(md);
1281 if (err < 0)
1282 goto out;
1283
1284 count = 0;
1285 mdesc_for_each_node_by_name(md, node, "group") {
1286 err = numa_parse_mdesc_group(md, node, count);
1287 if (err < 0)
1288 break;
1289 count++;
1290 }
1291
1292 count = 0;
1293 mdesc_for_each_node_by_name(md, node, "group") {
1294 find_numa_latencies_for_group(md, node, count);
1295 count++;
1296 }
1297
1298 /* Normalize numa latency matrix according to ACPI SLIT spec. */
1299 for (i = 0; i < MAX_NUMNODES; i++) {
1300 u64 self_latency = numa_latency[i][i];
1301
1302 for (j = 0; j < MAX_NUMNODES; j++) {
1303 numa_latency[i][j] =
1304 (numa_latency[i][j] * LOCAL_DISTANCE) /
1305 self_latency;
1306 }
1307 }
1308
1309 add_node_ranges();
1310
1311 for (i = 0; i < num_node_masks; i++) {
1312 allocate_node_data(i);
1313 node_set_online(i);
1314 }
1315
1316 err = 0;
1317 out:
1318 mdesc_release(md);
1319 return err;
1320 }
1321
1322 static int __init numa_parse_jbus(void)
1323 {
1324 unsigned long cpu, index;
1325
1326 /* NUMA node id is encoded in bits 36 and higher, and there is
1327 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1328 */
1329 index = 0;
1330 for_each_present_cpu(cpu) {
1331 numa_cpu_lookup_table[cpu] = index;
1332 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1333 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1334 node_masks[index].val = cpu << 36UL;
1335
1336 index++;
1337 }
1338 num_node_masks = index;
1339
1340 add_node_ranges();
1341
1342 for (index = 0; index < num_node_masks; index++) {
1343 allocate_node_data(index);
1344 node_set_online(index);
1345 }
1346
1347 return 0;
1348 }
1349
1350 static int __init numa_parse_sun4u(void)
1351 {
1352 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1353 unsigned long ver;
1354
1355 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1356 if ((ver >> 32UL) == __JALAPENO_ID ||
1357 (ver >> 32UL) == __SERRANO_ID)
1358 return numa_parse_jbus();
1359 }
1360 return -1;
1361 }
1362
1363 static int __init bootmem_init_numa(void)
1364 {
1365 int i, j;
1366 int err = -1;
1367
1368 numadbg("bootmem_init_numa()\n");
1369
1370 /* Some sane defaults for numa latency values */
1371 for (i = 0; i < MAX_NUMNODES; i++) {
1372 for (j = 0; j < MAX_NUMNODES; j++)
1373 numa_latency[i][j] = (i == j) ?
1374 LOCAL_DISTANCE : REMOTE_DISTANCE;
1375 }
1376
1377 if (numa_enabled) {
1378 if (tlb_type == hypervisor)
1379 err = numa_parse_mdesc();
1380 else
1381 err = numa_parse_sun4u();
1382 }
1383 return err;
1384 }
1385
1386 #else
1387
1388 static int bootmem_init_numa(void)
1389 {
1390 return -1;
1391 }
1392
1393 #endif
1394
1395 static void __init bootmem_init_nonnuma(void)
1396 {
1397 unsigned long top_of_ram = memblock_end_of_DRAM();
1398 unsigned long total_ram = memblock_phys_mem_size();
1399
1400 numadbg("bootmem_init_nonnuma()\n");
1401
1402 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1403 top_of_ram, total_ram);
1404 printk(KERN_INFO "Memory hole size: %ldMB\n",
1405 (top_of_ram - total_ram) >> 20);
1406
1407 init_node_masks_nonnuma();
1408 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1409 allocate_node_data(0);
1410 node_set_online(0);
1411 }
1412
1413 static unsigned long __init bootmem_init(unsigned long phys_base)
1414 {
1415 unsigned long end_pfn;
1416
1417 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1418 max_pfn = max_low_pfn = end_pfn;
1419 min_low_pfn = (phys_base >> PAGE_SHIFT);
1420
1421 if (bootmem_init_numa() < 0)
1422 bootmem_init_nonnuma();
1423
1424 /* Dump memblock with node info. */
1425 memblock_dump_all();
1426
1427 /* XXX cpu notifier XXX */
1428
1429 sparse_memory_present_with_active_regions(MAX_NUMNODES);
1430 sparse_init();
1431
1432 return end_pfn;
1433 }
1434
1435 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1436 static int pall_ents __initdata;
1437
1438 static unsigned long max_phys_bits = 40;
1439
1440 bool kern_addr_valid(unsigned long addr)
1441 {
1442 pgd_t *pgd;
1443 pud_t *pud;
1444 pmd_t *pmd;
1445 pte_t *pte;
1446
1447 if ((long)addr < 0L) {
1448 unsigned long pa = __pa(addr);
1449
1450 if ((addr >> max_phys_bits) != 0UL)
1451 return false;
1452
1453 return pfn_valid(pa >> PAGE_SHIFT);
1454 }
1455
1456 if (addr >= (unsigned long) KERNBASE &&
1457 addr < (unsigned long)&_end)
1458 return true;
1459
1460 pgd = pgd_offset_k(addr);
1461 if (pgd_none(*pgd))
1462 return 0;
1463
1464 pud = pud_offset(pgd, addr);
1465 if (pud_none(*pud))
1466 return 0;
1467
1468 if (pud_large(*pud))
1469 return pfn_valid(pud_pfn(*pud));
1470
1471 pmd = pmd_offset(pud, addr);
1472 if (pmd_none(*pmd))
1473 return 0;
1474
1475 if (pmd_large(*pmd))
1476 return pfn_valid(pmd_pfn(*pmd));
1477
1478 pte = pte_offset_kernel(pmd, addr);
1479 if (pte_none(*pte))
1480 return 0;
1481
1482 return pfn_valid(pte_pfn(*pte));
1483 }
1484 EXPORT_SYMBOL(kern_addr_valid);
1485
1486 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1487 unsigned long vend,
1488 pud_t *pud)
1489 {
1490 const unsigned long mask16gb = (1UL << 34) - 1UL;
1491 u64 pte_val = vstart;
1492
1493 /* Each PUD is 8GB */
1494 if ((vstart & mask16gb) ||
1495 (vend - vstart <= mask16gb)) {
1496 pte_val ^= kern_linear_pte_xor[2];
1497 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1498
1499 return vstart + PUD_SIZE;
1500 }
1501
1502 pte_val ^= kern_linear_pte_xor[3];
1503 pte_val |= _PAGE_PUD_HUGE;
1504
1505 vend = vstart + mask16gb + 1UL;
1506 while (vstart < vend) {
1507 pud_val(*pud) = pte_val;
1508
1509 pte_val += PUD_SIZE;
1510 vstart += PUD_SIZE;
1511 pud++;
1512 }
1513 return vstart;
1514 }
1515
1516 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1517 bool guard)
1518 {
1519 if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1520 return true;
1521
1522 return false;
1523 }
1524
1525 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1526 unsigned long vend,
1527 pmd_t *pmd)
1528 {
1529 const unsigned long mask256mb = (1UL << 28) - 1UL;
1530 const unsigned long mask2gb = (1UL << 31) - 1UL;
1531 u64 pte_val = vstart;
1532
1533 /* Each PMD is 8MB */
1534 if ((vstart & mask256mb) ||
1535 (vend - vstart <= mask256mb)) {
1536 pte_val ^= kern_linear_pte_xor[0];
1537 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1538
1539 return vstart + PMD_SIZE;
1540 }
1541
1542 if ((vstart & mask2gb) ||
1543 (vend - vstart <= mask2gb)) {
1544 pte_val ^= kern_linear_pte_xor[1];
1545 pte_val |= _PAGE_PMD_HUGE;
1546 vend = vstart + mask256mb + 1UL;
1547 } else {
1548 pte_val ^= kern_linear_pte_xor[2];
1549 pte_val |= _PAGE_PMD_HUGE;
1550 vend = vstart + mask2gb + 1UL;
1551 }
1552
1553 while (vstart < vend) {
1554 pmd_val(*pmd) = pte_val;
1555
1556 pte_val += PMD_SIZE;
1557 vstart += PMD_SIZE;
1558 pmd++;
1559 }
1560
1561 return vstart;
1562 }
1563
1564 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1565 bool guard)
1566 {
1567 if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1568 return true;
1569
1570 return false;
1571 }
1572
1573 static unsigned long __ref kernel_map_range(unsigned long pstart,
1574 unsigned long pend, pgprot_t prot,
1575 bool use_huge)
1576 {
1577 unsigned long vstart = PAGE_OFFSET + pstart;
1578 unsigned long vend = PAGE_OFFSET + pend;
1579 unsigned long alloc_bytes = 0UL;
1580
1581 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1582 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1583 vstart, vend);
1584 prom_halt();
1585 }
1586
1587 while (vstart < vend) {
1588 unsigned long this_end, paddr = __pa(vstart);
1589 pgd_t *pgd = pgd_offset_k(vstart);
1590 pud_t *pud;
1591 pmd_t *pmd;
1592 pte_t *pte;
1593
1594 if (pgd_none(*pgd)) {
1595 pud_t *new;
1596
1597 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1598 alloc_bytes += PAGE_SIZE;
1599 pgd_populate(&init_mm, pgd, new);
1600 }
1601 pud = pud_offset(pgd, vstart);
1602 if (pud_none(*pud)) {
1603 pmd_t *new;
1604
1605 if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1606 vstart = kernel_map_hugepud(vstart, vend, pud);
1607 continue;
1608 }
1609 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1610 alloc_bytes += PAGE_SIZE;
1611 pud_populate(&init_mm, pud, new);
1612 }
1613
1614 pmd = pmd_offset(pud, vstart);
1615 if (pmd_none(*pmd)) {
1616 pte_t *new;
1617
1618 if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1619 vstart = kernel_map_hugepmd(vstart, vend, pmd);
1620 continue;
1621 }
1622 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1623 alloc_bytes += PAGE_SIZE;
1624 pmd_populate_kernel(&init_mm, pmd, new);
1625 }
1626
1627 pte = pte_offset_kernel(pmd, vstart);
1628 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1629 if (this_end > vend)
1630 this_end = vend;
1631
1632 while (vstart < this_end) {
1633 pte_val(*pte) = (paddr | pgprot_val(prot));
1634
1635 vstart += PAGE_SIZE;
1636 paddr += PAGE_SIZE;
1637 pte++;
1638 }
1639 }
1640
1641 return alloc_bytes;
1642 }
1643
1644 static void __init flush_all_kernel_tsbs(void)
1645 {
1646 int i;
1647
1648 for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1649 struct tsb *ent = &swapper_tsb[i];
1650
1651 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1652 }
1653 #ifndef CONFIG_DEBUG_PAGEALLOC
1654 for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1655 struct tsb *ent = &swapper_4m_tsb[i];
1656
1657 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1658 }
1659 #endif
1660 }
1661
1662 extern unsigned int kvmap_linear_patch[1];
1663
1664 static void __init kernel_physical_mapping_init(void)
1665 {
1666 unsigned long i, mem_alloced = 0UL;
1667 bool use_huge = true;
1668
1669 #ifdef CONFIG_DEBUG_PAGEALLOC
1670 use_huge = false;
1671 #endif
1672 for (i = 0; i < pall_ents; i++) {
1673 unsigned long phys_start, phys_end;
1674
1675 phys_start = pall[i].phys_addr;
1676 phys_end = phys_start + pall[i].reg_size;
1677
1678 mem_alloced += kernel_map_range(phys_start, phys_end,
1679 PAGE_KERNEL, use_huge);
1680 }
1681
1682 printk("Allocated %ld bytes for kernel page tables.\n",
1683 mem_alloced);
1684
1685 kvmap_linear_patch[0] = 0x01000000; /* nop */
1686 flushi(&kvmap_linear_patch[0]);
1687
1688 flush_all_kernel_tsbs();
1689
1690 __flush_tlb_all();
1691 }
1692
1693 #ifdef CONFIG_DEBUG_PAGEALLOC
1694 void __kernel_map_pages(struct page *page, int numpages, int enable)
1695 {
1696 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1697 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1698
1699 kernel_map_range(phys_start, phys_end,
1700 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1701
1702 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1703 PAGE_OFFSET + phys_end);
1704
1705 /* we should perform an IPI and flush all tlbs,
1706 * but that can deadlock->flush only current cpu.
1707 */
1708 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1709 PAGE_OFFSET + phys_end);
1710 }
1711 #endif
1712
1713 unsigned long __init find_ecache_flush_span(unsigned long size)
1714 {
1715 int i;
1716
1717 for (i = 0; i < pavail_ents; i++) {
1718 if (pavail[i].reg_size >= size)
1719 return pavail[i].phys_addr;
1720 }
1721
1722 return ~0UL;
1723 }
1724
1725 unsigned long PAGE_OFFSET;
1726 EXPORT_SYMBOL(PAGE_OFFSET);
1727
1728 unsigned long VMALLOC_END = 0x0000010000000000UL;
1729 EXPORT_SYMBOL(VMALLOC_END);
1730
1731 unsigned long sparc64_va_hole_top = 0xfffff80000000000UL;
1732 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1733
1734 static void __init setup_page_offset(void)
1735 {
1736 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1737 /* Cheetah/Panther support a full 64-bit virtual
1738 * address, so we can use all that our page tables
1739 * support.
1740 */
1741 sparc64_va_hole_top = 0xfff0000000000000UL;
1742 sparc64_va_hole_bottom = 0x0010000000000000UL;
1743
1744 max_phys_bits = 42;
1745 } else if (tlb_type == hypervisor) {
1746 switch (sun4v_chip_type) {
1747 case SUN4V_CHIP_NIAGARA1:
1748 case SUN4V_CHIP_NIAGARA2:
1749 /* T1 and T2 support 48-bit virtual addresses. */
1750 sparc64_va_hole_top = 0xffff800000000000UL;
1751 sparc64_va_hole_bottom = 0x0000800000000000UL;
1752
1753 max_phys_bits = 39;
1754 break;
1755 case SUN4V_CHIP_NIAGARA3:
1756 /* T3 supports 48-bit virtual addresses. */
1757 sparc64_va_hole_top = 0xffff800000000000UL;
1758 sparc64_va_hole_bottom = 0x0000800000000000UL;
1759
1760 max_phys_bits = 43;
1761 break;
1762 case SUN4V_CHIP_NIAGARA4:
1763 case SUN4V_CHIP_NIAGARA5:
1764 case SUN4V_CHIP_SPARC64X:
1765 case SUN4V_CHIP_SPARC_M6:
1766 /* T4 and later support 52-bit virtual addresses. */
1767 sparc64_va_hole_top = 0xfff8000000000000UL;
1768 sparc64_va_hole_bottom = 0x0008000000000000UL;
1769 max_phys_bits = 47;
1770 break;
1771 case SUN4V_CHIP_SPARC_M7:
1772 default:
1773 /* M7 and later support 52-bit virtual addresses. */
1774 sparc64_va_hole_top = 0xfff8000000000000UL;
1775 sparc64_va_hole_bottom = 0x0008000000000000UL;
1776 max_phys_bits = 49;
1777 break;
1778 }
1779 }
1780
1781 if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1782 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1783 max_phys_bits);
1784 prom_halt();
1785 }
1786
1787 PAGE_OFFSET = sparc64_va_hole_top;
1788 VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1789 (sparc64_va_hole_bottom >> 2));
1790
1791 pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1792 PAGE_OFFSET, max_phys_bits);
1793 pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1794 VMALLOC_START, VMALLOC_END);
1795 pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1796 VMEMMAP_BASE, VMEMMAP_BASE << 1);
1797 }
1798
1799 static void __init tsb_phys_patch(void)
1800 {
1801 struct tsb_ldquad_phys_patch_entry *pquad;
1802 struct tsb_phys_patch_entry *p;
1803
1804 pquad = &__tsb_ldquad_phys_patch;
1805 while (pquad < &__tsb_ldquad_phys_patch_end) {
1806 unsigned long addr = pquad->addr;
1807
1808 if (tlb_type == hypervisor)
1809 *(unsigned int *) addr = pquad->sun4v_insn;
1810 else
1811 *(unsigned int *) addr = pquad->sun4u_insn;
1812 wmb();
1813 __asm__ __volatile__("flush %0"
1814 : /* no outputs */
1815 : "r" (addr));
1816
1817 pquad++;
1818 }
1819
1820 p = &__tsb_phys_patch;
1821 while (p < &__tsb_phys_patch_end) {
1822 unsigned long addr = p->addr;
1823
1824 *(unsigned int *) addr = p->insn;
1825 wmb();
1826 __asm__ __volatile__("flush %0"
1827 : /* no outputs */
1828 : "r" (addr));
1829
1830 p++;
1831 }
1832 }
1833
1834 /* Don't mark as init, we give this to the Hypervisor. */
1835 #ifndef CONFIG_DEBUG_PAGEALLOC
1836 #define NUM_KTSB_DESCR 2
1837 #else
1838 #define NUM_KTSB_DESCR 1
1839 #endif
1840 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1841
1842 /* The swapper TSBs are loaded with a base sequence of:
1843 *
1844 * sethi %uhi(SYMBOL), REG1
1845 * sethi %hi(SYMBOL), REG2
1846 * or REG1, %ulo(SYMBOL), REG1
1847 * or REG2, %lo(SYMBOL), REG2
1848 * sllx REG1, 32, REG1
1849 * or REG1, REG2, REG1
1850 *
1851 * When we use physical addressing for the TSB accesses, we patch the
1852 * first four instructions in the above sequence.
1853 */
1854
1855 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1856 {
1857 unsigned long high_bits, low_bits;
1858
1859 high_bits = (pa >> 32) & 0xffffffff;
1860 low_bits = (pa >> 0) & 0xffffffff;
1861
1862 while (start < end) {
1863 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1864
1865 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
1866 __asm__ __volatile__("flush %0" : : "r" (ia));
1867
1868 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
1869 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
1870
1871 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
1872 __asm__ __volatile__("flush %0" : : "r" (ia + 2));
1873
1874 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
1875 __asm__ __volatile__("flush %0" : : "r" (ia + 3));
1876
1877 start++;
1878 }
1879 }
1880
1881 static void ktsb_phys_patch(void)
1882 {
1883 extern unsigned int __swapper_tsb_phys_patch;
1884 extern unsigned int __swapper_tsb_phys_patch_end;
1885 unsigned long ktsb_pa;
1886
1887 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1888 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1889 &__swapper_tsb_phys_patch_end, ktsb_pa);
1890 #ifndef CONFIG_DEBUG_PAGEALLOC
1891 {
1892 extern unsigned int __swapper_4m_tsb_phys_patch;
1893 extern unsigned int __swapper_4m_tsb_phys_patch_end;
1894 ktsb_pa = (kern_base +
1895 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1896 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1897 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1898 }
1899 #endif
1900 }
1901
1902 static void __init sun4v_ktsb_init(void)
1903 {
1904 unsigned long ktsb_pa;
1905
1906 /* First KTSB for PAGE_SIZE mappings. */
1907 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1908
1909 switch (PAGE_SIZE) {
1910 case 8 * 1024:
1911 default:
1912 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1913 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1914 break;
1915
1916 case 64 * 1024:
1917 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1918 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1919 break;
1920
1921 case 512 * 1024:
1922 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1923 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1924 break;
1925
1926 case 4 * 1024 * 1024:
1927 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1928 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1929 break;
1930 }
1931
1932 ktsb_descr[0].assoc = 1;
1933 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1934 ktsb_descr[0].ctx_idx = 0;
1935 ktsb_descr[0].tsb_base = ktsb_pa;
1936 ktsb_descr[0].resv = 0;
1937
1938 #ifndef CONFIG_DEBUG_PAGEALLOC
1939 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
1940 ktsb_pa = (kern_base +
1941 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1942
1943 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1944 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1945 HV_PGSZ_MASK_256MB |
1946 HV_PGSZ_MASK_2GB |
1947 HV_PGSZ_MASK_16GB) &
1948 cpu_pgsz_mask);
1949 ktsb_descr[1].assoc = 1;
1950 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1951 ktsb_descr[1].ctx_idx = 0;
1952 ktsb_descr[1].tsb_base = ktsb_pa;
1953 ktsb_descr[1].resv = 0;
1954 #endif
1955 }
1956
1957 void sun4v_ktsb_register(void)
1958 {
1959 unsigned long pa, ret;
1960
1961 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1962
1963 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1964 if (ret != 0) {
1965 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1966 "errors with %lx\n", pa, ret);
1967 prom_halt();
1968 }
1969 }
1970
1971 static void __init sun4u_linear_pte_xor_finalize(void)
1972 {
1973 #ifndef CONFIG_DEBUG_PAGEALLOC
1974 /* This is where we would add Panther support for
1975 * 32MB and 256MB pages.
1976 */
1977 #endif
1978 }
1979
1980 static void __init sun4v_linear_pte_xor_finalize(void)
1981 {
1982 unsigned long pagecv_flag;
1983
1984 /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
1985 * enables MCD error. Do not set bit 9 on M7 processor.
1986 */
1987 switch (sun4v_chip_type) {
1988 case SUN4V_CHIP_SPARC_M7:
1989 pagecv_flag = 0x00;
1990 break;
1991 default:
1992 pagecv_flag = _PAGE_CV_4V;
1993 break;
1994 }
1995 #ifndef CONFIG_DEBUG_PAGEALLOC
1996 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1997 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1998 PAGE_OFFSET;
1999 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2000 _PAGE_P_4V | _PAGE_W_4V);
2001 } else {
2002 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2003 }
2004
2005 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2006 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2007 PAGE_OFFSET;
2008 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2009 _PAGE_P_4V | _PAGE_W_4V);
2010 } else {
2011 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2012 }
2013
2014 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2015 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2016 PAGE_OFFSET;
2017 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2018 _PAGE_P_4V | _PAGE_W_4V);
2019 } else {
2020 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2021 }
2022 #endif
2023 }
2024
2025 /* paging_init() sets up the page tables */
2026
2027 static unsigned long last_valid_pfn;
2028
2029 static void sun4u_pgprot_init(void);
2030 static void sun4v_pgprot_init(void);
2031
2032 static phys_addr_t __init available_memory(void)
2033 {
2034 phys_addr_t available = 0ULL;
2035 phys_addr_t pa_start, pa_end;
2036 u64 i;
2037
2038 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2039 &pa_end, NULL)
2040 available = available + (pa_end - pa_start);
2041
2042 return available;
2043 }
2044
2045 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2046 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2047 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2048 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2049 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2050 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2051
2052 /* We need to exclude reserved regions. This exclusion will include
2053 * vmlinux and initrd. To be more precise the initrd size could be used to
2054 * compute a new lower limit because it is freed later during initialization.
2055 */
2056 static void __init reduce_memory(phys_addr_t limit_ram)
2057 {
2058 phys_addr_t avail_ram = available_memory();
2059 phys_addr_t pa_start, pa_end;
2060 u64 i;
2061
2062 if (limit_ram >= avail_ram)
2063 return;
2064
2065 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2066 &pa_end, NULL) {
2067 phys_addr_t region_size = pa_end - pa_start;
2068 phys_addr_t clip_start = pa_start;
2069
2070 avail_ram = avail_ram - region_size;
2071 /* Are we consuming too much? */
2072 if (avail_ram < limit_ram) {
2073 phys_addr_t give_back = limit_ram - avail_ram;
2074
2075 region_size = region_size - give_back;
2076 clip_start = clip_start + give_back;
2077 }
2078
2079 memblock_remove(clip_start, region_size);
2080
2081 if (avail_ram <= limit_ram)
2082 break;
2083 i = 0UL;
2084 }
2085 }
2086
2087 void __init paging_init(void)
2088 {
2089 unsigned long end_pfn, shift, phys_base;
2090 unsigned long real_end, i;
2091 int node;
2092
2093 setup_page_offset();
2094
2095 /* These build time checkes make sure that the dcache_dirty_cpu()
2096 * page->flags usage will work.
2097 *
2098 * When a page gets marked as dcache-dirty, we store the
2099 * cpu number starting at bit 32 in the page->flags. Also,
2100 * functions like clear_dcache_dirty_cpu use the cpu mask
2101 * in 13-bit signed-immediate instruction fields.
2102 */
2103
2104 /*
2105 * Page flags must not reach into upper 32 bits that are used
2106 * for the cpu number
2107 */
2108 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2109
2110 /*
2111 * The bit fields placed in the high range must not reach below
2112 * the 32 bit boundary. Otherwise we cannot place the cpu field
2113 * at the 32 bit boundary.
2114 */
2115 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2116 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2117
2118 BUILD_BUG_ON(NR_CPUS > 4096);
2119
2120 kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2121 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2122
2123 /* Invalidate both kernel TSBs. */
2124 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2125 #ifndef CONFIG_DEBUG_PAGEALLOC
2126 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2127 #endif
2128
2129 /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2130 * bit on M7 processor. This is a conflicting usage of the same
2131 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2132 * Detection error on all pages and this will lead to problems
2133 * later. Kernel does not run with MCD enabled and hence rest
2134 * of the required steps to fully configure memory corruption
2135 * detection are not taken. We need to ensure TTE.mcde is not
2136 * set on M7 processor. Compute the value of cacheability
2137 * flag for use later taking this into consideration.
2138 */
2139 switch (sun4v_chip_type) {
2140 case SUN4V_CHIP_SPARC_M7:
2141 page_cache4v_flag = _PAGE_CP_4V;
2142 break;
2143 default:
2144 page_cache4v_flag = _PAGE_CACHE_4V;
2145 break;
2146 }
2147
2148 if (tlb_type == hypervisor)
2149 sun4v_pgprot_init();
2150 else
2151 sun4u_pgprot_init();
2152
2153 if (tlb_type == cheetah_plus ||
2154 tlb_type == hypervisor) {
2155 tsb_phys_patch();
2156 ktsb_phys_patch();
2157 }
2158
2159 if (tlb_type == hypervisor)
2160 sun4v_patch_tlb_handlers();
2161
2162 /* Find available physical memory...
2163 *
2164 * Read it twice in order to work around a bug in openfirmware.
2165 * The call to grab this table itself can cause openfirmware to
2166 * allocate memory, which in turn can take away some space from
2167 * the list of available memory. Reading it twice makes sure
2168 * we really do get the final value.
2169 */
2170 read_obp_translations();
2171 read_obp_memory("reg", &pall[0], &pall_ents);
2172 read_obp_memory("available", &pavail[0], &pavail_ents);
2173 read_obp_memory("available", &pavail[0], &pavail_ents);
2174
2175 phys_base = 0xffffffffffffffffUL;
2176 for (i = 0; i < pavail_ents; i++) {
2177 phys_base = min(phys_base, pavail[i].phys_addr);
2178 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2179 }
2180
2181 memblock_reserve(kern_base, kern_size);
2182
2183 find_ramdisk(phys_base);
2184
2185 if (cmdline_memory_size)
2186 reduce_memory(cmdline_memory_size);
2187
2188 memblock_allow_resize();
2189 memblock_dump_all();
2190
2191 set_bit(0, mmu_context_bmap);
2192
2193 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2194
2195 real_end = (unsigned long)_end;
2196 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2197 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2198 num_kernel_image_mappings);
2199
2200 /* Set kernel pgd to upper alias so physical page computations
2201 * work.
2202 */
2203 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2204
2205 memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2206
2207 inherit_prom_mappings();
2208
2209 /* Ok, we can use our TLB miss and window trap handlers safely. */
2210 setup_tba();
2211
2212 __flush_tlb_all();
2213
2214 prom_build_devicetree();
2215 of_populate_present_mask();
2216 #ifndef CONFIG_SMP
2217 of_fill_in_cpu_data();
2218 #endif
2219
2220 if (tlb_type == hypervisor) {
2221 sun4v_mdesc_init();
2222 mdesc_populate_present_mask(cpu_all_mask);
2223 #ifndef CONFIG_SMP
2224 mdesc_fill_in_cpu_data(cpu_all_mask);
2225 #endif
2226 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2227
2228 sun4v_linear_pte_xor_finalize();
2229
2230 sun4v_ktsb_init();
2231 sun4v_ktsb_register();
2232 } else {
2233 unsigned long impl, ver;
2234
2235 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2236 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2237
2238 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2239 impl = ((ver >> 32) & 0xffff);
2240 if (impl == PANTHER_IMPL)
2241 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2242 HV_PGSZ_MASK_256MB);
2243
2244 sun4u_linear_pte_xor_finalize();
2245 }
2246
2247 /* Flush the TLBs and the 4M TSB so that the updated linear
2248 * pte XOR settings are realized for all mappings.
2249 */
2250 __flush_tlb_all();
2251 #ifndef CONFIG_DEBUG_PAGEALLOC
2252 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2253 #endif
2254 __flush_tlb_all();
2255
2256 /* Setup bootmem... */
2257 last_valid_pfn = end_pfn = bootmem_init(phys_base);
2258
2259 /* Once the OF device tree and MDESC have been setup, we know
2260 * the list of possible cpus. Therefore we can allocate the
2261 * IRQ stacks.
2262 */
2263 for_each_possible_cpu(i) {
2264 node = cpu_to_node(i);
2265
2266 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2267 THREAD_SIZE,
2268 THREAD_SIZE, 0);
2269 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2270 THREAD_SIZE,
2271 THREAD_SIZE, 0);
2272 }
2273
2274 kernel_physical_mapping_init();
2275
2276 {
2277 unsigned long max_zone_pfns[MAX_NR_ZONES];
2278
2279 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2280
2281 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2282
2283 free_area_init_nodes(max_zone_pfns);
2284 }
2285
2286 printk("Booting Linux...\n");
2287 }
2288
2289 int page_in_phys_avail(unsigned long paddr)
2290 {
2291 int i;
2292
2293 paddr &= PAGE_MASK;
2294
2295 for (i = 0; i < pavail_ents; i++) {
2296 unsigned long start, end;
2297
2298 start = pavail[i].phys_addr;
2299 end = start + pavail[i].reg_size;
2300
2301 if (paddr >= start && paddr < end)
2302 return 1;
2303 }
2304 if (paddr >= kern_base && paddr < (kern_base + kern_size))
2305 return 1;
2306 #ifdef CONFIG_BLK_DEV_INITRD
2307 if (paddr >= __pa(initrd_start) &&
2308 paddr < __pa(PAGE_ALIGN(initrd_end)))
2309 return 1;
2310 #endif
2311
2312 return 0;
2313 }
2314
2315 static void __init register_page_bootmem_info(void)
2316 {
2317 #ifdef CONFIG_NEED_MULTIPLE_NODES
2318 int i;
2319
2320 for_each_online_node(i)
2321 if (NODE_DATA(i)->node_spanned_pages)
2322 register_page_bootmem_info_node(NODE_DATA(i));
2323 #endif
2324 }
2325 void __init mem_init(void)
2326 {
2327 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2328
2329 register_page_bootmem_info();
2330 free_all_bootmem();
2331
2332 /*
2333 * Set up the zero page, mark it reserved, so that page count
2334 * is not manipulated when freeing the page from user ptes.
2335 */
2336 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2337 if (mem_map_zero == NULL) {
2338 prom_printf("paging_init: Cannot alloc zero page.\n");
2339 prom_halt();
2340 }
2341 mark_page_reserved(mem_map_zero);
2342
2343 mem_init_print_info(NULL);
2344
2345 if (tlb_type == cheetah || tlb_type == cheetah_plus)
2346 cheetah_ecache_flush_init();
2347 }
2348
2349 void free_initmem(void)
2350 {
2351 unsigned long addr, initend;
2352 int do_free = 1;
2353
2354 /* If the physical memory maps were trimmed by kernel command
2355 * line options, don't even try freeing this initmem stuff up.
2356 * The kernel image could have been in the trimmed out region
2357 * and if so the freeing below will free invalid page structs.
2358 */
2359 if (cmdline_memory_size)
2360 do_free = 0;
2361
2362 /*
2363 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2364 */
2365 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2366 initend = (unsigned long)(__init_end) & PAGE_MASK;
2367 for (; addr < initend; addr += PAGE_SIZE) {
2368 unsigned long page;
2369
2370 page = (addr +
2371 ((unsigned long) __va(kern_base)) -
2372 ((unsigned long) KERNBASE));
2373 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2374
2375 if (do_free)
2376 free_reserved_page(virt_to_page(page));
2377 }
2378 }
2379
2380 #ifdef CONFIG_BLK_DEV_INITRD
2381 void free_initrd_mem(unsigned long start, unsigned long end)
2382 {
2383 free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2384 "initrd");
2385 }
2386 #endif
2387
2388 pgprot_t PAGE_KERNEL __read_mostly;
2389 EXPORT_SYMBOL(PAGE_KERNEL);
2390
2391 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2392 pgprot_t PAGE_COPY __read_mostly;
2393
2394 pgprot_t PAGE_SHARED __read_mostly;
2395 EXPORT_SYMBOL(PAGE_SHARED);
2396
2397 unsigned long pg_iobits __read_mostly;
2398
2399 unsigned long _PAGE_IE __read_mostly;
2400 EXPORT_SYMBOL(_PAGE_IE);
2401
2402 unsigned long _PAGE_E __read_mostly;
2403 EXPORT_SYMBOL(_PAGE_E);
2404
2405 unsigned long _PAGE_CACHE __read_mostly;
2406 EXPORT_SYMBOL(_PAGE_CACHE);
2407
2408 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2409 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2410 int node)
2411 {
2412 unsigned long pte_base;
2413
2414 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2415 _PAGE_CP_4U | _PAGE_CV_4U |
2416 _PAGE_P_4U | _PAGE_W_4U);
2417 if (tlb_type == hypervisor)
2418 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2419 page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2420
2421 pte_base |= _PAGE_PMD_HUGE;
2422
2423 vstart = vstart & PMD_MASK;
2424 vend = ALIGN(vend, PMD_SIZE);
2425 for (; vstart < vend; vstart += PMD_SIZE) {
2426 pgd_t *pgd = pgd_offset_k(vstart);
2427 unsigned long pte;
2428 pud_t *pud;
2429 pmd_t *pmd;
2430
2431 if (pgd_none(*pgd)) {
2432 pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2433
2434 if (!new)
2435 return -ENOMEM;
2436 pgd_populate(&init_mm, pgd, new);
2437 }
2438
2439 pud = pud_offset(pgd, vstart);
2440 if (pud_none(*pud)) {
2441 pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2442
2443 if (!new)
2444 return -ENOMEM;
2445 pud_populate(&init_mm, pud, new);
2446 }
2447
2448 pmd = pmd_offset(pud, vstart);
2449
2450 pte = pmd_val(*pmd);
2451 if (!(pte & _PAGE_VALID)) {
2452 void *block = vmemmap_alloc_block(PMD_SIZE, node);
2453
2454 if (!block)
2455 return -ENOMEM;
2456
2457 pmd_val(*pmd) = pte_base | __pa(block);
2458 }
2459 }
2460
2461 return 0;
2462 }
2463
2464 void vmemmap_free(unsigned long start, unsigned long end)
2465 {
2466 }
2467 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2468
2469 static void prot_init_common(unsigned long page_none,
2470 unsigned long page_shared,
2471 unsigned long page_copy,
2472 unsigned long page_readonly,
2473 unsigned long page_exec_bit)
2474 {
2475 PAGE_COPY = __pgprot(page_copy);
2476 PAGE_SHARED = __pgprot(page_shared);
2477
2478 protection_map[0x0] = __pgprot(page_none);
2479 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2480 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2481 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2482 protection_map[0x4] = __pgprot(page_readonly);
2483 protection_map[0x5] = __pgprot(page_readonly);
2484 protection_map[0x6] = __pgprot(page_copy);
2485 protection_map[0x7] = __pgprot(page_copy);
2486 protection_map[0x8] = __pgprot(page_none);
2487 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2488 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2489 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2490 protection_map[0xc] = __pgprot(page_readonly);
2491 protection_map[0xd] = __pgprot(page_readonly);
2492 protection_map[0xe] = __pgprot(page_shared);
2493 protection_map[0xf] = __pgprot(page_shared);
2494 }
2495
2496 static void __init sun4u_pgprot_init(void)
2497 {
2498 unsigned long page_none, page_shared, page_copy, page_readonly;
2499 unsigned long page_exec_bit;
2500 int i;
2501
2502 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2503 _PAGE_CACHE_4U | _PAGE_P_4U |
2504 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2505 _PAGE_EXEC_4U);
2506 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2507 _PAGE_CACHE_4U | _PAGE_P_4U |
2508 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2509 _PAGE_EXEC_4U | _PAGE_L_4U);
2510
2511 _PAGE_IE = _PAGE_IE_4U;
2512 _PAGE_E = _PAGE_E_4U;
2513 _PAGE_CACHE = _PAGE_CACHE_4U;
2514
2515 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2516 __ACCESS_BITS_4U | _PAGE_E_4U);
2517
2518 #ifdef CONFIG_DEBUG_PAGEALLOC
2519 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2520 #else
2521 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2522 PAGE_OFFSET;
2523 #endif
2524 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2525 _PAGE_P_4U | _PAGE_W_4U);
2526
2527 for (i = 1; i < 4; i++)
2528 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2529
2530 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2531 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2532 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2533
2534
2535 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2536 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2537 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2538 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2539 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2540 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2541 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2542
2543 page_exec_bit = _PAGE_EXEC_4U;
2544
2545 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2546 page_exec_bit);
2547 }
2548
2549 static void __init sun4v_pgprot_init(void)
2550 {
2551 unsigned long page_none, page_shared, page_copy, page_readonly;
2552 unsigned long page_exec_bit;
2553 int i;
2554
2555 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2556 page_cache4v_flag | _PAGE_P_4V |
2557 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2558 _PAGE_EXEC_4V);
2559 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2560
2561 _PAGE_IE = _PAGE_IE_4V;
2562 _PAGE_E = _PAGE_E_4V;
2563 _PAGE_CACHE = page_cache4v_flag;
2564
2565 #ifdef CONFIG_DEBUG_PAGEALLOC
2566 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2567 #else
2568 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2569 PAGE_OFFSET;
2570 #endif
2571 kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2572 _PAGE_W_4V);
2573
2574 for (i = 1; i < 4; i++)
2575 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2576
2577 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2578 __ACCESS_BITS_4V | _PAGE_E_4V);
2579
2580 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2581 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2582 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2583 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2584
2585 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2586 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2587 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2588 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2589 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2590 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2591 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2592
2593 page_exec_bit = _PAGE_EXEC_4V;
2594
2595 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2596 page_exec_bit);
2597 }
2598
2599 unsigned long pte_sz_bits(unsigned long sz)
2600 {
2601 if (tlb_type == hypervisor) {
2602 switch (sz) {
2603 case 8 * 1024:
2604 default:
2605 return _PAGE_SZ8K_4V;
2606 case 64 * 1024:
2607 return _PAGE_SZ64K_4V;
2608 case 512 * 1024:
2609 return _PAGE_SZ512K_4V;
2610 case 4 * 1024 * 1024:
2611 return _PAGE_SZ4MB_4V;
2612 }
2613 } else {
2614 switch (sz) {
2615 case 8 * 1024:
2616 default:
2617 return _PAGE_SZ8K_4U;
2618 case 64 * 1024:
2619 return _PAGE_SZ64K_4U;
2620 case 512 * 1024:
2621 return _PAGE_SZ512K_4U;
2622 case 4 * 1024 * 1024:
2623 return _PAGE_SZ4MB_4U;
2624 }
2625 }
2626 }
2627
2628 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2629 {
2630 pte_t pte;
2631
2632 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2633 pte_val(pte) |= (((unsigned long)space) << 32);
2634 pte_val(pte) |= pte_sz_bits(page_size);
2635
2636 return pte;
2637 }
2638
2639 static unsigned long kern_large_tte(unsigned long paddr)
2640 {
2641 unsigned long val;
2642
2643 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2644 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2645 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2646 if (tlb_type == hypervisor)
2647 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2648 page_cache4v_flag | _PAGE_P_4V |
2649 _PAGE_EXEC_4V | _PAGE_W_4V);
2650
2651 return val | paddr;
2652 }
2653
2654 /* If not locked, zap it. */
2655 void __flush_tlb_all(void)
2656 {
2657 unsigned long pstate;
2658 int i;
2659
2660 __asm__ __volatile__("flushw\n\t"
2661 "rdpr %%pstate, %0\n\t"
2662 "wrpr %0, %1, %%pstate"
2663 : "=r" (pstate)
2664 : "i" (PSTATE_IE));
2665 if (tlb_type == hypervisor) {
2666 sun4v_mmu_demap_all();
2667 } else if (tlb_type == spitfire) {
2668 for (i = 0; i < 64; i++) {
2669 /* Spitfire Errata #32 workaround */
2670 /* NOTE: Always runs on spitfire, so no
2671 * cheetah+ page size encodings.
2672 */
2673 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2674 "flush %%g6"
2675 : /* No outputs */
2676 : "r" (0),
2677 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2678
2679 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2680 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2681 "membar #Sync"
2682 : /* no outputs */
2683 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2684 spitfire_put_dtlb_data(i, 0x0UL);
2685 }
2686
2687 /* Spitfire Errata #32 workaround */
2688 /* NOTE: Always runs on spitfire, so no
2689 * cheetah+ page size encodings.
2690 */
2691 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2692 "flush %%g6"
2693 : /* No outputs */
2694 : "r" (0),
2695 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2696
2697 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2698 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2699 "membar #Sync"
2700 : /* no outputs */
2701 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2702 spitfire_put_itlb_data(i, 0x0UL);
2703 }
2704 }
2705 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2706 cheetah_flush_dtlb_all();
2707 cheetah_flush_itlb_all();
2708 }
2709 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2710 : : "r" (pstate));
2711 }
2712
2713 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2714 unsigned long address)
2715 {
2716 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2717 __GFP_REPEAT | __GFP_ZERO);
2718 pte_t *pte = NULL;
2719
2720 if (page)
2721 pte = (pte_t *) page_address(page);
2722
2723 return pte;
2724 }
2725
2726 pgtable_t pte_alloc_one(struct mm_struct *mm,
2727 unsigned long address)
2728 {
2729 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2730 __GFP_REPEAT | __GFP_ZERO);
2731 if (!page)
2732 return NULL;
2733 if (!pgtable_page_ctor(page)) {
2734 free_hot_cold_page(page, 0);
2735 return NULL;
2736 }
2737 return (pte_t *) page_address(page);
2738 }
2739
2740 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2741 {
2742 free_page((unsigned long)pte);
2743 }
2744
2745 static void __pte_free(pgtable_t pte)
2746 {
2747 struct page *page = virt_to_page(pte);
2748
2749 pgtable_page_dtor(page);
2750 __free_page(page);
2751 }
2752
2753 void pte_free(struct mm_struct *mm, pgtable_t pte)
2754 {
2755 __pte_free(pte);
2756 }
2757
2758 void pgtable_free(void *table, bool is_page)
2759 {
2760 if (is_page)
2761 __pte_free(table);
2762 else
2763 kmem_cache_free(pgtable_cache, table);
2764 }
2765
2766 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2767 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2768 pmd_t *pmd)
2769 {
2770 unsigned long pte, flags;
2771 struct mm_struct *mm;
2772 pmd_t entry = *pmd;
2773
2774 if (!pmd_large(entry) || !pmd_young(entry))
2775 return;
2776
2777 pte = pmd_val(entry);
2778
2779 /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */
2780 if (!(pte & _PAGE_VALID))
2781 return;
2782
2783 /* We are fabricating 8MB pages using 4MB real hw pages. */
2784 pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2785
2786 mm = vma->vm_mm;
2787
2788 spin_lock_irqsave(&mm->context.lock, flags);
2789
2790 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2791 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2792 addr, pte);
2793
2794 spin_unlock_irqrestore(&mm->context.lock, flags);
2795 }
2796 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2797
2798 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2799 static void context_reload(void *__data)
2800 {
2801 struct mm_struct *mm = __data;
2802
2803 if (mm == current->mm)
2804 load_secondary_context(mm);
2805 }
2806
2807 void hugetlb_setup(struct pt_regs *regs)
2808 {
2809 struct mm_struct *mm = current->mm;
2810 struct tsb_config *tp;
2811
2812 if (faulthandler_disabled() || !mm) {
2813 const struct exception_table_entry *entry;
2814
2815 entry = search_exception_tables(regs->tpc);
2816 if (entry) {
2817 regs->tpc = entry->fixup;
2818 regs->tnpc = regs->tpc + 4;
2819 return;
2820 }
2821 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2822 die_if_kernel("HugeTSB in atomic", regs);
2823 }
2824
2825 tp = &mm->context.tsb_block[MM_TSB_HUGE];
2826 if (likely(tp->tsb == NULL))
2827 tsb_grow(mm, MM_TSB_HUGE, 0);
2828
2829 tsb_context_switch(mm);
2830 smp_tsb_sync(mm);
2831
2832 /* On UltraSPARC-III+ and later, configure the second half of
2833 * the Data-TLB for huge pages.
2834 */
2835 if (tlb_type == cheetah_plus) {
2836 unsigned long ctx;
2837
2838 spin_lock(&ctx_alloc_lock);
2839 ctx = mm->context.sparc64_ctx_val;
2840 ctx &= ~CTX_PGSZ_MASK;
2841 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2842 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2843
2844 if (ctx != mm->context.sparc64_ctx_val) {
2845 /* When changing the page size fields, we
2846 * must perform a context flush so that no
2847 * stale entries match. This flush must
2848 * occur with the original context register
2849 * settings.
2850 */
2851 do_flush_tlb_mm(mm);
2852
2853 /* Reload the context register of all processors
2854 * also executing in this address space.
2855 */
2856 mm->context.sparc64_ctx_val = ctx;
2857 on_each_cpu(context_reload, mm, 0);
2858 }
2859 spin_unlock(&ctx_alloc_lock);
2860 }
2861 }
2862 #endif
2863
2864 static struct resource code_resource = {
2865 .name = "Kernel code",
2866 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2867 };
2868
2869 static struct resource data_resource = {
2870 .name = "Kernel data",
2871 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2872 };
2873
2874 static struct resource bss_resource = {
2875 .name = "Kernel bss",
2876 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2877 };
2878
2879 static inline resource_size_t compute_kern_paddr(void *addr)
2880 {
2881 return (resource_size_t) (addr - KERNBASE + kern_base);
2882 }
2883
2884 static void __init kernel_lds_init(void)
2885 {
2886 code_resource.start = compute_kern_paddr(_text);
2887 code_resource.end = compute_kern_paddr(_etext - 1);
2888 data_resource.start = compute_kern_paddr(_etext);
2889 data_resource.end = compute_kern_paddr(_edata - 1);
2890 bss_resource.start = compute_kern_paddr(__bss_start);
2891 bss_resource.end = compute_kern_paddr(_end - 1);
2892 }
2893
2894 static int __init report_memory(void)
2895 {
2896 int i;
2897 struct resource *res;
2898
2899 kernel_lds_init();
2900
2901 for (i = 0; i < pavail_ents; i++) {
2902 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
2903
2904 if (!res) {
2905 pr_warn("Failed to allocate source.\n");
2906 break;
2907 }
2908
2909 res->name = "System RAM";
2910 res->start = pavail[i].phys_addr;
2911 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
2912 res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
2913
2914 if (insert_resource(&iomem_resource, res) < 0) {
2915 pr_warn("Resource insertion failed.\n");
2916 break;
2917 }
2918
2919 insert_resource(res, &code_resource);
2920 insert_resource(res, &data_resource);
2921 insert_resource(res, &bss_resource);
2922 }
2923
2924 return 0;
2925 }
2926 arch_initcall(report_memory);
2927
2928 #ifdef CONFIG_SMP
2929 #define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range
2930 #else
2931 #define do_flush_tlb_kernel_range __flush_tlb_kernel_range
2932 #endif
2933
2934 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
2935 {
2936 if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
2937 if (start < LOW_OBP_ADDRESS) {
2938 flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
2939 do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
2940 }
2941 if (end > HI_OBP_ADDRESS) {
2942 flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
2943 do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
2944 }
2945 } else {
2946 flush_tsb_kernel_range(start, end);
2947 do_flush_tlb_kernel_range(start, end);
2948 }
2949 }
This page took 0.122573 seconds and 5 git commands to generate.