85be1ca539b2e4cc5aea5d6fb8b1587fc7a4e73a
[deliverable/linux.git] / arch / sparc / mm / init_64.c
1 /*
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/memblock.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
29
30 #include <asm/head.h>
31 #include <asm/page.h>
32 #include <asm/pgalloc.h>
33 #include <asm/pgtable.h>
34 #include <asm/oplib.h>
35 #include <asm/iommu.h>
36 #include <asm/io.h>
37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/dma.h>
41 #include <asm/starfire.h>
42 #include <asm/tlb.h>
43 #include <asm/spitfire.h>
44 #include <asm/sections.h>
45 #include <asm/tsb.h>
46 #include <asm/hypervisor.h>
47 #include <asm/prom.h>
48 #include <asm/mdesc.h>
49 #include <asm/cpudata.h>
50 #include <asm/irq.h>
51
52 #include "init_64.h"
53
54 unsigned long kern_linear_pte_xor[4] __read_mostly;
55
56 /* A bitmap, two bits for every 256MB of physical memory. These two
57 * bits determine what page size we use for kernel linear
58 * translations. They form an index into kern_linear_pte_xor[]. The
59 * value in the indexed slot is XOR'd with the TLB miss virtual
60 * address to form the resulting TTE. The mapping is:
61 *
62 * 0 ==> 4MB
63 * 1 ==> 256MB
64 * 2 ==> 2GB
65 * 3 ==> 16GB
66 *
67 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
68 * support 2GB pages, and hopefully future cpus will support the 16GB
69 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
70 * if these larger page sizes are not supported by the cpu.
71 *
72 * It would be nice to determine this from the machine description
73 * 'cpu' properties, but we need to have this table setup before the
74 * MDESC is initialized.
75 */
76 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
77
78 #ifndef CONFIG_DEBUG_PAGEALLOC
79 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
80 * Space is allocated for this right after the trap table in
81 * arch/sparc64/kernel/head.S
82 */
83 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
84 #endif
85
86 static unsigned long cpu_pgsz_mask;
87
88 #define MAX_BANKS 32
89
90 static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
91 static int pavail_ents __devinitdata;
92
93 static int cmp_p64(const void *a, const void *b)
94 {
95 const struct linux_prom64_registers *x = a, *y = b;
96
97 if (x->phys_addr > y->phys_addr)
98 return 1;
99 if (x->phys_addr < y->phys_addr)
100 return -1;
101 return 0;
102 }
103
104 static void __init read_obp_memory(const char *property,
105 struct linux_prom64_registers *regs,
106 int *num_ents)
107 {
108 phandle node = prom_finddevice("/memory");
109 int prop_size = prom_getproplen(node, property);
110 int ents, ret, i;
111
112 ents = prop_size / sizeof(struct linux_prom64_registers);
113 if (ents > MAX_BANKS) {
114 prom_printf("The machine has more %s property entries than "
115 "this kernel can support (%d).\n",
116 property, MAX_BANKS);
117 prom_halt();
118 }
119
120 ret = prom_getproperty(node, property, (char *) regs, prop_size);
121 if (ret == -1) {
122 prom_printf("Couldn't get %s property from /memory.\n",
123 property);
124 prom_halt();
125 }
126
127 /* Sanitize what we got from the firmware, by page aligning
128 * everything.
129 */
130 for (i = 0; i < ents; i++) {
131 unsigned long base, size;
132
133 base = regs[i].phys_addr;
134 size = regs[i].reg_size;
135
136 size &= PAGE_MASK;
137 if (base & ~PAGE_MASK) {
138 unsigned long new_base = PAGE_ALIGN(base);
139
140 size -= new_base - base;
141 if ((long) size < 0L)
142 size = 0UL;
143 base = new_base;
144 }
145 if (size == 0UL) {
146 /* If it is empty, simply get rid of it.
147 * This simplifies the logic of the other
148 * functions that process these arrays.
149 */
150 memmove(&regs[i], &regs[i + 1],
151 (ents - i - 1) * sizeof(regs[0]));
152 i--;
153 ents--;
154 continue;
155 }
156 regs[i].phys_addr = base;
157 regs[i].reg_size = size;
158 }
159
160 *num_ents = ents;
161
162 sort(regs, ents, sizeof(struct linux_prom64_registers),
163 cmp_p64, NULL);
164 }
165
166 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
167 sizeof(unsigned long)];
168 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
169
170 /* Kernel physical address base and size in bytes. */
171 unsigned long kern_base __read_mostly;
172 unsigned long kern_size __read_mostly;
173
174 /* Initial ramdisk setup */
175 extern unsigned long sparc_ramdisk_image64;
176 extern unsigned int sparc_ramdisk_image;
177 extern unsigned int sparc_ramdisk_size;
178
179 struct page *mem_map_zero __read_mostly;
180 EXPORT_SYMBOL(mem_map_zero);
181
182 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
183
184 unsigned long sparc64_kern_pri_context __read_mostly;
185 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
186 unsigned long sparc64_kern_sec_context __read_mostly;
187
188 int num_kernel_image_mappings;
189
190 #ifdef CONFIG_DEBUG_DCFLUSH
191 atomic_t dcpage_flushes = ATOMIC_INIT(0);
192 #ifdef CONFIG_SMP
193 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
194 #endif
195 #endif
196
197 inline void flush_dcache_page_impl(struct page *page)
198 {
199 BUG_ON(tlb_type == hypervisor);
200 #ifdef CONFIG_DEBUG_DCFLUSH
201 atomic_inc(&dcpage_flushes);
202 #endif
203
204 #ifdef DCACHE_ALIASING_POSSIBLE
205 __flush_dcache_page(page_address(page),
206 ((tlb_type == spitfire) &&
207 page_mapping(page) != NULL));
208 #else
209 if (page_mapping(page) != NULL &&
210 tlb_type == spitfire)
211 __flush_icache_page(__pa(page_address(page)));
212 #endif
213 }
214
215 #define PG_dcache_dirty PG_arch_1
216 #define PG_dcache_cpu_shift 32UL
217 #define PG_dcache_cpu_mask \
218 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
219
220 #define dcache_dirty_cpu(page) \
221 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
222
223 static inline void set_dcache_dirty(struct page *page, int this_cpu)
224 {
225 unsigned long mask = this_cpu;
226 unsigned long non_cpu_bits;
227
228 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
229 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
230
231 __asm__ __volatile__("1:\n\t"
232 "ldx [%2], %%g7\n\t"
233 "and %%g7, %1, %%g1\n\t"
234 "or %%g1, %0, %%g1\n\t"
235 "casx [%2], %%g7, %%g1\n\t"
236 "cmp %%g7, %%g1\n\t"
237 "bne,pn %%xcc, 1b\n\t"
238 " nop"
239 : /* no outputs */
240 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
241 : "g1", "g7");
242 }
243
244 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
245 {
246 unsigned long mask = (1UL << PG_dcache_dirty);
247
248 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
249 "1:\n\t"
250 "ldx [%2], %%g7\n\t"
251 "srlx %%g7, %4, %%g1\n\t"
252 "and %%g1, %3, %%g1\n\t"
253 "cmp %%g1, %0\n\t"
254 "bne,pn %%icc, 2f\n\t"
255 " andn %%g7, %1, %%g1\n\t"
256 "casx [%2], %%g7, %%g1\n\t"
257 "cmp %%g7, %%g1\n\t"
258 "bne,pn %%xcc, 1b\n\t"
259 " nop\n"
260 "2:"
261 : /* no outputs */
262 : "r" (cpu), "r" (mask), "r" (&page->flags),
263 "i" (PG_dcache_cpu_mask),
264 "i" (PG_dcache_cpu_shift)
265 : "g1", "g7");
266 }
267
268 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
269 {
270 unsigned long tsb_addr = (unsigned long) ent;
271
272 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
273 tsb_addr = __pa(tsb_addr);
274
275 __tsb_insert(tsb_addr, tag, pte);
276 }
277
278 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
279
280 static void flush_dcache(unsigned long pfn)
281 {
282 struct page *page;
283
284 page = pfn_to_page(pfn);
285 if (page) {
286 unsigned long pg_flags;
287
288 pg_flags = page->flags;
289 if (pg_flags & (1UL << PG_dcache_dirty)) {
290 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
291 PG_dcache_cpu_mask);
292 int this_cpu = get_cpu();
293
294 /* This is just to optimize away some function calls
295 * in the SMP case.
296 */
297 if (cpu == this_cpu)
298 flush_dcache_page_impl(page);
299 else
300 smp_flush_dcache_page_impl(page, cpu);
301
302 clear_dcache_dirty_cpu(page, cpu);
303
304 put_cpu();
305 }
306 }
307 }
308
309 /* mm->context.lock must be held */
310 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
311 unsigned long tsb_hash_shift, unsigned long address,
312 unsigned long tte)
313 {
314 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
315 unsigned long tag;
316
317 tsb += ((address >> tsb_hash_shift) &
318 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
319 tag = (address >> 22UL);
320 tsb_insert(tsb, tag, tte);
321 }
322
323 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
324 {
325 unsigned long tsb_index, tsb_hash_shift, flags;
326 struct mm_struct *mm;
327 pte_t pte = *ptep;
328
329 if (tlb_type != hypervisor) {
330 unsigned long pfn = pte_pfn(pte);
331
332 if (pfn_valid(pfn))
333 flush_dcache(pfn);
334 }
335
336 mm = vma->vm_mm;
337
338 tsb_index = MM_TSB_BASE;
339 tsb_hash_shift = PAGE_SHIFT;
340
341 spin_lock_irqsave(&mm->context.lock, flags);
342
343 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
344 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
345 if ((tlb_type == hypervisor &&
346 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
347 (tlb_type != hypervisor &&
348 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
349 tsb_index = MM_TSB_HUGE;
350 tsb_hash_shift = HPAGE_SHIFT;
351 }
352 }
353 #endif
354
355 __update_mmu_tsb_insert(mm, tsb_index, tsb_hash_shift,
356 address, pte_val(pte));
357
358 spin_unlock_irqrestore(&mm->context.lock, flags);
359 }
360
361 void flush_dcache_page(struct page *page)
362 {
363 struct address_space *mapping;
364 int this_cpu;
365
366 if (tlb_type == hypervisor)
367 return;
368
369 /* Do not bother with the expensive D-cache flush if it
370 * is merely the zero page. The 'bigcore' testcase in GDB
371 * causes this case to run millions of times.
372 */
373 if (page == ZERO_PAGE(0))
374 return;
375
376 this_cpu = get_cpu();
377
378 mapping = page_mapping(page);
379 if (mapping && !mapping_mapped(mapping)) {
380 int dirty = test_bit(PG_dcache_dirty, &page->flags);
381 if (dirty) {
382 int dirty_cpu = dcache_dirty_cpu(page);
383
384 if (dirty_cpu == this_cpu)
385 goto out;
386 smp_flush_dcache_page_impl(page, dirty_cpu);
387 }
388 set_dcache_dirty(page, this_cpu);
389 } else {
390 /* We could delay the flush for the !page_mapping
391 * case too. But that case is for exec env/arg
392 * pages and those are %99 certainly going to get
393 * faulted into the tlb (and thus flushed) anyways.
394 */
395 flush_dcache_page_impl(page);
396 }
397
398 out:
399 put_cpu();
400 }
401 EXPORT_SYMBOL(flush_dcache_page);
402
403 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
404 {
405 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
406 if (tlb_type == spitfire) {
407 unsigned long kaddr;
408
409 /* This code only runs on Spitfire cpus so this is
410 * why we can assume _PAGE_PADDR_4U.
411 */
412 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
413 unsigned long paddr, mask = _PAGE_PADDR_4U;
414
415 if (kaddr >= PAGE_OFFSET)
416 paddr = kaddr & mask;
417 else {
418 pgd_t *pgdp = pgd_offset_k(kaddr);
419 pud_t *pudp = pud_offset(pgdp, kaddr);
420 pmd_t *pmdp = pmd_offset(pudp, kaddr);
421 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
422
423 paddr = pte_val(*ptep) & mask;
424 }
425 __flush_icache_page(paddr);
426 }
427 }
428 }
429 EXPORT_SYMBOL(flush_icache_range);
430
431 void mmu_info(struct seq_file *m)
432 {
433 static const char *pgsz_strings[] = {
434 "8K", "64K", "512K", "4MB", "32MB",
435 "256MB", "2GB", "16GB",
436 };
437 int i, printed;
438
439 if (tlb_type == cheetah)
440 seq_printf(m, "MMU Type\t: Cheetah\n");
441 else if (tlb_type == cheetah_plus)
442 seq_printf(m, "MMU Type\t: Cheetah+\n");
443 else if (tlb_type == spitfire)
444 seq_printf(m, "MMU Type\t: Spitfire\n");
445 else if (tlb_type == hypervisor)
446 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
447 else
448 seq_printf(m, "MMU Type\t: ???\n");
449
450 seq_printf(m, "MMU PGSZs\t: ");
451 printed = 0;
452 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
453 if (cpu_pgsz_mask & (1UL << i)) {
454 seq_printf(m, "%s%s",
455 printed ? "," : "", pgsz_strings[i]);
456 printed++;
457 }
458 }
459 seq_putc(m, '\n');
460
461 #ifdef CONFIG_DEBUG_DCFLUSH
462 seq_printf(m, "DCPageFlushes\t: %d\n",
463 atomic_read(&dcpage_flushes));
464 #ifdef CONFIG_SMP
465 seq_printf(m, "DCPageFlushesXC\t: %d\n",
466 atomic_read(&dcpage_flushes_xcall));
467 #endif /* CONFIG_SMP */
468 #endif /* CONFIG_DEBUG_DCFLUSH */
469 }
470
471 struct linux_prom_translation prom_trans[512] __read_mostly;
472 unsigned int prom_trans_ents __read_mostly;
473
474 unsigned long kern_locked_tte_data;
475
476 /* The obp translations are saved based on 8k pagesize, since obp can
477 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
478 * HI_OBP_ADDRESS range are handled in ktlb.S.
479 */
480 static inline int in_obp_range(unsigned long vaddr)
481 {
482 return (vaddr >= LOW_OBP_ADDRESS &&
483 vaddr < HI_OBP_ADDRESS);
484 }
485
486 static int cmp_ptrans(const void *a, const void *b)
487 {
488 const struct linux_prom_translation *x = a, *y = b;
489
490 if (x->virt > y->virt)
491 return 1;
492 if (x->virt < y->virt)
493 return -1;
494 return 0;
495 }
496
497 /* Read OBP translations property into 'prom_trans[]'. */
498 static void __init read_obp_translations(void)
499 {
500 int n, node, ents, first, last, i;
501
502 node = prom_finddevice("/virtual-memory");
503 n = prom_getproplen(node, "translations");
504 if (unlikely(n == 0 || n == -1)) {
505 prom_printf("prom_mappings: Couldn't get size.\n");
506 prom_halt();
507 }
508 if (unlikely(n > sizeof(prom_trans))) {
509 prom_printf("prom_mappings: Size %d is too big.\n", n);
510 prom_halt();
511 }
512
513 if ((n = prom_getproperty(node, "translations",
514 (char *)&prom_trans[0],
515 sizeof(prom_trans))) == -1) {
516 prom_printf("prom_mappings: Couldn't get property.\n");
517 prom_halt();
518 }
519
520 n = n / sizeof(struct linux_prom_translation);
521
522 ents = n;
523
524 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
525 cmp_ptrans, NULL);
526
527 /* Now kick out all the non-OBP entries. */
528 for (i = 0; i < ents; i++) {
529 if (in_obp_range(prom_trans[i].virt))
530 break;
531 }
532 first = i;
533 for (; i < ents; i++) {
534 if (!in_obp_range(prom_trans[i].virt))
535 break;
536 }
537 last = i;
538
539 for (i = 0; i < (last - first); i++) {
540 struct linux_prom_translation *src = &prom_trans[i + first];
541 struct linux_prom_translation *dest = &prom_trans[i];
542
543 *dest = *src;
544 }
545 for (; i < ents; i++) {
546 struct linux_prom_translation *dest = &prom_trans[i];
547 dest->virt = dest->size = dest->data = 0x0UL;
548 }
549
550 prom_trans_ents = last - first;
551
552 if (tlb_type == spitfire) {
553 /* Clear diag TTE bits. */
554 for (i = 0; i < prom_trans_ents; i++)
555 prom_trans[i].data &= ~0x0003fe0000000000UL;
556 }
557
558 /* Force execute bit on. */
559 for (i = 0; i < prom_trans_ents; i++)
560 prom_trans[i].data |= (tlb_type == hypervisor ?
561 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
562 }
563
564 static void __init hypervisor_tlb_lock(unsigned long vaddr,
565 unsigned long pte,
566 unsigned long mmu)
567 {
568 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
569
570 if (ret != 0) {
571 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
572 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
573 prom_halt();
574 }
575 }
576
577 static unsigned long kern_large_tte(unsigned long paddr);
578
579 static void __init remap_kernel(void)
580 {
581 unsigned long phys_page, tte_vaddr, tte_data;
582 int i, tlb_ent = sparc64_highest_locked_tlbent();
583
584 tte_vaddr = (unsigned long) KERNBASE;
585 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
586 tte_data = kern_large_tte(phys_page);
587
588 kern_locked_tte_data = tte_data;
589
590 /* Now lock us into the TLBs via Hypervisor or OBP. */
591 if (tlb_type == hypervisor) {
592 for (i = 0; i < num_kernel_image_mappings; i++) {
593 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
594 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
595 tte_vaddr += 0x400000;
596 tte_data += 0x400000;
597 }
598 } else {
599 for (i = 0; i < num_kernel_image_mappings; i++) {
600 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
601 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
602 tte_vaddr += 0x400000;
603 tte_data += 0x400000;
604 }
605 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
606 }
607 if (tlb_type == cheetah_plus) {
608 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
609 CTX_CHEETAH_PLUS_NUC);
610 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
611 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
612 }
613 }
614
615
616 static void __init inherit_prom_mappings(void)
617 {
618 /* Now fixup OBP's idea about where we really are mapped. */
619 printk("Remapping the kernel... ");
620 remap_kernel();
621 printk("done.\n");
622 }
623
624 void prom_world(int enter)
625 {
626 if (!enter)
627 set_fs(get_fs());
628
629 __asm__ __volatile__("flushw");
630 }
631
632 void __flush_dcache_range(unsigned long start, unsigned long end)
633 {
634 unsigned long va;
635
636 if (tlb_type == spitfire) {
637 int n = 0;
638
639 for (va = start; va < end; va += 32) {
640 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
641 if (++n >= 512)
642 break;
643 }
644 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
645 start = __pa(start);
646 end = __pa(end);
647 for (va = start; va < end; va += 32)
648 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
649 "membar #Sync"
650 : /* no outputs */
651 : "r" (va),
652 "i" (ASI_DCACHE_INVALIDATE));
653 }
654 }
655 EXPORT_SYMBOL(__flush_dcache_range);
656
657 /* get_new_mmu_context() uses "cache + 1". */
658 DEFINE_SPINLOCK(ctx_alloc_lock);
659 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
660 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
661 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
662 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
663
664 /* Caller does TLB context flushing on local CPU if necessary.
665 * The caller also ensures that CTX_VALID(mm->context) is false.
666 *
667 * We must be careful about boundary cases so that we never
668 * let the user have CTX 0 (nucleus) or we ever use a CTX
669 * version of zero (and thus NO_CONTEXT would not be caught
670 * by version mis-match tests in mmu_context.h).
671 *
672 * Always invoked with interrupts disabled.
673 */
674 void get_new_mmu_context(struct mm_struct *mm)
675 {
676 unsigned long ctx, new_ctx;
677 unsigned long orig_pgsz_bits;
678 unsigned long flags;
679 int new_version;
680
681 spin_lock_irqsave(&ctx_alloc_lock, flags);
682 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
683 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
684 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
685 new_version = 0;
686 if (new_ctx >= (1 << CTX_NR_BITS)) {
687 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
688 if (new_ctx >= ctx) {
689 int i;
690 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
691 CTX_FIRST_VERSION;
692 if (new_ctx == 1)
693 new_ctx = CTX_FIRST_VERSION;
694
695 /* Don't call memset, for 16 entries that's just
696 * plain silly...
697 */
698 mmu_context_bmap[0] = 3;
699 mmu_context_bmap[1] = 0;
700 mmu_context_bmap[2] = 0;
701 mmu_context_bmap[3] = 0;
702 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
703 mmu_context_bmap[i + 0] = 0;
704 mmu_context_bmap[i + 1] = 0;
705 mmu_context_bmap[i + 2] = 0;
706 mmu_context_bmap[i + 3] = 0;
707 }
708 new_version = 1;
709 goto out;
710 }
711 }
712 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
713 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
714 out:
715 tlb_context_cache = new_ctx;
716 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
717 spin_unlock_irqrestore(&ctx_alloc_lock, flags);
718
719 if (unlikely(new_version))
720 smp_new_mmu_context_version();
721 }
722
723 static int numa_enabled = 1;
724 static int numa_debug;
725
726 static int __init early_numa(char *p)
727 {
728 if (!p)
729 return 0;
730
731 if (strstr(p, "off"))
732 numa_enabled = 0;
733
734 if (strstr(p, "debug"))
735 numa_debug = 1;
736
737 return 0;
738 }
739 early_param("numa", early_numa);
740
741 #define numadbg(f, a...) \
742 do { if (numa_debug) \
743 printk(KERN_INFO f, ## a); \
744 } while (0)
745
746 static void __init find_ramdisk(unsigned long phys_base)
747 {
748 #ifdef CONFIG_BLK_DEV_INITRD
749 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
750 unsigned long ramdisk_image;
751
752 /* Older versions of the bootloader only supported a
753 * 32-bit physical address for the ramdisk image
754 * location, stored at sparc_ramdisk_image. Newer
755 * SILO versions set sparc_ramdisk_image to zero and
756 * provide a full 64-bit physical address at
757 * sparc_ramdisk_image64.
758 */
759 ramdisk_image = sparc_ramdisk_image;
760 if (!ramdisk_image)
761 ramdisk_image = sparc_ramdisk_image64;
762
763 /* Another bootloader quirk. The bootloader normalizes
764 * the physical address to KERNBASE, so we have to
765 * factor that back out and add in the lowest valid
766 * physical page address to get the true physical address.
767 */
768 ramdisk_image -= KERNBASE;
769 ramdisk_image += phys_base;
770
771 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
772 ramdisk_image, sparc_ramdisk_size);
773
774 initrd_start = ramdisk_image;
775 initrd_end = ramdisk_image + sparc_ramdisk_size;
776
777 memblock_reserve(initrd_start, sparc_ramdisk_size);
778
779 initrd_start += PAGE_OFFSET;
780 initrd_end += PAGE_OFFSET;
781 }
782 #endif
783 }
784
785 struct node_mem_mask {
786 unsigned long mask;
787 unsigned long val;
788 };
789 static struct node_mem_mask node_masks[MAX_NUMNODES];
790 static int num_node_masks;
791
792 int numa_cpu_lookup_table[NR_CPUS];
793 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
794
795 #ifdef CONFIG_NEED_MULTIPLE_NODES
796
797 struct mdesc_mblock {
798 u64 base;
799 u64 size;
800 u64 offset; /* RA-to-PA */
801 };
802 static struct mdesc_mblock *mblocks;
803 static int num_mblocks;
804
805 static unsigned long ra_to_pa(unsigned long addr)
806 {
807 int i;
808
809 for (i = 0; i < num_mblocks; i++) {
810 struct mdesc_mblock *m = &mblocks[i];
811
812 if (addr >= m->base &&
813 addr < (m->base + m->size)) {
814 addr += m->offset;
815 break;
816 }
817 }
818 return addr;
819 }
820
821 static int find_node(unsigned long addr)
822 {
823 int i;
824
825 addr = ra_to_pa(addr);
826 for (i = 0; i < num_node_masks; i++) {
827 struct node_mem_mask *p = &node_masks[i];
828
829 if ((addr & p->mask) == p->val)
830 return i;
831 }
832 return -1;
833 }
834
835 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
836 {
837 *nid = find_node(start);
838 start += PAGE_SIZE;
839 while (start < end) {
840 int n = find_node(start);
841
842 if (n != *nid)
843 break;
844 start += PAGE_SIZE;
845 }
846
847 if (start > end)
848 start = end;
849
850 return start;
851 }
852 #endif
853
854 /* This must be invoked after performing all of the necessary
855 * memblock_set_node() calls for 'nid'. We need to be able to get
856 * correct data from get_pfn_range_for_nid().
857 */
858 static void __init allocate_node_data(int nid)
859 {
860 struct pglist_data *p;
861 unsigned long start_pfn, end_pfn;
862 #ifdef CONFIG_NEED_MULTIPLE_NODES
863 unsigned long paddr;
864
865 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
866 if (!paddr) {
867 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
868 prom_halt();
869 }
870 NODE_DATA(nid) = __va(paddr);
871 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
872
873 NODE_DATA(nid)->node_id = nid;
874 #endif
875
876 p = NODE_DATA(nid);
877
878 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
879 p->node_start_pfn = start_pfn;
880 p->node_spanned_pages = end_pfn - start_pfn;
881 }
882
883 static void init_node_masks_nonnuma(void)
884 {
885 int i;
886
887 numadbg("Initializing tables for non-numa.\n");
888
889 node_masks[0].mask = node_masks[0].val = 0;
890 num_node_masks = 1;
891
892 for (i = 0; i < NR_CPUS; i++)
893 numa_cpu_lookup_table[i] = 0;
894
895 cpumask_setall(&numa_cpumask_lookup_table[0]);
896 }
897
898 #ifdef CONFIG_NEED_MULTIPLE_NODES
899 struct pglist_data *node_data[MAX_NUMNODES];
900
901 EXPORT_SYMBOL(numa_cpu_lookup_table);
902 EXPORT_SYMBOL(numa_cpumask_lookup_table);
903 EXPORT_SYMBOL(node_data);
904
905 struct mdesc_mlgroup {
906 u64 node;
907 u64 latency;
908 u64 match;
909 u64 mask;
910 };
911 static struct mdesc_mlgroup *mlgroups;
912 static int num_mlgroups;
913
914 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
915 u32 cfg_handle)
916 {
917 u64 arc;
918
919 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
920 u64 target = mdesc_arc_target(md, arc);
921 const u64 *val;
922
923 val = mdesc_get_property(md, target,
924 "cfg-handle", NULL);
925 if (val && *val == cfg_handle)
926 return 0;
927 }
928 return -ENODEV;
929 }
930
931 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
932 u32 cfg_handle)
933 {
934 u64 arc, candidate, best_latency = ~(u64)0;
935
936 candidate = MDESC_NODE_NULL;
937 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
938 u64 target = mdesc_arc_target(md, arc);
939 const char *name = mdesc_node_name(md, target);
940 const u64 *val;
941
942 if (strcmp(name, "pio-latency-group"))
943 continue;
944
945 val = mdesc_get_property(md, target, "latency", NULL);
946 if (!val)
947 continue;
948
949 if (*val < best_latency) {
950 candidate = target;
951 best_latency = *val;
952 }
953 }
954
955 if (candidate == MDESC_NODE_NULL)
956 return -ENODEV;
957
958 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
959 }
960
961 int of_node_to_nid(struct device_node *dp)
962 {
963 const struct linux_prom64_registers *regs;
964 struct mdesc_handle *md;
965 u32 cfg_handle;
966 int count, nid;
967 u64 grp;
968
969 /* This is the right thing to do on currently supported
970 * SUN4U NUMA platforms as well, as the PCI controller does
971 * not sit behind any particular memory controller.
972 */
973 if (!mlgroups)
974 return -1;
975
976 regs = of_get_property(dp, "reg", NULL);
977 if (!regs)
978 return -1;
979
980 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
981
982 md = mdesc_grab();
983
984 count = 0;
985 nid = -1;
986 mdesc_for_each_node_by_name(md, grp, "group") {
987 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
988 nid = count;
989 break;
990 }
991 count++;
992 }
993
994 mdesc_release(md);
995
996 return nid;
997 }
998
999 static void __init add_node_ranges(void)
1000 {
1001 struct memblock_region *reg;
1002
1003 for_each_memblock(memory, reg) {
1004 unsigned long size = reg->size;
1005 unsigned long start, end;
1006
1007 start = reg->base;
1008 end = start + size;
1009 while (start < end) {
1010 unsigned long this_end;
1011 int nid;
1012
1013 this_end = memblock_nid_range(start, end, &nid);
1014
1015 numadbg("Setting memblock NUMA node nid[%d] "
1016 "start[%lx] end[%lx]\n",
1017 nid, start, this_end);
1018
1019 memblock_set_node(start, this_end - start, nid);
1020 start = this_end;
1021 }
1022 }
1023 }
1024
1025 static int __init grab_mlgroups(struct mdesc_handle *md)
1026 {
1027 unsigned long paddr;
1028 int count = 0;
1029 u64 node;
1030
1031 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1032 count++;
1033 if (!count)
1034 return -ENOENT;
1035
1036 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1037 SMP_CACHE_BYTES);
1038 if (!paddr)
1039 return -ENOMEM;
1040
1041 mlgroups = __va(paddr);
1042 num_mlgroups = count;
1043
1044 count = 0;
1045 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1046 struct mdesc_mlgroup *m = &mlgroups[count++];
1047 const u64 *val;
1048
1049 m->node = node;
1050
1051 val = mdesc_get_property(md, node, "latency", NULL);
1052 m->latency = *val;
1053 val = mdesc_get_property(md, node, "address-match", NULL);
1054 m->match = *val;
1055 val = mdesc_get_property(md, node, "address-mask", NULL);
1056 m->mask = *val;
1057
1058 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1059 "match[%llx] mask[%llx]\n",
1060 count - 1, m->node, m->latency, m->match, m->mask);
1061 }
1062
1063 return 0;
1064 }
1065
1066 static int __init grab_mblocks(struct mdesc_handle *md)
1067 {
1068 unsigned long paddr;
1069 int count = 0;
1070 u64 node;
1071
1072 mdesc_for_each_node_by_name(md, node, "mblock")
1073 count++;
1074 if (!count)
1075 return -ENOENT;
1076
1077 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1078 SMP_CACHE_BYTES);
1079 if (!paddr)
1080 return -ENOMEM;
1081
1082 mblocks = __va(paddr);
1083 num_mblocks = count;
1084
1085 count = 0;
1086 mdesc_for_each_node_by_name(md, node, "mblock") {
1087 struct mdesc_mblock *m = &mblocks[count++];
1088 const u64 *val;
1089
1090 val = mdesc_get_property(md, node, "base", NULL);
1091 m->base = *val;
1092 val = mdesc_get_property(md, node, "size", NULL);
1093 m->size = *val;
1094 val = mdesc_get_property(md, node,
1095 "address-congruence-offset", NULL);
1096 m->offset = *val;
1097
1098 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1099 count - 1, m->base, m->size, m->offset);
1100 }
1101
1102 return 0;
1103 }
1104
1105 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1106 u64 grp, cpumask_t *mask)
1107 {
1108 u64 arc;
1109
1110 cpumask_clear(mask);
1111
1112 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1113 u64 target = mdesc_arc_target(md, arc);
1114 const char *name = mdesc_node_name(md, target);
1115 const u64 *id;
1116
1117 if (strcmp(name, "cpu"))
1118 continue;
1119 id = mdesc_get_property(md, target, "id", NULL);
1120 if (*id < nr_cpu_ids)
1121 cpumask_set_cpu(*id, mask);
1122 }
1123 }
1124
1125 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1126 {
1127 int i;
1128
1129 for (i = 0; i < num_mlgroups; i++) {
1130 struct mdesc_mlgroup *m = &mlgroups[i];
1131 if (m->node == node)
1132 return m;
1133 }
1134 return NULL;
1135 }
1136
1137 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1138 int index)
1139 {
1140 struct mdesc_mlgroup *candidate = NULL;
1141 u64 arc, best_latency = ~(u64)0;
1142 struct node_mem_mask *n;
1143
1144 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1145 u64 target = mdesc_arc_target(md, arc);
1146 struct mdesc_mlgroup *m = find_mlgroup(target);
1147 if (!m)
1148 continue;
1149 if (m->latency < best_latency) {
1150 candidate = m;
1151 best_latency = m->latency;
1152 }
1153 }
1154 if (!candidate)
1155 return -ENOENT;
1156
1157 if (num_node_masks != index) {
1158 printk(KERN_ERR "Inconsistent NUMA state, "
1159 "index[%d] != num_node_masks[%d]\n",
1160 index, num_node_masks);
1161 return -EINVAL;
1162 }
1163
1164 n = &node_masks[num_node_masks++];
1165
1166 n->mask = candidate->mask;
1167 n->val = candidate->match;
1168
1169 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1170 index, n->mask, n->val, candidate->latency);
1171
1172 return 0;
1173 }
1174
1175 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1176 int index)
1177 {
1178 cpumask_t mask;
1179 int cpu;
1180
1181 numa_parse_mdesc_group_cpus(md, grp, &mask);
1182
1183 for_each_cpu(cpu, &mask)
1184 numa_cpu_lookup_table[cpu] = index;
1185 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1186
1187 if (numa_debug) {
1188 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1189 for_each_cpu(cpu, &mask)
1190 printk("%d ", cpu);
1191 printk("]\n");
1192 }
1193
1194 return numa_attach_mlgroup(md, grp, index);
1195 }
1196
1197 static int __init numa_parse_mdesc(void)
1198 {
1199 struct mdesc_handle *md = mdesc_grab();
1200 int i, err, count;
1201 u64 node;
1202
1203 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1204 if (node == MDESC_NODE_NULL) {
1205 mdesc_release(md);
1206 return -ENOENT;
1207 }
1208
1209 err = grab_mblocks(md);
1210 if (err < 0)
1211 goto out;
1212
1213 err = grab_mlgroups(md);
1214 if (err < 0)
1215 goto out;
1216
1217 count = 0;
1218 mdesc_for_each_node_by_name(md, node, "group") {
1219 err = numa_parse_mdesc_group(md, node, count);
1220 if (err < 0)
1221 break;
1222 count++;
1223 }
1224
1225 add_node_ranges();
1226
1227 for (i = 0; i < num_node_masks; i++) {
1228 allocate_node_data(i);
1229 node_set_online(i);
1230 }
1231
1232 err = 0;
1233 out:
1234 mdesc_release(md);
1235 return err;
1236 }
1237
1238 static int __init numa_parse_jbus(void)
1239 {
1240 unsigned long cpu, index;
1241
1242 /* NUMA node id is encoded in bits 36 and higher, and there is
1243 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1244 */
1245 index = 0;
1246 for_each_present_cpu(cpu) {
1247 numa_cpu_lookup_table[cpu] = index;
1248 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1249 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1250 node_masks[index].val = cpu << 36UL;
1251
1252 index++;
1253 }
1254 num_node_masks = index;
1255
1256 add_node_ranges();
1257
1258 for (index = 0; index < num_node_masks; index++) {
1259 allocate_node_data(index);
1260 node_set_online(index);
1261 }
1262
1263 return 0;
1264 }
1265
1266 static int __init numa_parse_sun4u(void)
1267 {
1268 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1269 unsigned long ver;
1270
1271 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1272 if ((ver >> 32UL) == __JALAPENO_ID ||
1273 (ver >> 32UL) == __SERRANO_ID)
1274 return numa_parse_jbus();
1275 }
1276 return -1;
1277 }
1278
1279 static int __init bootmem_init_numa(void)
1280 {
1281 int err = -1;
1282
1283 numadbg("bootmem_init_numa()\n");
1284
1285 if (numa_enabled) {
1286 if (tlb_type == hypervisor)
1287 err = numa_parse_mdesc();
1288 else
1289 err = numa_parse_sun4u();
1290 }
1291 return err;
1292 }
1293
1294 #else
1295
1296 static int bootmem_init_numa(void)
1297 {
1298 return -1;
1299 }
1300
1301 #endif
1302
1303 static void __init bootmem_init_nonnuma(void)
1304 {
1305 unsigned long top_of_ram = memblock_end_of_DRAM();
1306 unsigned long total_ram = memblock_phys_mem_size();
1307
1308 numadbg("bootmem_init_nonnuma()\n");
1309
1310 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1311 top_of_ram, total_ram);
1312 printk(KERN_INFO "Memory hole size: %ldMB\n",
1313 (top_of_ram - total_ram) >> 20);
1314
1315 init_node_masks_nonnuma();
1316 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
1317 allocate_node_data(0);
1318 node_set_online(0);
1319 }
1320
1321 static unsigned long __init bootmem_init(unsigned long phys_base)
1322 {
1323 unsigned long end_pfn;
1324
1325 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1326 max_pfn = max_low_pfn = end_pfn;
1327 min_low_pfn = (phys_base >> PAGE_SHIFT);
1328
1329 if (bootmem_init_numa() < 0)
1330 bootmem_init_nonnuma();
1331
1332 /* Dump memblock with node info. */
1333 memblock_dump_all();
1334
1335 /* XXX cpu notifier XXX */
1336
1337 sparse_memory_present_with_active_regions(MAX_NUMNODES);
1338 sparse_init();
1339
1340 return end_pfn;
1341 }
1342
1343 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1344 static int pall_ents __initdata;
1345
1346 #ifdef CONFIG_DEBUG_PAGEALLOC
1347 static unsigned long __ref kernel_map_range(unsigned long pstart,
1348 unsigned long pend, pgprot_t prot)
1349 {
1350 unsigned long vstart = PAGE_OFFSET + pstart;
1351 unsigned long vend = PAGE_OFFSET + pend;
1352 unsigned long alloc_bytes = 0UL;
1353
1354 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1355 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1356 vstart, vend);
1357 prom_halt();
1358 }
1359
1360 while (vstart < vend) {
1361 unsigned long this_end, paddr = __pa(vstart);
1362 pgd_t *pgd = pgd_offset_k(vstart);
1363 pud_t *pud;
1364 pmd_t *pmd;
1365 pte_t *pte;
1366
1367 pud = pud_offset(pgd, vstart);
1368 if (pud_none(*pud)) {
1369 pmd_t *new;
1370
1371 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1372 alloc_bytes += PAGE_SIZE;
1373 pud_populate(&init_mm, pud, new);
1374 }
1375
1376 pmd = pmd_offset(pud, vstart);
1377 if (!pmd_present(*pmd)) {
1378 pte_t *new;
1379
1380 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1381 alloc_bytes += PAGE_SIZE;
1382 pmd_populate_kernel(&init_mm, pmd, new);
1383 }
1384
1385 pte = pte_offset_kernel(pmd, vstart);
1386 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1387 if (this_end > vend)
1388 this_end = vend;
1389
1390 while (vstart < this_end) {
1391 pte_val(*pte) = (paddr | pgprot_val(prot));
1392
1393 vstart += PAGE_SIZE;
1394 paddr += PAGE_SIZE;
1395 pte++;
1396 }
1397 }
1398
1399 return alloc_bytes;
1400 }
1401
1402 extern unsigned int kvmap_linear_patch[1];
1403 #endif /* CONFIG_DEBUG_PAGEALLOC */
1404
1405 static void __init kpte_set_val(unsigned long index, unsigned long val)
1406 {
1407 unsigned long *ptr = kpte_linear_bitmap;
1408
1409 val <<= ((index % (BITS_PER_LONG / 2)) * 2);
1410 ptr += (index / (BITS_PER_LONG / 2));
1411
1412 *ptr |= val;
1413 }
1414
1415 static const unsigned long kpte_shift_min = 28; /* 256MB */
1416 static const unsigned long kpte_shift_max = 34; /* 16GB */
1417 static const unsigned long kpte_shift_incr = 3;
1418
1419 static unsigned long kpte_mark_using_shift(unsigned long start, unsigned long end,
1420 unsigned long shift)
1421 {
1422 unsigned long size = (1UL << shift);
1423 unsigned long mask = (size - 1UL);
1424 unsigned long remains = end - start;
1425 unsigned long val;
1426
1427 if (remains < size || (start & mask))
1428 return start;
1429
1430 /* VAL maps:
1431 *
1432 * shift 28 --> kern_linear_pte_xor index 1
1433 * shift 31 --> kern_linear_pte_xor index 2
1434 * shift 34 --> kern_linear_pte_xor index 3
1435 */
1436 val = ((shift - kpte_shift_min) / kpte_shift_incr) + 1;
1437
1438 remains &= ~mask;
1439 if (shift != kpte_shift_max)
1440 remains = size;
1441
1442 while (remains) {
1443 unsigned long index = start >> kpte_shift_min;
1444
1445 kpte_set_val(index, val);
1446
1447 start += 1UL << kpte_shift_min;
1448 remains -= 1UL << kpte_shift_min;
1449 }
1450
1451 return start;
1452 }
1453
1454 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1455 {
1456 unsigned long smallest_size, smallest_mask;
1457 unsigned long s;
1458
1459 smallest_size = (1UL << kpte_shift_min);
1460 smallest_mask = (smallest_size - 1UL);
1461
1462 while (start < end) {
1463 unsigned long orig_start = start;
1464
1465 for (s = kpte_shift_max; s >= kpte_shift_min; s -= kpte_shift_incr) {
1466 start = kpte_mark_using_shift(start, end, s);
1467
1468 if (start != orig_start)
1469 break;
1470 }
1471
1472 if (start == orig_start)
1473 start = (start + smallest_size) & ~smallest_mask;
1474 }
1475 }
1476
1477 static void __init init_kpte_bitmap(void)
1478 {
1479 unsigned long i;
1480
1481 for (i = 0; i < pall_ents; i++) {
1482 unsigned long phys_start, phys_end;
1483
1484 phys_start = pall[i].phys_addr;
1485 phys_end = phys_start + pall[i].reg_size;
1486
1487 mark_kpte_bitmap(phys_start, phys_end);
1488 }
1489 }
1490
1491 static void __init kernel_physical_mapping_init(void)
1492 {
1493 #ifdef CONFIG_DEBUG_PAGEALLOC
1494 unsigned long i, mem_alloced = 0UL;
1495
1496 for (i = 0; i < pall_ents; i++) {
1497 unsigned long phys_start, phys_end;
1498
1499 phys_start = pall[i].phys_addr;
1500 phys_end = phys_start + pall[i].reg_size;
1501
1502 mem_alloced += kernel_map_range(phys_start, phys_end,
1503 PAGE_KERNEL);
1504 }
1505
1506 printk("Allocated %ld bytes for kernel page tables.\n",
1507 mem_alloced);
1508
1509 kvmap_linear_patch[0] = 0x01000000; /* nop */
1510 flushi(&kvmap_linear_patch[0]);
1511
1512 __flush_tlb_all();
1513 #endif
1514 }
1515
1516 #ifdef CONFIG_DEBUG_PAGEALLOC
1517 void kernel_map_pages(struct page *page, int numpages, int enable)
1518 {
1519 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1520 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1521
1522 kernel_map_range(phys_start, phys_end,
1523 (enable ? PAGE_KERNEL : __pgprot(0)));
1524
1525 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1526 PAGE_OFFSET + phys_end);
1527
1528 /* we should perform an IPI and flush all tlbs,
1529 * but that can deadlock->flush only current cpu.
1530 */
1531 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1532 PAGE_OFFSET + phys_end);
1533 }
1534 #endif
1535
1536 unsigned long __init find_ecache_flush_span(unsigned long size)
1537 {
1538 int i;
1539
1540 for (i = 0; i < pavail_ents; i++) {
1541 if (pavail[i].reg_size >= size)
1542 return pavail[i].phys_addr;
1543 }
1544
1545 return ~0UL;
1546 }
1547
1548 static void __init tsb_phys_patch(void)
1549 {
1550 struct tsb_ldquad_phys_patch_entry *pquad;
1551 struct tsb_phys_patch_entry *p;
1552
1553 pquad = &__tsb_ldquad_phys_patch;
1554 while (pquad < &__tsb_ldquad_phys_patch_end) {
1555 unsigned long addr = pquad->addr;
1556
1557 if (tlb_type == hypervisor)
1558 *(unsigned int *) addr = pquad->sun4v_insn;
1559 else
1560 *(unsigned int *) addr = pquad->sun4u_insn;
1561 wmb();
1562 __asm__ __volatile__("flush %0"
1563 : /* no outputs */
1564 : "r" (addr));
1565
1566 pquad++;
1567 }
1568
1569 p = &__tsb_phys_patch;
1570 while (p < &__tsb_phys_patch_end) {
1571 unsigned long addr = p->addr;
1572
1573 *(unsigned int *) addr = p->insn;
1574 wmb();
1575 __asm__ __volatile__("flush %0"
1576 : /* no outputs */
1577 : "r" (addr));
1578
1579 p++;
1580 }
1581 }
1582
1583 /* Don't mark as init, we give this to the Hypervisor. */
1584 #ifndef CONFIG_DEBUG_PAGEALLOC
1585 #define NUM_KTSB_DESCR 2
1586 #else
1587 #define NUM_KTSB_DESCR 1
1588 #endif
1589 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1590 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1591
1592 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1593 {
1594 pa >>= KTSB_PHYS_SHIFT;
1595
1596 while (start < end) {
1597 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1598
1599 ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1600 __asm__ __volatile__("flush %0" : : "r" (ia));
1601
1602 ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1603 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
1604
1605 start++;
1606 }
1607 }
1608
1609 static void ktsb_phys_patch(void)
1610 {
1611 extern unsigned int __swapper_tsb_phys_patch;
1612 extern unsigned int __swapper_tsb_phys_patch_end;
1613 unsigned long ktsb_pa;
1614
1615 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1616 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1617 &__swapper_tsb_phys_patch_end, ktsb_pa);
1618 #ifndef CONFIG_DEBUG_PAGEALLOC
1619 {
1620 extern unsigned int __swapper_4m_tsb_phys_patch;
1621 extern unsigned int __swapper_4m_tsb_phys_patch_end;
1622 ktsb_pa = (kern_base +
1623 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1624 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1625 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1626 }
1627 #endif
1628 }
1629
1630 static void __init sun4v_ktsb_init(void)
1631 {
1632 unsigned long ktsb_pa;
1633
1634 /* First KTSB for PAGE_SIZE mappings. */
1635 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1636
1637 switch (PAGE_SIZE) {
1638 case 8 * 1024:
1639 default:
1640 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1641 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1642 break;
1643
1644 case 64 * 1024:
1645 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1646 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1647 break;
1648
1649 case 512 * 1024:
1650 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1651 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1652 break;
1653
1654 case 4 * 1024 * 1024:
1655 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1656 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1657 break;
1658 }
1659
1660 ktsb_descr[0].assoc = 1;
1661 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1662 ktsb_descr[0].ctx_idx = 0;
1663 ktsb_descr[0].tsb_base = ktsb_pa;
1664 ktsb_descr[0].resv = 0;
1665
1666 #ifndef CONFIG_DEBUG_PAGEALLOC
1667 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
1668 ktsb_pa = (kern_base +
1669 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1670
1671 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1672 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1673 HV_PGSZ_MASK_256MB |
1674 HV_PGSZ_MASK_2GB |
1675 HV_PGSZ_MASK_16GB) &
1676 cpu_pgsz_mask);
1677 ktsb_descr[1].assoc = 1;
1678 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1679 ktsb_descr[1].ctx_idx = 0;
1680 ktsb_descr[1].tsb_base = ktsb_pa;
1681 ktsb_descr[1].resv = 0;
1682 #endif
1683 }
1684
1685 void __cpuinit sun4v_ktsb_register(void)
1686 {
1687 unsigned long pa, ret;
1688
1689 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1690
1691 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1692 if (ret != 0) {
1693 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1694 "errors with %lx\n", pa, ret);
1695 prom_halt();
1696 }
1697 }
1698
1699 static void __init sun4u_linear_pte_xor_finalize(void)
1700 {
1701 #ifndef CONFIG_DEBUG_PAGEALLOC
1702 /* This is where we would add Panther support for
1703 * 32MB and 256MB pages.
1704 */
1705 #endif
1706 }
1707
1708 static void __init sun4v_linear_pte_xor_finalize(void)
1709 {
1710 #ifndef CONFIG_DEBUG_PAGEALLOC
1711 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1712 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1713 0xfffff80000000000UL;
1714 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1715 _PAGE_P_4V | _PAGE_W_4V);
1716 } else {
1717 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1718 }
1719
1720 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1721 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
1722 0xfffff80000000000UL;
1723 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1724 _PAGE_P_4V | _PAGE_W_4V);
1725 } else {
1726 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
1727 }
1728
1729 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
1730 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
1731 0xfffff80000000000UL;
1732 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1733 _PAGE_P_4V | _PAGE_W_4V);
1734 } else {
1735 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
1736 }
1737 #endif
1738 }
1739
1740 /* paging_init() sets up the page tables */
1741
1742 static unsigned long last_valid_pfn;
1743 pgd_t swapper_pg_dir[2048];
1744
1745 static void sun4u_pgprot_init(void);
1746 static void sun4v_pgprot_init(void);
1747
1748 void __init paging_init(void)
1749 {
1750 unsigned long end_pfn, shift, phys_base;
1751 unsigned long real_end, i;
1752 int node;
1753
1754 /* These build time checkes make sure that the dcache_dirty_cpu()
1755 * page->flags usage will work.
1756 *
1757 * When a page gets marked as dcache-dirty, we store the
1758 * cpu number starting at bit 32 in the page->flags. Also,
1759 * functions like clear_dcache_dirty_cpu use the cpu mask
1760 * in 13-bit signed-immediate instruction fields.
1761 */
1762
1763 /*
1764 * Page flags must not reach into upper 32 bits that are used
1765 * for the cpu number
1766 */
1767 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1768
1769 /*
1770 * The bit fields placed in the high range must not reach below
1771 * the 32 bit boundary. Otherwise we cannot place the cpu field
1772 * at the 32 bit boundary.
1773 */
1774 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1775 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1776
1777 BUILD_BUG_ON(NR_CPUS > 4096);
1778
1779 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1780 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1781
1782 /* Invalidate both kernel TSBs. */
1783 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1784 #ifndef CONFIG_DEBUG_PAGEALLOC
1785 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1786 #endif
1787
1788 if (tlb_type == hypervisor)
1789 sun4v_pgprot_init();
1790 else
1791 sun4u_pgprot_init();
1792
1793 if (tlb_type == cheetah_plus ||
1794 tlb_type == hypervisor) {
1795 tsb_phys_patch();
1796 ktsb_phys_patch();
1797 }
1798
1799 if (tlb_type == hypervisor)
1800 sun4v_patch_tlb_handlers();
1801
1802 /* Find available physical memory...
1803 *
1804 * Read it twice in order to work around a bug in openfirmware.
1805 * The call to grab this table itself can cause openfirmware to
1806 * allocate memory, which in turn can take away some space from
1807 * the list of available memory. Reading it twice makes sure
1808 * we really do get the final value.
1809 */
1810 read_obp_translations();
1811 read_obp_memory("reg", &pall[0], &pall_ents);
1812 read_obp_memory("available", &pavail[0], &pavail_ents);
1813 read_obp_memory("available", &pavail[0], &pavail_ents);
1814
1815 phys_base = 0xffffffffffffffffUL;
1816 for (i = 0; i < pavail_ents; i++) {
1817 phys_base = min(phys_base, pavail[i].phys_addr);
1818 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1819 }
1820
1821 memblock_reserve(kern_base, kern_size);
1822
1823 find_ramdisk(phys_base);
1824
1825 memblock_enforce_memory_limit(cmdline_memory_size);
1826
1827 memblock_allow_resize();
1828 memblock_dump_all();
1829
1830 set_bit(0, mmu_context_bmap);
1831
1832 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1833
1834 real_end = (unsigned long)_end;
1835 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1836 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1837 num_kernel_image_mappings);
1838
1839 /* Set kernel pgd to upper alias so physical page computations
1840 * work.
1841 */
1842 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1843
1844 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1845
1846 /* Now can init the kernel/bad page tables. */
1847 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1848 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1849
1850 inherit_prom_mappings();
1851
1852 init_kpte_bitmap();
1853
1854 /* Ok, we can use our TLB miss and window trap handlers safely. */
1855 setup_tba();
1856
1857 __flush_tlb_all();
1858
1859 prom_build_devicetree();
1860 of_populate_present_mask();
1861 #ifndef CONFIG_SMP
1862 of_fill_in_cpu_data();
1863 #endif
1864
1865 if (tlb_type == hypervisor) {
1866 sun4v_mdesc_init();
1867 mdesc_populate_present_mask(cpu_all_mask);
1868 #ifndef CONFIG_SMP
1869 mdesc_fill_in_cpu_data(cpu_all_mask);
1870 #endif
1871 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
1872
1873 sun4v_linear_pte_xor_finalize();
1874
1875 sun4v_ktsb_init();
1876 sun4v_ktsb_register();
1877 } else {
1878 unsigned long impl, ver;
1879
1880 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
1881 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
1882
1883 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
1884 impl = ((ver >> 32) & 0xffff);
1885 if (impl == PANTHER_IMPL)
1886 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
1887 HV_PGSZ_MASK_256MB);
1888
1889 sun4u_linear_pte_xor_finalize();
1890 }
1891
1892 /* Flush the TLBs and the 4M TSB so that the updated linear
1893 * pte XOR settings are realized for all mappings.
1894 */
1895 __flush_tlb_all();
1896 #ifndef CONFIG_DEBUG_PAGEALLOC
1897 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1898 #endif
1899 __flush_tlb_all();
1900
1901 /* Setup bootmem... */
1902 last_valid_pfn = end_pfn = bootmem_init(phys_base);
1903
1904 /* Once the OF device tree and MDESC have been setup, we know
1905 * the list of possible cpus. Therefore we can allocate the
1906 * IRQ stacks.
1907 */
1908 for_each_possible_cpu(i) {
1909 node = cpu_to_node(i);
1910
1911 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
1912 THREAD_SIZE,
1913 THREAD_SIZE, 0);
1914 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
1915 THREAD_SIZE,
1916 THREAD_SIZE, 0);
1917 }
1918
1919 kernel_physical_mapping_init();
1920
1921 {
1922 unsigned long max_zone_pfns[MAX_NR_ZONES];
1923
1924 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1925
1926 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1927
1928 free_area_init_nodes(max_zone_pfns);
1929 }
1930
1931 printk("Booting Linux...\n");
1932 }
1933
1934 int __devinit page_in_phys_avail(unsigned long paddr)
1935 {
1936 int i;
1937
1938 paddr &= PAGE_MASK;
1939
1940 for (i = 0; i < pavail_ents; i++) {
1941 unsigned long start, end;
1942
1943 start = pavail[i].phys_addr;
1944 end = start + pavail[i].reg_size;
1945
1946 if (paddr >= start && paddr < end)
1947 return 1;
1948 }
1949 if (paddr >= kern_base && paddr < (kern_base + kern_size))
1950 return 1;
1951 #ifdef CONFIG_BLK_DEV_INITRD
1952 if (paddr >= __pa(initrd_start) &&
1953 paddr < __pa(PAGE_ALIGN(initrd_end)))
1954 return 1;
1955 #endif
1956
1957 return 0;
1958 }
1959
1960 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1961 static int pavail_rescan_ents __initdata;
1962
1963 /* Certain OBP calls, such as fetching "available" properties, can
1964 * claim physical memory. So, along with initializing the valid
1965 * address bitmap, what we do here is refetch the physical available
1966 * memory list again, and make sure it provides at least as much
1967 * memory as 'pavail' does.
1968 */
1969 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1970 {
1971 int i;
1972
1973 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1974
1975 for (i = 0; i < pavail_ents; i++) {
1976 unsigned long old_start, old_end;
1977
1978 old_start = pavail[i].phys_addr;
1979 old_end = old_start + pavail[i].reg_size;
1980 while (old_start < old_end) {
1981 int n;
1982
1983 for (n = 0; n < pavail_rescan_ents; n++) {
1984 unsigned long new_start, new_end;
1985
1986 new_start = pavail_rescan[n].phys_addr;
1987 new_end = new_start +
1988 pavail_rescan[n].reg_size;
1989
1990 if (new_start <= old_start &&
1991 new_end >= (old_start + PAGE_SIZE)) {
1992 set_bit(old_start >> 22, bitmap);
1993 goto do_next_page;
1994 }
1995 }
1996
1997 prom_printf("mem_init: Lost memory in pavail\n");
1998 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1999 pavail[i].phys_addr,
2000 pavail[i].reg_size);
2001 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
2002 pavail_rescan[i].phys_addr,
2003 pavail_rescan[i].reg_size);
2004 prom_printf("mem_init: Cannot continue, aborting.\n");
2005 prom_halt();
2006
2007 do_next_page:
2008 old_start += PAGE_SIZE;
2009 }
2010 }
2011 }
2012
2013 static void __init patch_tlb_miss_handler_bitmap(void)
2014 {
2015 extern unsigned int valid_addr_bitmap_insn[];
2016 extern unsigned int valid_addr_bitmap_patch[];
2017
2018 valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
2019 mb();
2020 valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
2021 flushi(&valid_addr_bitmap_insn[0]);
2022 }
2023
2024 void __init mem_init(void)
2025 {
2026 unsigned long codepages, datapages, initpages;
2027 unsigned long addr, last;
2028
2029 addr = PAGE_OFFSET + kern_base;
2030 last = PAGE_ALIGN(kern_size) + addr;
2031 while (addr < last) {
2032 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
2033 addr += PAGE_SIZE;
2034 }
2035
2036 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
2037 patch_tlb_miss_handler_bitmap();
2038
2039 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2040
2041 #ifdef CONFIG_NEED_MULTIPLE_NODES
2042 {
2043 int i;
2044 for_each_online_node(i) {
2045 if (NODE_DATA(i)->node_spanned_pages != 0) {
2046 totalram_pages +=
2047 free_all_bootmem_node(NODE_DATA(i));
2048 }
2049 }
2050 totalram_pages += free_low_memory_core_early(MAX_NUMNODES);
2051 }
2052 #else
2053 totalram_pages = free_all_bootmem();
2054 #endif
2055
2056 /* We subtract one to account for the mem_map_zero page
2057 * allocated below.
2058 */
2059 totalram_pages -= 1;
2060 num_physpages = totalram_pages;
2061
2062 /*
2063 * Set up the zero page, mark it reserved, so that page count
2064 * is not manipulated when freeing the page from user ptes.
2065 */
2066 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2067 if (mem_map_zero == NULL) {
2068 prom_printf("paging_init: Cannot alloc zero page.\n");
2069 prom_halt();
2070 }
2071 SetPageReserved(mem_map_zero);
2072
2073 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
2074 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
2075 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
2076 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
2077 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
2078 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
2079
2080 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
2081 nr_free_pages() << (PAGE_SHIFT-10),
2082 codepages << (PAGE_SHIFT-10),
2083 datapages << (PAGE_SHIFT-10),
2084 initpages << (PAGE_SHIFT-10),
2085 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
2086
2087 if (tlb_type == cheetah || tlb_type == cheetah_plus)
2088 cheetah_ecache_flush_init();
2089 }
2090
2091 void free_initmem(void)
2092 {
2093 unsigned long addr, initend;
2094 int do_free = 1;
2095
2096 /* If the physical memory maps were trimmed by kernel command
2097 * line options, don't even try freeing this initmem stuff up.
2098 * The kernel image could have been in the trimmed out region
2099 * and if so the freeing below will free invalid page structs.
2100 */
2101 if (cmdline_memory_size)
2102 do_free = 0;
2103
2104 /*
2105 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2106 */
2107 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2108 initend = (unsigned long)(__init_end) & PAGE_MASK;
2109 for (; addr < initend; addr += PAGE_SIZE) {
2110 unsigned long page;
2111 struct page *p;
2112
2113 page = (addr +
2114 ((unsigned long) __va(kern_base)) -
2115 ((unsigned long) KERNBASE));
2116 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2117
2118 if (do_free) {
2119 p = virt_to_page(page);
2120
2121 ClearPageReserved(p);
2122 init_page_count(p);
2123 __free_page(p);
2124 num_physpages++;
2125 totalram_pages++;
2126 }
2127 }
2128 }
2129
2130 #ifdef CONFIG_BLK_DEV_INITRD
2131 void free_initrd_mem(unsigned long start, unsigned long end)
2132 {
2133 if (start < end)
2134 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2135 for (; start < end; start += PAGE_SIZE) {
2136 struct page *p = virt_to_page(start);
2137
2138 ClearPageReserved(p);
2139 init_page_count(p);
2140 __free_page(p);
2141 num_physpages++;
2142 totalram_pages++;
2143 }
2144 }
2145 #endif
2146
2147 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2148 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2149 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2150 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2151 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2152 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2153
2154 pgprot_t PAGE_KERNEL __read_mostly;
2155 EXPORT_SYMBOL(PAGE_KERNEL);
2156
2157 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2158 pgprot_t PAGE_COPY __read_mostly;
2159
2160 pgprot_t PAGE_SHARED __read_mostly;
2161 EXPORT_SYMBOL(PAGE_SHARED);
2162
2163 unsigned long pg_iobits __read_mostly;
2164
2165 unsigned long _PAGE_IE __read_mostly;
2166 EXPORT_SYMBOL(_PAGE_IE);
2167
2168 unsigned long _PAGE_E __read_mostly;
2169 EXPORT_SYMBOL(_PAGE_E);
2170
2171 unsigned long _PAGE_CACHE __read_mostly;
2172 EXPORT_SYMBOL(_PAGE_CACHE);
2173
2174 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2175 unsigned long vmemmap_table[VMEMMAP_SIZE];
2176
2177 static long __meminitdata addr_start, addr_end;
2178 static int __meminitdata node_start;
2179
2180 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2181 {
2182 unsigned long vstart = (unsigned long) start;
2183 unsigned long vend = (unsigned long) (start + nr);
2184 unsigned long phys_start = (vstart - VMEMMAP_BASE);
2185 unsigned long phys_end = (vend - VMEMMAP_BASE);
2186 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2187 unsigned long end = VMEMMAP_ALIGN(phys_end);
2188 unsigned long pte_base;
2189
2190 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2191 _PAGE_CP_4U | _PAGE_CV_4U |
2192 _PAGE_P_4U | _PAGE_W_4U);
2193 if (tlb_type == hypervisor)
2194 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2195 _PAGE_CP_4V | _PAGE_CV_4V |
2196 _PAGE_P_4V | _PAGE_W_4V);
2197
2198 for (; addr < end; addr += VMEMMAP_CHUNK) {
2199 unsigned long *vmem_pp =
2200 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2201 void *block;
2202
2203 if (!(*vmem_pp & _PAGE_VALID)) {
2204 block = vmemmap_alloc_block(1UL << 22, node);
2205 if (!block)
2206 return -ENOMEM;
2207
2208 *vmem_pp = pte_base | __pa(block);
2209
2210 /* check to see if we have contiguous blocks */
2211 if (addr_end != addr || node_start != node) {
2212 if (addr_start)
2213 printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2214 addr_start, addr_end-1, node_start);
2215 addr_start = addr;
2216 node_start = node;
2217 }
2218 addr_end = addr + VMEMMAP_CHUNK;
2219 }
2220 }
2221 return 0;
2222 }
2223
2224 void __meminit vmemmap_populate_print_last(void)
2225 {
2226 if (addr_start) {
2227 printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2228 addr_start, addr_end-1, node_start);
2229 addr_start = 0;
2230 addr_end = 0;
2231 node_start = 0;
2232 }
2233 }
2234 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2235
2236 static void prot_init_common(unsigned long page_none,
2237 unsigned long page_shared,
2238 unsigned long page_copy,
2239 unsigned long page_readonly,
2240 unsigned long page_exec_bit)
2241 {
2242 PAGE_COPY = __pgprot(page_copy);
2243 PAGE_SHARED = __pgprot(page_shared);
2244
2245 protection_map[0x0] = __pgprot(page_none);
2246 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2247 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2248 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2249 protection_map[0x4] = __pgprot(page_readonly);
2250 protection_map[0x5] = __pgprot(page_readonly);
2251 protection_map[0x6] = __pgprot(page_copy);
2252 protection_map[0x7] = __pgprot(page_copy);
2253 protection_map[0x8] = __pgprot(page_none);
2254 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2255 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2256 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2257 protection_map[0xc] = __pgprot(page_readonly);
2258 protection_map[0xd] = __pgprot(page_readonly);
2259 protection_map[0xe] = __pgprot(page_shared);
2260 protection_map[0xf] = __pgprot(page_shared);
2261 }
2262
2263 static void __init sun4u_pgprot_init(void)
2264 {
2265 unsigned long page_none, page_shared, page_copy, page_readonly;
2266 unsigned long page_exec_bit;
2267 int i;
2268
2269 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2270 _PAGE_CACHE_4U | _PAGE_P_4U |
2271 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2272 _PAGE_EXEC_4U);
2273 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2274 _PAGE_CACHE_4U | _PAGE_P_4U |
2275 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2276 _PAGE_EXEC_4U | _PAGE_L_4U);
2277
2278 _PAGE_IE = _PAGE_IE_4U;
2279 _PAGE_E = _PAGE_E_4U;
2280 _PAGE_CACHE = _PAGE_CACHE_4U;
2281
2282 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2283 __ACCESS_BITS_4U | _PAGE_E_4U);
2284
2285 #ifdef CONFIG_DEBUG_PAGEALLOC
2286 kern_linear_pte_xor[0] = _PAGE_VALID ^ 0xfffff80000000000UL;
2287 #else
2288 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2289 0xfffff80000000000UL;
2290 #endif
2291 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2292 _PAGE_P_4U | _PAGE_W_4U);
2293
2294 for (i = 1; i < 4; i++)
2295 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2296
2297 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2298 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2299 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2300
2301
2302 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2303 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2304 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2305 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2306 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2307 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2308 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2309
2310 page_exec_bit = _PAGE_EXEC_4U;
2311
2312 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2313 page_exec_bit);
2314 }
2315
2316 static void __init sun4v_pgprot_init(void)
2317 {
2318 unsigned long page_none, page_shared, page_copy, page_readonly;
2319 unsigned long page_exec_bit;
2320 int i;
2321
2322 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2323 _PAGE_CACHE_4V | _PAGE_P_4V |
2324 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2325 _PAGE_EXEC_4V);
2326 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2327
2328 _PAGE_IE = _PAGE_IE_4V;
2329 _PAGE_E = _PAGE_E_4V;
2330 _PAGE_CACHE = _PAGE_CACHE_4V;
2331
2332 #ifdef CONFIG_DEBUG_PAGEALLOC
2333 kern_linear_pte_xor[0] = _PAGE_VALID ^ 0xfffff80000000000UL;
2334 #else
2335 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2336 0xfffff80000000000UL;
2337 #endif
2338 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2339 _PAGE_P_4V | _PAGE_W_4V);
2340
2341 for (i = 1; i < 4; i++)
2342 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2343
2344 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2345 __ACCESS_BITS_4V | _PAGE_E_4V);
2346
2347 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2348 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2349 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2350 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2351
2352 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2353 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2354 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2355 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2356 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2357 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2358 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2359
2360 page_exec_bit = _PAGE_EXEC_4V;
2361
2362 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2363 page_exec_bit);
2364 }
2365
2366 unsigned long pte_sz_bits(unsigned long sz)
2367 {
2368 if (tlb_type == hypervisor) {
2369 switch (sz) {
2370 case 8 * 1024:
2371 default:
2372 return _PAGE_SZ8K_4V;
2373 case 64 * 1024:
2374 return _PAGE_SZ64K_4V;
2375 case 512 * 1024:
2376 return _PAGE_SZ512K_4V;
2377 case 4 * 1024 * 1024:
2378 return _PAGE_SZ4MB_4V;
2379 }
2380 } else {
2381 switch (sz) {
2382 case 8 * 1024:
2383 default:
2384 return _PAGE_SZ8K_4U;
2385 case 64 * 1024:
2386 return _PAGE_SZ64K_4U;
2387 case 512 * 1024:
2388 return _PAGE_SZ512K_4U;
2389 case 4 * 1024 * 1024:
2390 return _PAGE_SZ4MB_4U;
2391 }
2392 }
2393 }
2394
2395 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2396 {
2397 pte_t pte;
2398
2399 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2400 pte_val(pte) |= (((unsigned long)space) << 32);
2401 pte_val(pte) |= pte_sz_bits(page_size);
2402
2403 return pte;
2404 }
2405
2406 static unsigned long kern_large_tte(unsigned long paddr)
2407 {
2408 unsigned long val;
2409
2410 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2411 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2412 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2413 if (tlb_type == hypervisor)
2414 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2415 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2416 _PAGE_EXEC_4V | _PAGE_W_4V);
2417
2418 return val | paddr;
2419 }
2420
2421 /* If not locked, zap it. */
2422 void __flush_tlb_all(void)
2423 {
2424 unsigned long pstate;
2425 int i;
2426
2427 __asm__ __volatile__("flushw\n\t"
2428 "rdpr %%pstate, %0\n\t"
2429 "wrpr %0, %1, %%pstate"
2430 : "=r" (pstate)
2431 : "i" (PSTATE_IE));
2432 if (tlb_type == hypervisor) {
2433 sun4v_mmu_demap_all();
2434 } else if (tlb_type == spitfire) {
2435 for (i = 0; i < 64; i++) {
2436 /* Spitfire Errata #32 workaround */
2437 /* NOTE: Always runs on spitfire, so no
2438 * cheetah+ page size encodings.
2439 */
2440 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2441 "flush %%g6"
2442 : /* No outputs */
2443 : "r" (0),
2444 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2445
2446 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2447 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2448 "membar #Sync"
2449 : /* no outputs */
2450 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2451 spitfire_put_dtlb_data(i, 0x0UL);
2452 }
2453
2454 /* Spitfire Errata #32 workaround */
2455 /* NOTE: Always runs on spitfire, so no
2456 * cheetah+ page size encodings.
2457 */
2458 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2459 "flush %%g6"
2460 : /* No outputs */
2461 : "r" (0),
2462 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2463
2464 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2465 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2466 "membar #Sync"
2467 : /* no outputs */
2468 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2469 spitfire_put_itlb_data(i, 0x0UL);
2470 }
2471 }
2472 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2473 cheetah_flush_dtlb_all();
2474 cheetah_flush_itlb_all();
2475 }
2476 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2477 : : "r" (pstate));
2478 }
2479
2480 static pte_t *get_from_cache(struct mm_struct *mm)
2481 {
2482 struct page *page;
2483 pte_t *ret;
2484
2485 spin_lock(&mm->page_table_lock);
2486 page = mm->context.pgtable_page;
2487 ret = NULL;
2488 if (page) {
2489 void *p = page_address(page);
2490
2491 mm->context.pgtable_page = NULL;
2492
2493 ret = (pte_t *) (p + (PAGE_SIZE / 2));
2494 }
2495 spin_unlock(&mm->page_table_lock);
2496
2497 return ret;
2498 }
2499
2500 static struct page *__alloc_for_cache(struct mm_struct *mm)
2501 {
2502 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2503 __GFP_REPEAT | __GFP_ZERO);
2504
2505 if (page) {
2506 spin_lock(&mm->page_table_lock);
2507 if (!mm->context.pgtable_page) {
2508 atomic_set(&page->_count, 2);
2509 mm->context.pgtable_page = page;
2510 }
2511 spin_unlock(&mm->page_table_lock);
2512 }
2513 return page;
2514 }
2515
2516 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2517 unsigned long address)
2518 {
2519 struct page *page;
2520 pte_t *pte;
2521
2522 pte = get_from_cache(mm);
2523 if (pte)
2524 return pte;
2525
2526 page = __alloc_for_cache(mm);
2527 if (page)
2528 pte = (pte_t *) page_address(page);
2529
2530 return pte;
2531 }
2532
2533 pgtable_t pte_alloc_one(struct mm_struct *mm,
2534 unsigned long address)
2535 {
2536 struct page *page;
2537 pte_t *pte;
2538
2539 pte = get_from_cache(mm);
2540 if (pte)
2541 return pte;
2542
2543 page = __alloc_for_cache(mm);
2544 if (page) {
2545 pgtable_page_ctor(page);
2546 pte = (pte_t *) page_address(page);
2547 }
2548
2549 return pte;
2550 }
2551
2552 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2553 {
2554 struct page *page = virt_to_page(pte);
2555 if (put_page_testzero(page))
2556 free_hot_cold_page(page, 0);
2557 }
2558
2559 static void __pte_free(pgtable_t pte)
2560 {
2561 struct page *page = virt_to_page(pte);
2562 if (put_page_testzero(page)) {
2563 pgtable_page_dtor(page);
2564 free_hot_cold_page(page, 0);
2565 }
2566 }
2567
2568 void pte_free(struct mm_struct *mm, pgtable_t pte)
2569 {
2570 __pte_free(pte);
2571 }
2572
2573 void pgtable_free(void *table, bool is_page)
2574 {
2575 if (is_page)
2576 __pte_free(table);
2577 else
2578 kmem_cache_free(pgtable_cache, table);
2579 }
2580
2581 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2582 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot, bool for_modify)
2583 {
2584 if (pgprot_val(pgprot) & _PAGE_VALID)
2585 pmd_val(pmd) |= PMD_HUGE_PRESENT;
2586 if (tlb_type == hypervisor) {
2587 if (pgprot_val(pgprot) & _PAGE_WRITE_4V)
2588 pmd_val(pmd) |= PMD_HUGE_WRITE;
2589 if (pgprot_val(pgprot) & _PAGE_EXEC_4V)
2590 pmd_val(pmd) |= PMD_HUGE_EXEC;
2591
2592 if (!for_modify) {
2593 if (pgprot_val(pgprot) & _PAGE_ACCESSED_4V)
2594 pmd_val(pmd) |= PMD_HUGE_ACCESSED;
2595 if (pgprot_val(pgprot) & _PAGE_MODIFIED_4V)
2596 pmd_val(pmd) |= PMD_HUGE_DIRTY;
2597 }
2598 } else {
2599 if (pgprot_val(pgprot) & _PAGE_WRITE_4U)
2600 pmd_val(pmd) |= PMD_HUGE_WRITE;
2601 if (pgprot_val(pgprot) & _PAGE_EXEC_4U)
2602 pmd_val(pmd) |= PMD_HUGE_EXEC;
2603
2604 if (!for_modify) {
2605 if (pgprot_val(pgprot) & _PAGE_ACCESSED_4U)
2606 pmd_val(pmd) |= PMD_HUGE_ACCESSED;
2607 if (pgprot_val(pgprot) & _PAGE_MODIFIED_4U)
2608 pmd_val(pmd) |= PMD_HUGE_DIRTY;
2609 }
2610 }
2611
2612 return pmd;
2613 }
2614
2615 pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
2616 {
2617 pmd_t pmd;
2618
2619 pmd_val(pmd) = (page_nr << ((PAGE_SHIFT - PMD_PADDR_SHIFT)));
2620 pmd_val(pmd) |= PMD_ISHUGE;
2621 pmd = pmd_set_protbits(pmd, pgprot, false);
2622 return pmd;
2623 }
2624
2625 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
2626 {
2627 pmd_val(pmd) &= ~(PMD_HUGE_PRESENT |
2628 PMD_HUGE_WRITE |
2629 PMD_HUGE_EXEC);
2630 pmd = pmd_set_protbits(pmd, newprot, true);
2631 return pmd;
2632 }
2633
2634 pgprot_t pmd_pgprot(pmd_t entry)
2635 {
2636 unsigned long pte = 0;
2637
2638 if (pmd_val(entry) & PMD_HUGE_PRESENT)
2639 pte |= _PAGE_VALID;
2640
2641 if (tlb_type == hypervisor) {
2642 if (pmd_val(entry) & PMD_HUGE_PRESENT)
2643 pte |= _PAGE_PRESENT_4V;
2644 if (pmd_val(entry) & PMD_HUGE_EXEC)
2645 pte |= _PAGE_EXEC_4V;
2646 if (pmd_val(entry) & PMD_HUGE_WRITE)
2647 pte |= _PAGE_W_4V;
2648 if (pmd_val(entry) & PMD_HUGE_ACCESSED)
2649 pte |= _PAGE_ACCESSED_4V;
2650 if (pmd_val(entry) & PMD_HUGE_DIRTY)
2651 pte |= _PAGE_MODIFIED_4V;
2652 pte |= _PAGE_CP_4V|_PAGE_CV_4V;
2653 } else {
2654 if (pmd_val(entry) & PMD_HUGE_PRESENT)
2655 pte |= _PAGE_PRESENT_4U;
2656 if (pmd_val(entry) & PMD_HUGE_EXEC)
2657 pte |= _PAGE_EXEC_4U;
2658 if (pmd_val(entry) & PMD_HUGE_WRITE)
2659 pte |= _PAGE_W_4U;
2660 if (pmd_val(entry) & PMD_HUGE_ACCESSED)
2661 pte |= _PAGE_ACCESSED_4U;
2662 if (pmd_val(entry) & PMD_HUGE_DIRTY)
2663 pte |= _PAGE_MODIFIED_4U;
2664 pte |= _PAGE_CP_4U|_PAGE_CV_4U;
2665 }
2666
2667 return __pgprot(pte);
2668 }
2669
2670 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2671 pmd_t *pmd)
2672 {
2673 unsigned long pte, flags;
2674 struct mm_struct *mm;
2675 pmd_t entry = *pmd;
2676 pgprot_t prot;
2677
2678 if (!pmd_large(entry) || !pmd_young(entry))
2679 return;
2680
2681 pte = (pmd_val(entry) & ~PMD_HUGE_PROTBITS);
2682 pte <<= PMD_PADDR_SHIFT;
2683 pte |= _PAGE_VALID;
2684
2685 prot = pmd_pgprot(entry);
2686
2687 if (tlb_type == hypervisor)
2688 pgprot_val(prot) |= _PAGE_SZHUGE_4V;
2689 else
2690 pgprot_val(prot) |= _PAGE_SZHUGE_4U;
2691
2692 pte |= pgprot_val(prot);
2693
2694 mm = vma->vm_mm;
2695
2696 spin_lock_irqsave(&mm->context.lock, flags);
2697
2698 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2699 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, HPAGE_SHIFT,
2700 addr, pte);
2701
2702 spin_unlock_irqrestore(&mm->context.lock, flags);
2703 }
2704 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2705
2706 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2707 static void context_reload(void *__data)
2708 {
2709 struct mm_struct *mm = __data;
2710
2711 if (mm == current->mm)
2712 load_secondary_context(mm);
2713 }
2714
2715 void hugetlb_setup(struct mm_struct *mm)
2716 {
2717 struct tsb_config *tp = &mm->context.tsb_block[MM_TSB_HUGE];
2718
2719 if (likely(tp->tsb != NULL))
2720 return;
2721
2722 tsb_grow(mm, MM_TSB_HUGE, 0);
2723 tsb_context_switch(mm);
2724 smp_tsb_sync(mm);
2725
2726 /* On UltraSPARC-III+ and later, configure the second half of
2727 * the Data-TLB for huge pages.
2728 */
2729 if (tlb_type == cheetah_plus) {
2730 unsigned long ctx;
2731
2732 spin_lock(&ctx_alloc_lock);
2733 ctx = mm->context.sparc64_ctx_val;
2734 ctx &= ~CTX_PGSZ_MASK;
2735 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2736 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2737
2738 if (ctx != mm->context.sparc64_ctx_val) {
2739 /* When changing the page size fields, we
2740 * must perform a context flush so that no
2741 * stale entries match. This flush must
2742 * occur with the original context register
2743 * settings.
2744 */
2745 do_flush_tlb_mm(mm);
2746
2747 /* Reload the context register of all processors
2748 * also executing in this address space.
2749 */
2750 mm->context.sparc64_ctx_val = ctx;
2751 on_each_cpu(context_reload, mm, 0);
2752 }
2753 spin_unlock(&ctx_alloc_lock);
2754 }
2755 }
2756 #endif
This page took 0.092284 seconds and 4 git commands to generate.