sparc64: Fix up merge thinko.
[deliverable/linux.git] / arch / sparc / mm / init_64.c
1 /*
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/ioport.h>
26 #include <linux/percpu.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53
54 #include "init_64.h"
55
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57
58 /* A bitmap, two bits for every 256MB of physical memory. These two
59 * bits determine what page size we use for kernel linear
60 * translations. They form an index into kern_linear_pte_xor[]. The
61 * value in the indexed slot is XOR'd with the TLB miss virtual
62 * address to form the resulting TTE. The mapping is:
63 *
64 * 0 ==> 4MB
65 * 1 ==> 256MB
66 * 2 ==> 2GB
67 * 3 ==> 16GB
68 *
69 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
70 * support 2GB pages, and hopefully future cpus will support the 16GB
71 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
72 * if these larger page sizes are not supported by the cpu.
73 *
74 * It would be nice to determine this from the machine description
75 * 'cpu' properties, but we need to have this table setup before the
76 * MDESC is initialized.
77 */
78 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
79
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82 * Space is allocated for this right after the trap table in
83 * arch/sparc64/kernel/head.S
84 */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87
88 static unsigned long cpu_pgsz_mask;
89
90 #define MAX_BANKS 32
91
92 static struct linux_prom64_registers pavail[MAX_BANKS];
93 static int pavail_ents;
94
95 static int cmp_p64(const void *a, const void *b)
96 {
97 const struct linux_prom64_registers *x = a, *y = b;
98
99 if (x->phys_addr > y->phys_addr)
100 return 1;
101 if (x->phys_addr < y->phys_addr)
102 return -1;
103 return 0;
104 }
105
106 static void __init read_obp_memory(const char *property,
107 struct linux_prom64_registers *regs,
108 int *num_ents)
109 {
110 phandle node = prom_finddevice("/memory");
111 int prop_size = prom_getproplen(node, property);
112 int ents, ret, i;
113
114 ents = prop_size / sizeof(struct linux_prom64_registers);
115 if (ents > MAX_BANKS) {
116 prom_printf("The machine has more %s property entries than "
117 "this kernel can support (%d).\n",
118 property, MAX_BANKS);
119 prom_halt();
120 }
121
122 ret = prom_getproperty(node, property, (char *) regs, prop_size);
123 if (ret == -1) {
124 prom_printf("Couldn't get %s property from /memory.\n",
125 property);
126 prom_halt();
127 }
128
129 /* Sanitize what we got from the firmware, by page aligning
130 * everything.
131 */
132 for (i = 0; i < ents; i++) {
133 unsigned long base, size;
134
135 base = regs[i].phys_addr;
136 size = regs[i].reg_size;
137
138 size &= PAGE_MASK;
139 if (base & ~PAGE_MASK) {
140 unsigned long new_base = PAGE_ALIGN(base);
141
142 size -= new_base - base;
143 if ((long) size < 0L)
144 size = 0UL;
145 base = new_base;
146 }
147 if (size == 0UL) {
148 /* If it is empty, simply get rid of it.
149 * This simplifies the logic of the other
150 * functions that process these arrays.
151 */
152 memmove(&regs[i], &regs[i + 1],
153 (ents - i - 1) * sizeof(regs[0]));
154 i--;
155 ents--;
156 continue;
157 }
158 regs[i].phys_addr = base;
159 regs[i].reg_size = size;
160 }
161
162 *num_ents = ents;
163
164 sort(regs, ents, sizeof(struct linux_prom64_registers),
165 cmp_p64, NULL);
166 }
167
168 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
169 sizeof(unsigned long)];
170 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
171
172 /* Kernel physical address base and size in bytes. */
173 unsigned long kern_base __read_mostly;
174 unsigned long kern_size __read_mostly;
175
176 /* Initial ramdisk setup */
177 extern unsigned long sparc_ramdisk_image64;
178 extern unsigned int sparc_ramdisk_image;
179 extern unsigned int sparc_ramdisk_size;
180
181 struct page *mem_map_zero __read_mostly;
182 EXPORT_SYMBOL(mem_map_zero);
183
184 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
185
186 unsigned long sparc64_kern_pri_context __read_mostly;
187 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
188 unsigned long sparc64_kern_sec_context __read_mostly;
189
190 int num_kernel_image_mappings;
191
192 #ifdef CONFIG_DEBUG_DCFLUSH
193 atomic_t dcpage_flushes = ATOMIC_INIT(0);
194 #ifdef CONFIG_SMP
195 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
196 #endif
197 #endif
198
199 inline void flush_dcache_page_impl(struct page *page)
200 {
201 BUG_ON(tlb_type == hypervisor);
202 #ifdef CONFIG_DEBUG_DCFLUSH
203 atomic_inc(&dcpage_flushes);
204 #endif
205
206 #ifdef DCACHE_ALIASING_POSSIBLE
207 __flush_dcache_page(page_address(page),
208 ((tlb_type == spitfire) &&
209 page_mapping(page) != NULL));
210 #else
211 if (page_mapping(page) != NULL &&
212 tlb_type == spitfire)
213 __flush_icache_page(__pa(page_address(page)));
214 #endif
215 }
216
217 #define PG_dcache_dirty PG_arch_1
218 #define PG_dcache_cpu_shift 32UL
219 #define PG_dcache_cpu_mask \
220 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
221
222 #define dcache_dirty_cpu(page) \
223 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
224
225 static inline void set_dcache_dirty(struct page *page, int this_cpu)
226 {
227 unsigned long mask = this_cpu;
228 unsigned long non_cpu_bits;
229
230 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
231 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
232
233 __asm__ __volatile__("1:\n\t"
234 "ldx [%2], %%g7\n\t"
235 "and %%g7, %1, %%g1\n\t"
236 "or %%g1, %0, %%g1\n\t"
237 "casx [%2], %%g7, %%g1\n\t"
238 "cmp %%g7, %%g1\n\t"
239 "bne,pn %%xcc, 1b\n\t"
240 " nop"
241 : /* no outputs */
242 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
243 : "g1", "g7");
244 }
245
246 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
247 {
248 unsigned long mask = (1UL << PG_dcache_dirty);
249
250 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
251 "1:\n\t"
252 "ldx [%2], %%g7\n\t"
253 "srlx %%g7, %4, %%g1\n\t"
254 "and %%g1, %3, %%g1\n\t"
255 "cmp %%g1, %0\n\t"
256 "bne,pn %%icc, 2f\n\t"
257 " andn %%g7, %1, %%g1\n\t"
258 "casx [%2], %%g7, %%g1\n\t"
259 "cmp %%g7, %%g1\n\t"
260 "bne,pn %%xcc, 1b\n\t"
261 " nop\n"
262 "2:"
263 : /* no outputs */
264 : "r" (cpu), "r" (mask), "r" (&page->flags),
265 "i" (PG_dcache_cpu_mask),
266 "i" (PG_dcache_cpu_shift)
267 : "g1", "g7");
268 }
269
270 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
271 {
272 unsigned long tsb_addr = (unsigned long) ent;
273
274 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
275 tsb_addr = __pa(tsb_addr);
276
277 __tsb_insert(tsb_addr, tag, pte);
278 }
279
280 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
281
282 static void flush_dcache(unsigned long pfn)
283 {
284 struct page *page;
285
286 page = pfn_to_page(pfn);
287 if (page) {
288 unsigned long pg_flags;
289
290 pg_flags = page->flags;
291 if (pg_flags & (1UL << PG_dcache_dirty)) {
292 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
293 PG_dcache_cpu_mask);
294 int this_cpu = get_cpu();
295
296 /* This is just to optimize away some function calls
297 * in the SMP case.
298 */
299 if (cpu == this_cpu)
300 flush_dcache_page_impl(page);
301 else
302 smp_flush_dcache_page_impl(page, cpu);
303
304 clear_dcache_dirty_cpu(page, cpu);
305
306 put_cpu();
307 }
308 }
309 }
310
311 /* mm->context.lock must be held */
312 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
313 unsigned long tsb_hash_shift, unsigned long address,
314 unsigned long tte)
315 {
316 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
317 unsigned long tag;
318
319 if (unlikely(!tsb))
320 return;
321
322 tsb += ((address >> tsb_hash_shift) &
323 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
324 tag = (address >> 22UL);
325 tsb_insert(tsb, tag, tte);
326 }
327
328 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
329 static inline bool is_hugetlb_pte(pte_t pte)
330 {
331 if ((tlb_type == hypervisor &&
332 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
333 (tlb_type != hypervisor &&
334 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
335 return true;
336 return false;
337 }
338 #endif
339
340 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
341 {
342 struct mm_struct *mm;
343 unsigned long flags;
344 pte_t pte = *ptep;
345
346 if (tlb_type != hypervisor) {
347 unsigned long pfn = pte_pfn(pte);
348
349 if (pfn_valid(pfn))
350 flush_dcache(pfn);
351 }
352
353 mm = vma->vm_mm;
354
355 /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */
356 if (!pte_accessible(mm, pte))
357 return;
358
359 spin_lock_irqsave(&mm->context.lock, flags);
360
361 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
362 if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
363 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
364 address, pte_val(pte));
365 else
366 #endif
367 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
368 address, pte_val(pte));
369
370 spin_unlock_irqrestore(&mm->context.lock, flags);
371 }
372
373 void flush_dcache_page(struct page *page)
374 {
375 struct address_space *mapping;
376 int this_cpu;
377
378 if (tlb_type == hypervisor)
379 return;
380
381 /* Do not bother with the expensive D-cache flush if it
382 * is merely the zero page. The 'bigcore' testcase in GDB
383 * causes this case to run millions of times.
384 */
385 if (page == ZERO_PAGE(0))
386 return;
387
388 this_cpu = get_cpu();
389
390 mapping = page_mapping(page);
391 if (mapping && !mapping_mapped(mapping)) {
392 int dirty = test_bit(PG_dcache_dirty, &page->flags);
393 if (dirty) {
394 int dirty_cpu = dcache_dirty_cpu(page);
395
396 if (dirty_cpu == this_cpu)
397 goto out;
398 smp_flush_dcache_page_impl(page, dirty_cpu);
399 }
400 set_dcache_dirty(page, this_cpu);
401 } else {
402 /* We could delay the flush for the !page_mapping
403 * case too. But that case is for exec env/arg
404 * pages and those are %99 certainly going to get
405 * faulted into the tlb (and thus flushed) anyways.
406 */
407 flush_dcache_page_impl(page);
408 }
409
410 out:
411 put_cpu();
412 }
413 EXPORT_SYMBOL(flush_dcache_page);
414
415 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
416 {
417 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
418 if (tlb_type == spitfire) {
419 unsigned long kaddr;
420
421 /* This code only runs on Spitfire cpus so this is
422 * why we can assume _PAGE_PADDR_4U.
423 */
424 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
425 unsigned long paddr, mask = _PAGE_PADDR_4U;
426
427 if (kaddr >= PAGE_OFFSET)
428 paddr = kaddr & mask;
429 else {
430 pgd_t *pgdp = pgd_offset_k(kaddr);
431 pud_t *pudp = pud_offset(pgdp, kaddr);
432 pmd_t *pmdp = pmd_offset(pudp, kaddr);
433 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
434
435 paddr = pte_val(*ptep) & mask;
436 }
437 __flush_icache_page(paddr);
438 }
439 }
440 }
441 EXPORT_SYMBOL(flush_icache_range);
442
443 void mmu_info(struct seq_file *m)
444 {
445 static const char *pgsz_strings[] = {
446 "8K", "64K", "512K", "4MB", "32MB",
447 "256MB", "2GB", "16GB",
448 };
449 int i, printed;
450
451 if (tlb_type == cheetah)
452 seq_printf(m, "MMU Type\t: Cheetah\n");
453 else if (tlb_type == cheetah_plus)
454 seq_printf(m, "MMU Type\t: Cheetah+\n");
455 else if (tlb_type == spitfire)
456 seq_printf(m, "MMU Type\t: Spitfire\n");
457 else if (tlb_type == hypervisor)
458 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
459 else
460 seq_printf(m, "MMU Type\t: ???\n");
461
462 seq_printf(m, "MMU PGSZs\t: ");
463 printed = 0;
464 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
465 if (cpu_pgsz_mask & (1UL << i)) {
466 seq_printf(m, "%s%s",
467 printed ? "," : "", pgsz_strings[i]);
468 printed++;
469 }
470 }
471 seq_putc(m, '\n');
472
473 #ifdef CONFIG_DEBUG_DCFLUSH
474 seq_printf(m, "DCPageFlushes\t: %d\n",
475 atomic_read(&dcpage_flushes));
476 #ifdef CONFIG_SMP
477 seq_printf(m, "DCPageFlushesXC\t: %d\n",
478 atomic_read(&dcpage_flushes_xcall));
479 #endif /* CONFIG_SMP */
480 #endif /* CONFIG_DEBUG_DCFLUSH */
481 }
482
483 struct linux_prom_translation prom_trans[512] __read_mostly;
484 unsigned int prom_trans_ents __read_mostly;
485
486 unsigned long kern_locked_tte_data;
487
488 /* The obp translations are saved based on 8k pagesize, since obp can
489 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
490 * HI_OBP_ADDRESS range are handled in ktlb.S.
491 */
492 static inline int in_obp_range(unsigned long vaddr)
493 {
494 return (vaddr >= LOW_OBP_ADDRESS &&
495 vaddr < HI_OBP_ADDRESS);
496 }
497
498 static int cmp_ptrans(const void *a, const void *b)
499 {
500 const struct linux_prom_translation *x = a, *y = b;
501
502 if (x->virt > y->virt)
503 return 1;
504 if (x->virt < y->virt)
505 return -1;
506 return 0;
507 }
508
509 /* Read OBP translations property into 'prom_trans[]'. */
510 static void __init read_obp_translations(void)
511 {
512 int n, node, ents, first, last, i;
513
514 node = prom_finddevice("/virtual-memory");
515 n = prom_getproplen(node, "translations");
516 if (unlikely(n == 0 || n == -1)) {
517 prom_printf("prom_mappings: Couldn't get size.\n");
518 prom_halt();
519 }
520 if (unlikely(n > sizeof(prom_trans))) {
521 prom_printf("prom_mappings: Size %d is too big.\n", n);
522 prom_halt();
523 }
524
525 if ((n = prom_getproperty(node, "translations",
526 (char *)&prom_trans[0],
527 sizeof(prom_trans))) == -1) {
528 prom_printf("prom_mappings: Couldn't get property.\n");
529 prom_halt();
530 }
531
532 n = n / sizeof(struct linux_prom_translation);
533
534 ents = n;
535
536 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
537 cmp_ptrans, NULL);
538
539 /* Now kick out all the non-OBP entries. */
540 for (i = 0; i < ents; i++) {
541 if (in_obp_range(prom_trans[i].virt))
542 break;
543 }
544 first = i;
545 for (; i < ents; i++) {
546 if (!in_obp_range(prom_trans[i].virt))
547 break;
548 }
549 last = i;
550
551 for (i = 0; i < (last - first); i++) {
552 struct linux_prom_translation *src = &prom_trans[i + first];
553 struct linux_prom_translation *dest = &prom_trans[i];
554
555 *dest = *src;
556 }
557 for (; i < ents; i++) {
558 struct linux_prom_translation *dest = &prom_trans[i];
559 dest->virt = dest->size = dest->data = 0x0UL;
560 }
561
562 prom_trans_ents = last - first;
563
564 if (tlb_type == spitfire) {
565 /* Clear diag TTE bits. */
566 for (i = 0; i < prom_trans_ents; i++)
567 prom_trans[i].data &= ~0x0003fe0000000000UL;
568 }
569
570 /* Force execute bit on. */
571 for (i = 0; i < prom_trans_ents; i++)
572 prom_trans[i].data |= (tlb_type == hypervisor ?
573 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
574 }
575
576 static void __init hypervisor_tlb_lock(unsigned long vaddr,
577 unsigned long pte,
578 unsigned long mmu)
579 {
580 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
581
582 if (ret != 0) {
583 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
584 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
585 prom_halt();
586 }
587 }
588
589 static unsigned long kern_large_tte(unsigned long paddr);
590
591 static void __init remap_kernel(void)
592 {
593 unsigned long phys_page, tte_vaddr, tte_data;
594 int i, tlb_ent = sparc64_highest_locked_tlbent();
595
596 tte_vaddr = (unsigned long) KERNBASE;
597 phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
598 tte_data = kern_large_tte(phys_page);
599
600 kern_locked_tte_data = tte_data;
601
602 /* Now lock us into the TLBs via Hypervisor or OBP. */
603 if (tlb_type == hypervisor) {
604 for (i = 0; i < num_kernel_image_mappings; i++) {
605 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
606 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
607 tte_vaddr += 0x400000;
608 tte_data += 0x400000;
609 }
610 } else {
611 for (i = 0; i < num_kernel_image_mappings; i++) {
612 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
613 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
614 tte_vaddr += 0x400000;
615 tte_data += 0x400000;
616 }
617 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
618 }
619 if (tlb_type == cheetah_plus) {
620 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
621 CTX_CHEETAH_PLUS_NUC);
622 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
623 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
624 }
625 }
626
627
628 static void __init inherit_prom_mappings(void)
629 {
630 /* Now fixup OBP's idea about where we really are mapped. */
631 printk("Remapping the kernel... ");
632 remap_kernel();
633 printk("done.\n");
634 }
635
636 void prom_world(int enter)
637 {
638 if (!enter)
639 set_fs(get_fs());
640
641 __asm__ __volatile__("flushw");
642 }
643
644 void __flush_dcache_range(unsigned long start, unsigned long end)
645 {
646 unsigned long va;
647
648 if (tlb_type == spitfire) {
649 int n = 0;
650
651 for (va = start; va < end; va += 32) {
652 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
653 if (++n >= 512)
654 break;
655 }
656 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
657 start = __pa(start);
658 end = __pa(end);
659 for (va = start; va < end; va += 32)
660 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
661 "membar #Sync"
662 : /* no outputs */
663 : "r" (va),
664 "i" (ASI_DCACHE_INVALIDATE));
665 }
666 }
667 EXPORT_SYMBOL(__flush_dcache_range);
668
669 /* get_new_mmu_context() uses "cache + 1". */
670 DEFINE_SPINLOCK(ctx_alloc_lock);
671 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
672 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
673 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
674 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
675
676 /* Caller does TLB context flushing on local CPU if necessary.
677 * The caller also ensures that CTX_VALID(mm->context) is false.
678 *
679 * We must be careful about boundary cases so that we never
680 * let the user have CTX 0 (nucleus) or we ever use a CTX
681 * version of zero (and thus NO_CONTEXT would not be caught
682 * by version mis-match tests in mmu_context.h).
683 *
684 * Always invoked with interrupts disabled.
685 */
686 void get_new_mmu_context(struct mm_struct *mm)
687 {
688 unsigned long ctx, new_ctx;
689 unsigned long orig_pgsz_bits;
690 int new_version;
691
692 spin_lock(&ctx_alloc_lock);
693 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
694 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
695 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
696 new_version = 0;
697 if (new_ctx >= (1 << CTX_NR_BITS)) {
698 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
699 if (new_ctx >= ctx) {
700 int i;
701 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
702 CTX_FIRST_VERSION;
703 if (new_ctx == 1)
704 new_ctx = CTX_FIRST_VERSION;
705
706 /* Don't call memset, for 16 entries that's just
707 * plain silly...
708 */
709 mmu_context_bmap[0] = 3;
710 mmu_context_bmap[1] = 0;
711 mmu_context_bmap[2] = 0;
712 mmu_context_bmap[3] = 0;
713 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
714 mmu_context_bmap[i + 0] = 0;
715 mmu_context_bmap[i + 1] = 0;
716 mmu_context_bmap[i + 2] = 0;
717 mmu_context_bmap[i + 3] = 0;
718 }
719 new_version = 1;
720 goto out;
721 }
722 }
723 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
724 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
725 out:
726 tlb_context_cache = new_ctx;
727 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
728 spin_unlock(&ctx_alloc_lock);
729
730 if (unlikely(new_version))
731 smp_new_mmu_context_version();
732 }
733
734 static int numa_enabled = 1;
735 static int numa_debug;
736
737 static int __init early_numa(char *p)
738 {
739 if (!p)
740 return 0;
741
742 if (strstr(p, "off"))
743 numa_enabled = 0;
744
745 if (strstr(p, "debug"))
746 numa_debug = 1;
747
748 return 0;
749 }
750 early_param("numa", early_numa);
751
752 #define numadbg(f, a...) \
753 do { if (numa_debug) \
754 printk(KERN_INFO f, ## a); \
755 } while (0)
756
757 static void __init find_ramdisk(unsigned long phys_base)
758 {
759 #ifdef CONFIG_BLK_DEV_INITRD
760 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
761 unsigned long ramdisk_image;
762
763 /* Older versions of the bootloader only supported a
764 * 32-bit physical address for the ramdisk image
765 * location, stored at sparc_ramdisk_image. Newer
766 * SILO versions set sparc_ramdisk_image to zero and
767 * provide a full 64-bit physical address at
768 * sparc_ramdisk_image64.
769 */
770 ramdisk_image = sparc_ramdisk_image;
771 if (!ramdisk_image)
772 ramdisk_image = sparc_ramdisk_image64;
773
774 /* Another bootloader quirk. The bootloader normalizes
775 * the physical address to KERNBASE, so we have to
776 * factor that back out and add in the lowest valid
777 * physical page address to get the true physical address.
778 */
779 ramdisk_image -= KERNBASE;
780 ramdisk_image += phys_base;
781
782 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
783 ramdisk_image, sparc_ramdisk_size);
784
785 initrd_start = ramdisk_image;
786 initrd_end = ramdisk_image + sparc_ramdisk_size;
787
788 memblock_reserve(initrd_start, sparc_ramdisk_size);
789
790 initrd_start += PAGE_OFFSET;
791 initrd_end += PAGE_OFFSET;
792 }
793 #endif
794 }
795
796 struct node_mem_mask {
797 unsigned long mask;
798 unsigned long val;
799 };
800 static struct node_mem_mask node_masks[MAX_NUMNODES];
801 static int num_node_masks;
802
803 #ifdef CONFIG_NEED_MULTIPLE_NODES
804
805 int numa_cpu_lookup_table[NR_CPUS];
806 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
807
808 struct mdesc_mblock {
809 u64 base;
810 u64 size;
811 u64 offset; /* RA-to-PA */
812 };
813 static struct mdesc_mblock *mblocks;
814 static int num_mblocks;
815
816 static unsigned long ra_to_pa(unsigned long addr)
817 {
818 int i;
819
820 for (i = 0; i < num_mblocks; i++) {
821 struct mdesc_mblock *m = &mblocks[i];
822
823 if (addr >= m->base &&
824 addr < (m->base + m->size)) {
825 addr += m->offset;
826 break;
827 }
828 }
829 return addr;
830 }
831
832 static int find_node(unsigned long addr)
833 {
834 int i;
835
836 addr = ra_to_pa(addr);
837 for (i = 0; i < num_node_masks; i++) {
838 struct node_mem_mask *p = &node_masks[i];
839
840 if ((addr & p->mask) == p->val)
841 return i;
842 }
843 return -1;
844 }
845
846 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
847 {
848 *nid = find_node(start);
849 start += PAGE_SIZE;
850 while (start < end) {
851 int n = find_node(start);
852
853 if (n != *nid)
854 break;
855 start += PAGE_SIZE;
856 }
857
858 if (start > end)
859 start = end;
860
861 return start;
862 }
863 #endif
864
865 /* This must be invoked after performing all of the necessary
866 * memblock_set_node() calls for 'nid'. We need to be able to get
867 * correct data from get_pfn_range_for_nid().
868 */
869 static void __init allocate_node_data(int nid)
870 {
871 struct pglist_data *p;
872 unsigned long start_pfn, end_pfn;
873 #ifdef CONFIG_NEED_MULTIPLE_NODES
874 unsigned long paddr;
875
876 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
877 if (!paddr) {
878 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
879 prom_halt();
880 }
881 NODE_DATA(nid) = __va(paddr);
882 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
883
884 NODE_DATA(nid)->node_id = nid;
885 #endif
886
887 p = NODE_DATA(nid);
888
889 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
890 p->node_start_pfn = start_pfn;
891 p->node_spanned_pages = end_pfn - start_pfn;
892 }
893
894 static void init_node_masks_nonnuma(void)
895 {
896 #ifdef CONFIG_NEED_MULTIPLE_NODES
897 int i;
898 #endif
899
900 numadbg("Initializing tables for non-numa.\n");
901
902 node_masks[0].mask = node_masks[0].val = 0;
903 num_node_masks = 1;
904
905 #ifdef CONFIG_NEED_MULTIPLE_NODES
906 for (i = 0; i < NR_CPUS; i++)
907 numa_cpu_lookup_table[i] = 0;
908
909 cpumask_setall(&numa_cpumask_lookup_table[0]);
910 #endif
911 }
912
913 #ifdef CONFIG_NEED_MULTIPLE_NODES
914 struct pglist_data *node_data[MAX_NUMNODES];
915
916 EXPORT_SYMBOL(numa_cpu_lookup_table);
917 EXPORT_SYMBOL(numa_cpumask_lookup_table);
918 EXPORT_SYMBOL(node_data);
919
920 struct mdesc_mlgroup {
921 u64 node;
922 u64 latency;
923 u64 match;
924 u64 mask;
925 };
926 static struct mdesc_mlgroup *mlgroups;
927 static int num_mlgroups;
928
929 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
930 u32 cfg_handle)
931 {
932 u64 arc;
933
934 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
935 u64 target = mdesc_arc_target(md, arc);
936 const u64 *val;
937
938 val = mdesc_get_property(md, target,
939 "cfg-handle", NULL);
940 if (val && *val == cfg_handle)
941 return 0;
942 }
943 return -ENODEV;
944 }
945
946 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
947 u32 cfg_handle)
948 {
949 u64 arc, candidate, best_latency = ~(u64)0;
950
951 candidate = MDESC_NODE_NULL;
952 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
953 u64 target = mdesc_arc_target(md, arc);
954 const char *name = mdesc_node_name(md, target);
955 const u64 *val;
956
957 if (strcmp(name, "pio-latency-group"))
958 continue;
959
960 val = mdesc_get_property(md, target, "latency", NULL);
961 if (!val)
962 continue;
963
964 if (*val < best_latency) {
965 candidate = target;
966 best_latency = *val;
967 }
968 }
969
970 if (candidate == MDESC_NODE_NULL)
971 return -ENODEV;
972
973 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
974 }
975
976 int of_node_to_nid(struct device_node *dp)
977 {
978 const struct linux_prom64_registers *regs;
979 struct mdesc_handle *md;
980 u32 cfg_handle;
981 int count, nid;
982 u64 grp;
983
984 /* This is the right thing to do on currently supported
985 * SUN4U NUMA platforms as well, as the PCI controller does
986 * not sit behind any particular memory controller.
987 */
988 if (!mlgroups)
989 return -1;
990
991 regs = of_get_property(dp, "reg", NULL);
992 if (!regs)
993 return -1;
994
995 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
996
997 md = mdesc_grab();
998
999 count = 0;
1000 nid = -1;
1001 mdesc_for_each_node_by_name(md, grp, "group") {
1002 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1003 nid = count;
1004 break;
1005 }
1006 count++;
1007 }
1008
1009 mdesc_release(md);
1010
1011 return nid;
1012 }
1013
1014 static void __init add_node_ranges(void)
1015 {
1016 struct memblock_region *reg;
1017
1018 for_each_memblock(memory, reg) {
1019 unsigned long size = reg->size;
1020 unsigned long start, end;
1021
1022 start = reg->base;
1023 end = start + size;
1024 while (start < end) {
1025 unsigned long this_end;
1026 int nid;
1027
1028 this_end = memblock_nid_range(start, end, &nid);
1029
1030 numadbg("Setting memblock NUMA node nid[%d] "
1031 "start[%lx] end[%lx]\n",
1032 nid, start, this_end);
1033
1034 memblock_set_node(start, this_end - start,
1035 &memblock.memory, nid);
1036 start = this_end;
1037 }
1038 }
1039 }
1040
1041 static int __init grab_mlgroups(struct mdesc_handle *md)
1042 {
1043 unsigned long paddr;
1044 int count = 0;
1045 u64 node;
1046
1047 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1048 count++;
1049 if (!count)
1050 return -ENOENT;
1051
1052 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1053 SMP_CACHE_BYTES);
1054 if (!paddr)
1055 return -ENOMEM;
1056
1057 mlgroups = __va(paddr);
1058 num_mlgroups = count;
1059
1060 count = 0;
1061 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1062 struct mdesc_mlgroup *m = &mlgroups[count++];
1063 const u64 *val;
1064
1065 m->node = node;
1066
1067 val = mdesc_get_property(md, node, "latency", NULL);
1068 m->latency = *val;
1069 val = mdesc_get_property(md, node, "address-match", NULL);
1070 m->match = *val;
1071 val = mdesc_get_property(md, node, "address-mask", NULL);
1072 m->mask = *val;
1073
1074 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1075 "match[%llx] mask[%llx]\n",
1076 count - 1, m->node, m->latency, m->match, m->mask);
1077 }
1078
1079 return 0;
1080 }
1081
1082 static int __init grab_mblocks(struct mdesc_handle *md)
1083 {
1084 unsigned long paddr;
1085 int count = 0;
1086 u64 node;
1087
1088 mdesc_for_each_node_by_name(md, node, "mblock")
1089 count++;
1090 if (!count)
1091 return -ENOENT;
1092
1093 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1094 SMP_CACHE_BYTES);
1095 if (!paddr)
1096 return -ENOMEM;
1097
1098 mblocks = __va(paddr);
1099 num_mblocks = count;
1100
1101 count = 0;
1102 mdesc_for_each_node_by_name(md, node, "mblock") {
1103 struct mdesc_mblock *m = &mblocks[count++];
1104 const u64 *val;
1105
1106 val = mdesc_get_property(md, node, "base", NULL);
1107 m->base = *val;
1108 val = mdesc_get_property(md, node, "size", NULL);
1109 m->size = *val;
1110 val = mdesc_get_property(md, node,
1111 "address-congruence-offset", NULL);
1112
1113 /* The address-congruence-offset property is optional.
1114 * Explicity zero it be identifty this.
1115 */
1116 if (val)
1117 m->offset = *val;
1118 else
1119 m->offset = 0UL;
1120
1121 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1122 count - 1, m->base, m->size, m->offset);
1123 }
1124
1125 return 0;
1126 }
1127
1128 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1129 u64 grp, cpumask_t *mask)
1130 {
1131 u64 arc;
1132
1133 cpumask_clear(mask);
1134
1135 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1136 u64 target = mdesc_arc_target(md, arc);
1137 const char *name = mdesc_node_name(md, target);
1138 const u64 *id;
1139
1140 if (strcmp(name, "cpu"))
1141 continue;
1142 id = mdesc_get_property(md, target, "id", NULL);
1143 if (*id < nr_cpu_ids)
1144 cpumask_set_cpu(*id, mask);
1145 }
1146 }
1147
1148 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1149 {
1150 int i;
1151
1152 for (i = 0; i < num_mlgroups; i++) {
1153 struct mdesc_mlgroup *m = &mlgroups[i];
1154 if (m->node == node)
1155 return m;
1156 }
1157 return NULL;
1158 }
1159
1160 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1161 int index)
1162 {
1163 struct mdesc_mlgroup *candidate = NULL;
1164 u64 arc, best_latency = ~(u64)0;
1165 struct node_mem_mask *n;
1166
1167 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1168 u64 target = mdesc_arc_target(md, arc);
1169 struct mdesc_mlgroup *m = find_mlgroup(target);
1170 if (!m)
1171 continue;
1172 if (m->latency < best_latency) {
1173 candidate = m;
1174 best_latency = m->latency;
1175 }
1176 }
1177 if (!candidate)
1178 return -ENOENT;
1179
1180 if (num_node_masks != index) {
1181 printk(KERN_ERR "Inconsistent NUMA state, "
1182 "index[%d] != num_node_masks[%d]\n",
1183 index, num_node_masks);
1184 return -EINVAL;
1185 }
1186
1187 n = &node_masks[num_node_masks++];
1188
1189 n->mask = candidate->mask;
1190 n->val = candidate->match;
1191
1192 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1193 index, n->mask, n->val, candidate->latency);
1194
1195 return 0;
1196 }
1197
1198 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1199 int index)
1200 {
1201 cpumask_t mask;
1202 int cpu;
1203
1204 numa_parse_mdesc_group_cpus(md, grp, &mask);
1205
1206 for_each_cpu(cpu, &mask)
1207 numa_cpu_lookup_table[cpu] = index;
1208 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1209
1210 if (numa_debug) {
1211 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1212 for_each_cpu(cpu, &mask)
1213 printk("%d ", cpu);
1214 printk("]\n");
1215 }
1216
1217 return numa_attach_mlgroup(md, grp, index);
1218 }
1219
1220 static int __init numa_parse_mdesc(void)
1221 {
1222 struct mdesc_handle *md = mdesc_grab();
1223 int i, err, count;
1224 u64 node;
1225
1226 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1227 if (node == MDESC_NODE_NULL) {
1228 mdesc_release(md);
1229 return -ENOENT;
1230 }
1231
1232 err = grab_mblocks(md);
1233 if (err < 0)
1234 goto out;
1235
1236 err = grab_mlgroups(md);
1237 if (err < 0)
1238 goto out;
1239
1240 count = 0;
1241 mdesc_for_each_node_by_name(md, node, "group") {
1242 err = numa_parse_mdesc_group(md, node, count);
1243 if (err < 0)
1244 break;
1245 count++;
1246 }
1247
1248 add_node_ranges();
1249
1250 for (i = 0; i < num_node_masks; i++) {
1251 allocate_node_data(i);
1252 node_set_online(i);
1253 }
1254
1255 err = 0;
1256 out:
1257 mdesc_release(md);
1258 return err;
1259 }
1260
1261 static int __init numa_parse_jbus(void)
1262 {
1263 unsigned long cpu, index;
1264
1265 /* NUMA node id is encoded in bits 36 and higher, and there is
1266 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1267 */
1268 index = 0;
1269 for_each_present_cpu(cpu) {
1270 numa_cpu_lookup_table[cpu] = index;
1271 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1272 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1273 node_masks[index].val = cpu << 36UL;
1274
1275 index++;
1276 }
1277 num_node_masks = index;
1278
1279 add_node_ranges();
1280
1281 for (index = 0; index < num_node_masks; index++) {
1282 allocate_node_data(index);
1283 node_set_online(index);
1284 }
1285
1286 return 0;
1287 }
1288
1289 static int __init numa_parse_sun4u(void)
1290 {
1291 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1292 unsigned long ver;
1293
1294 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1295 if ((ver >> 32UL) == __JALAPENO_ID ||
1296 (ver >> 32UL) == __SERRANO_ID)
1297 return numa_parse_jbus();
1298 }
1299 return -1;
1300 }
1301
1302 static int __init bootmem_init_numa(void)
1303 {
1304 int err = -1;
1305
1306 numadbg("bootmem_init_numa()\n");
1307
1308 if (numa_enabled) {
1309 if (tlb_type == hypervisor)
1310 err = numa_parse_mdesc();
1311 else
1312 err = numa_parse_sun4u();
1313 }
1314 return err;
1315 }
1316
1317 #else
1318
1319 static int bootmem_init_numa(void)
1320 {
1321 return -1;
1322 }
1323
1324 #endif
1325
1326 static void __init bootmem_init_nonnuma(void)
1327 {
1328 unsigned long top_of_ram = memblock_end_of_DRAM();
1329 unsigned long total_ram = memblock_phys_mem_size();
1330
1331 numadbg("bootmem_init_nonnuma()\n");
1332
1333 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1334 top_of_ram, total_ram);
1335 printk(KERN_INFO "Memory hole size: %ldMB\n",
1336 (top_of_ram - total_ram) >> 20);
1337
1338 init_node_masks_nonnuma();
1339 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1340 allocate_node_data(0);
1341 node_set_online(0);
1342 }
1343
1344 static unsigned long __init bootmem_init(unsigned long phys_base)
1345 {
1346 unsigned long end_pfn;
1347
1348 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1349 max_pfn = max_low_pfn = end_pfn;
1350 min_low_pfn = (phys_base >> PAGE_SHIFT);
1351
1352 if (bootmem_init_numa() < 0)
1353 bootmem_init_nonnuma();
1354
1355 /* Dump memblock with node info. */
1356 memblock_dump_all();
1357
1358 /* XXX cpu notifier XXX */
1359
1360 sparse_memory_present_with_active_regions(MAX_NUMNODES);
1361 sparse_init();
1362
1363 return end_pfn;
1364 }
1365
1366 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1367 static int pall_ents __initdata;
1368
1369 #ifdef CONFIG_DEBUG_PAGEALLOC
1370 static unsigned long __ref kernel_map_range(unsigned long pstart,
1371 unsigned long pend, pgprot_t prot)
1372 {
1373 unsigned long vstart = PAGE_OFFSET + pstart;
1374 unsigned long vend = PAGE_OFFSET + pend;
1375 unsigned long alloc_bytes = 0UL;
1376
1377 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1378 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1379 vstart, vend);
1380 prom_halt();
1381 }
1382
1383 while (vstart < vend) {
1384 unsigned long this_end, paddr = __pa(vstart);
1385 pgd_t *pgd = pgd_offset_k(vstart);
1386 pud_t *pud;
1387 pmd_t *pmd;
1388 pte_t *pte;
1389
1390 pud = pud_offset(pgd, vstart);
1391 if (pud_none(*pud)) {
1392 pmd_t *new;
1393
1394 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1395 alloc_bytes += PAGE_SIZE;
1396 pud_populate(&init_mm, pud, new);
1397 }
1398
1399 pmd = pmd_offset(pud, vstart);
1400 if (!pmd_present(*pmd)) {
1401 pte_t *new;
1402
1403 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1404 alloc_bytes += PAGE_SIZE;
1405 pmd_populate_kernel(&init_mm, pmd, new);
1406 }
1407
1408 pte = pte_offset_kernel(pmd, vstart);
1409 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1410 if (this_end > vend)
1411 this_end = vend;
1412
1413 while (vstart < this_end) {
1414 pte_val(*pte) = (paddr | pgprot_val(prot));
1415
1416 vstart += PAGE_SIZE;
1417 paddr += PAGE_SIZE;
1418 pte++;
1419 }
1420 }
1421
1422 return alloc_bytes;
1423 }
1424
1425 extern unsigned int kvmap_linear_patch[1];
1426 #endif /* CONFIG_DEBUG_PAGEALLOC */
1427
1428 static void __init kpte_set_val(unsigned long index, unsigned long val)
1429 {
1430 unsigned long *ptr = kpte_linear_bitmap;
1431
1432 val <<= ((index % (BITS_PER_LONG / 2)) * 2);
1433 ptr += (index / (BITS_PER_LONG / 2));
1434
1435 *ptr |= val;
1436 }
1437
1438 static const unsigned long kpte_shift_min = 28; /* 256MB */
1439 static const unsigned long kpte_shift_max = 34; /* 16GB */
1440 static const unsigned long kpte_shift_incr = 3;
1441
1442 static unsigned long kpte_mark_using_shift(unsigned long start, unsigned long end,
1443 unsigned long shift)
1444 {
1445 unsigned long size = (1UL << shift);
1446 unsigned long mask = (size - 1UL);
1447 unsigned long remains = end - start;
1448 unsigned long val;
1449
1450 if (remains < size || (start & mask))
1451 return start;
1452
1453 /* VAL maps:
1454 *
1455 * shift 28 --> kern_linear_pte_xor index 1
1456 * shift 31 --> kern_linear_pte_xor index 2
1457 * shift 34 --> kern_linear_pte_xor index 3
1458 */
1459 val = ((shift - kpte_shift_min) / kpte_shift_incr) + 1;
1460
1461 remains &= ~mask;
1462 if (shift != kpte_shift_max)
1463 remains = size;
1464
1465 while (remains) {
1466 unsigned long index = start >> kpte_shift_min;
1467
1468 kpte_set_val(index, val);
1469
1470 start += 1UL << kpte_shift_min;
1471 remains -= 1UL << kpte_shift_min;
1472 }
1473
1474 return start;
1475 }
1476
1477 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1478 {
1479 unsigned long smallest_size, smallest_mask;
1480 unsigned long s;
1481
1482 smallest_size = (1UL << kpte_shift_min);
1483 smallest_mask = (smallest_size - 1UL);
1484
1485 while (start < end) {
1486 unsigned long orig_start = start;
1487
1488 for (s = kpte_shift_max; s >= kpte_shift_min; s -= kpte_shift_incr) {
1489 start = kpte_mark_using_shift(start, end, s);
1490
1491 if (start != orig_start)
1492 break;
1493 }
1494
1495 if (start == orig_start)
1496 start = (start + smallest_size) & ~smallest_mask;
1497 }
1498 }
1499
1500 static void __init init_kpte_bitmap(void)
1501 {
1502 unsigned long i;
1503
1504 for (i = 0; i < pall_ents; i++) {
1505 unsigned long phys_start, phys_end;
1506
1507 phys_start = pall[i].phys_addr;
1508 phys_end = phys_start + pall[i].reg_size;
1509
1510 mark_kpte_bitmap(phys_start, phys_end);
1511 }
1512 }
1513
1514 static void __init kernel_physical_mapping_init(void)
1515 {
1516 #ifdef CONFIG_DEBUG_PAGEALLOC
1517 unsigned long i, mem_alloced = 0UL;
1518
1519 for (i = 0; i < pall_ents; i++) {
1520 unsigned long phys_start, phys_end;
1521
1522 phys_start = pall[i].phys_addr;
1523 phys_end = phys_start + pall[i].reg_size;
1524
1525 mem_alloced += kernel_map_range(phys_start, phys_end,
1526 PAGE_KERNEL);
1527 }
1528
1529 printk("Allocated %ld bytes for kernel page tables.\n",
1530 mem_alloced);
1531
1532 kvmap_linear_patch[0] = 0x01000000; /* nop */
1533 flushi(&kvmap_linear_patch[0]);
1534
1535 __flush_tlb_all();
1536 #endif
1537 }
1538
1539 #ifdef CONFIG_DEBUG_PAGEALLOC
1540 void kernel_map_pages(struct page *page, int numpages, int enable)
1541 {
1542 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1543 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1544
1545 kernel_map_range(phys_start, phys_end,
1546 (enable ? PAGE_KERNEL : __pgprot(0)));
1547
1548 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1549 PAGE_OFFSET + phys_end);
1550
1551 /* we should perform an IPI and flush all tlbs,
1552 * but that can deadlock->flush only current cpu.
1553 */
1554 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1555 PAGE_OFFSET + phys_end);
1556 }
1557 #endif
1558
1559 unsigned long __init find_ecache_flush_span(unsigned long size)
1560 {
1561 int i;
1562
1563 for (i = 0; i < pavail_ents; i++) {
1564 if (pavail[i].reg_size >= size)
1565 return pavail[i].phys_addr;
1566 }
1567
1568 return ~0UL;
1569 }
1570
1571 unsigned long PAGE_OFFSET;
1572 EXPORT_SYMBOL(PAGE_OFFSET);
1573
1574 static void __init page_offset_shift_patch_one(unsigned int *insn, unsigned long phys_bits)
1575 {
1576 unsigned long final_shift;
1577 unsigned int val = *insn;
1578 unsigned int cnt;
1579
1580 /* We are patching in ilog2(max_supported_phys_address), and
1581 * we are doing so in a manner similar to a relocation addend.
1582 * That is, we are adding the shift value to whatever value
1583 * is in the shift instruction count field already.
1584 */
1585 cnt = (val & 0x3f);
1586 val &= ~0x3f;
1587
1588 /* If we are trying to shift >= 64 bits, clear the destination
1589 * register. This can happen when phys_bits ends up being equal
1590 * to MAX_PHYS_ADDRESS_BITS.
1591 */
1592 final_shift = (cnt + (64 - phys_bits));
1593 if (final_shift >= 64) {
1594 unsigned int rd = (val >> 25) & 0x1f;
1595
1596 val = 0x80100000 | (rd << 25);
1597 } else {
1598 val |= final_shift;
1599 }
1600 *insn = val;
1601
1602 __asm__ __volatile__("flush %0"
1603 : /* no outputs */
1604 : "r" (insn));
1605 }
1606
1607 static void __init page_offset_shift_patch(unsigned long phys_bits)
1608 {
1609 extern unsigned int __page_offset_shift_patch;
1610 extern unsigned int __page_offset_shift_patch_end;
1611 unsigned int *p;
1612
1613 p = &__page_offset_shift_patch;
1614 while (p < &__page_offset_shift_patch_end) {
1615 unsigned int *insn = (unsigned int *)(unsigned long)*p;
1616
1617 page_offset_shift_patch_one(insn, phys_bits);
1618
1619 p++;
1620 }
1621 }
1622
1623 static void __init setup_page_offset(void)
1624 {
1625 unsigned long max_phys_bits = 40;
1626
1627 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1628 max_phys_bits = 42;
1629 } else if (tlb_type == hypervisor) {
1630 switch (sun4v_chip_type) {
1631 case SUN4V_CHIP_NIAGARA1:
1632 case SUN4V_CHIP_NIAGARA2:
1633 max_phys_bits = 39;
1634 break;
1635 case SUN4V_CHIP_NIAGARA3:
1636 max_phys_bits = 43;
1637 break;
1638 case SUN4V_CHIP_NIAGARA4:
1639 case SUN4V_CHIP_NIAGARA5:
1640 case SUN4V_CHIP_SPARC64X:
1641 default:
1642 max_phys_bits = 47;
1643 break;
1644 }
1645 }
1646
1647 if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1648 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1649 max_phys_bits);
1650 prom_halt();
1651 }
1652
1653 PAGE_OFFSET = PAGE_OFFSET_BY_BITS(max_phys_bits);
1654
1655 pr_info("PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1656 PAGE_OFFSET, max_phys_bits);
1657
1658 page_offset_shift_patch(max_phys_bits);
1659 }
1660
1661 static void __init tsb_phys_patch(void)
1662 {
1663 struct tsb_ldquad_phys_patch_entry *pquad;
1664 struct tsb_phys_patch_entry *p;
1665
1666 pquad = &__tsb_ldquad_phys_patch;
1667 while (pquad < &__tsb_ldquad_phys_patch_end) {
1668 unsigned long addr = pquad->addr;
1669
1670 if (tlb_type == hypervisor)
1671 *(unsigned int *) addr = pquad->sun4v_insn;
1672 else
1673 *(unsigned int *) addr = pquad->sun4u_insn;
1674 wmb();
1675 __asm__ __volatile__("flush %0"
1676 : /* no outputs */
1677 : "r" (addr));
1678
1679 pquad++;
1680 }
1681
1682 p = &__tsb_phys_patch;
1683 while (p < &__tsb_phys_patch_end) {
1684 unsigned long addr = p->addr;
1685
1686 *(unsigned int *) addr = p->insn;
1687 wmb();
1688 __asm__ __volatile__("flush %0"
1689 : /* no outputs */
1690 : "r" (addr));
1691
1692 p++;
1693 }
1694 }
1695
1696 /* Don't mark as init, we give this to the Hypervisor. */
1697 #ifndef CONFIG_DEBUG_PAGEALLOC
1698 #define NUM_KTSB_DESCR 2
1699 #else
1700 #define NUM_KTSB_DESCR 1
1701 #endif
1702 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1703 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1704
1705 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1706 {
1707 pa >>= KTSB_PHYS_SHIFT;
1708
1709 while (start < end) {
1710 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1711
1712 ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1713 __asm__ __volatile__("flush %0" : : "r" (ia));
1714
1715 ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1716 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
1717
1718 start++;
1719 }
1720 }
1721
1722 static void ktsb_phys_patch(void)
1723 {
1724 extern unsigned int __swapper_tsb_phys_patch;
1725 extern unsigned int __swapper_tsb_phys_patch_end;
1726 unsigned long ktsb_pa;
1727
1728 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1729 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1730 &__swapper_tsb_phys_patch_end, ktsb_pa);
1731 #ifndef CONFIG_DEBUG_PAGEALLOC
1732 {
1733 extern unsigned int __swapper_4m_tsb_phys_patch;
1734 extern unsigned int __swapper_4m_tsb_phys_patch_end;
1735 ktsb_pa = (kern_base +
1736 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1737 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1738 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1739 }
1740 #endif
1741 }
1742
1743 static void __init sun4v_ktsb_init(void)
1744 {
1745 unsigned long ktsb_pa;
1746
1747 /* First KTSB for PAGE_SIZE mappings. */
1748 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1749
1750 switch (PAGE_SIZE) {
1751 case 8 * 1024:
1752 default:
1753 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1754 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1755 break;
1756
1757 case 64 * 1024:
1758 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1759 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1760 break;
1761
1762 case 512 * 1024:
1763 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1764 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1765 break;
1766
1767 case 4 * 1024 * 1024:
1768 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1769 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1770 break;
1771 }
1772
1773 ktsb_descr[0].assoc = 1;
1774 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1775 ktsb_descr[0].ctx_idx = 0;
1776 ktsb_descr[0].tsb_base = ktsb_pa;
1777 ktsb_descr[0].resv = 0;
1778
1779 #ifndef CONFIG_DEBUG_PAGEALLOC
1780 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
1781 ktsb_pa = (kern_base +
1782 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1783
1784 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1785 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1786 HV_PGSZ_MASK_256MB |
1787 HV_PGSZ_MASK_2GB |
1788 HV_PGSZ_MASK_16GB) &
1789 cpu_pgsz_mask);
1790 ktsb_descr[1].assoc = 1;
1791 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1792 ktsb_descr[1].ctx_idx = 0;
1793 ktsb_descr[1].tsb_base = ktsb_pa;
1794 ktsb_descr[1].resv = 0;
1795 #endif
1796 }
1797
1798 void sun4v_ktsb_register(void)
1799 {
1800 unsigned long pa, ret;
1801
1802 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1803
1804 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1805 if (ret != 0) {
1806 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1807 "errors with %lx\n", pa, ret);
1808 prom_halt();
1809 }
1810 }
1811
1812 static void __init sun4u_linear_pte_xor_finalize(void)
1813 {
1814 #ifndef CONFIG_DEBUG_PAGEALLOC
1815 /* This is where we would add Panther support for
1816 * 32MB and 256MB pages.
1817 */
1818 #endif
1819 }
1820
1821 static void __init sun4v_linear_pte_xor_finalize(void)
1822 {
1823 #ifndef CONFIG_DEBUG_PAGEALLOC
1824 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1825 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1826 PAGE_OFFSET;
1827 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1828 _PAGE_P_4V | _PAGE_W_4V);
1829 } else {
1830 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1831 }
1832
1833 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1834 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
1835 PAGE_OFFSET;
1836 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1837 _PAGE_P_4V | _PAGE_W_4V);
1838 } else {
1839 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
1840 }
1841
1842 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
1843 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
1844 PAGE_OFFSET;
1845 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1846 _PAGE_P_4V | _PAGE_W_4V);
1847 } else {
1848 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
1849 }
1850 #endif
1851 }
1852
1853 /* paging_init() sets up the page tables */
1854
1855 static unsigned long last_valid_pfn;
1856 pgd_t swapper_pg_dir[PTRS_PER_PGD];
1857
1858 static void sun4u_pgprot_init(void);
1859 static void sun4v_pgprot_init(void);
1860
1861 void __init paging_init(void)
1862 {
1863 unsigned long end_pfn, shift, phys_base;
1864 unsigned long real_end, i;
1865 int node;
1866
1867 setup_page_offset();
1868
1869 /* These build time checkes make sure that the dcache_dirty_cpu()
1870 * page->flags usage will work.
1871 *
1872 * When a page gets marked as dcache-dirty, we store the
1873 * cpu number starting at bit 32 in the page->flags. Also,
1874 * functions like clear_dcache_dirty_cpu use the cpu mask
1875 * in 13-bit signed-immediate instruction fields.
1876 */
1877
1878 /*
1879 * Page flags must not reach into upper 32 bits that are used
1880 * for the cpu number
1881 */
1882 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1883
1884 /*
1885 * The bit fields placed in the high range must not reach below
1886 * the 32 bit boundary. Otherwise we cannot place the cpu field
1887 * at the 32 bit boundary.
1888 */
1889 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1890 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1891
1892 BUILD_BUG_ON(NR_CPUS > 4096);
1893
1894 kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
1895 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1896
1897 /* Invalidate both kernel TSBs. */
1898 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1899 #ifndef CONFIG_DEBUG_PAGEALLOC
1900 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1901 #endif
1902
1903 if (tlb_type == hypervisor)
1904 sun4v_pgprot_init();
1905 else
1906 sun4u_pgprot_init();
1907
1908 if (tlb_type == cheetah_plus ||
1909 tlb_type == hypervisor) {
1910 tsb_phys_patch();
1911 ktsb_phys_patch();
1912 }
1913
1914 if (tlb_type == hypervisor)
1915 sun4v_patch_tlb_handlers();
1916
1917 /* Find available physical memory...
1918 *
1919 * Read it twice in order to work around a bug in openfirmware.
1920 * The call to grab this table itself can cause openfirmware to
1921 * allocate memory, which in turn can take away some space from
1922 * the list of available memory. Reading it twice makes sure
1923 * we really do get the final value.
1924 */
1925 read_obp_translations();
1926 read_obp_memory("reg", &pall[0], &pall_ents);
1927 read_obp_memory("available", &pavail[0], &pavail_ents);
1928 read_obp_memory("available", &pavail[0], &pavail_ents);
1929
1930 phys_base = 0xffffffffffffffffUL;
1931 for (i = 0; i < pavail_ents; i++) {
1932 phys_base = min(phys_base, pavail[i].phys_addr);
1933 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1934 }
1935
1936 memblock_reserve(kern_base, kern_size);
1937
1938 find_ramdisk(phys_base);
1939
1940 memblock_enforce_memory_limit(cmdline_memory_size);
1941
1942 memblock_allow_resize();
1943 memblock_dump_all();
1944
1945 set_bit(0, mmu_context_bmap);
1946
1947 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1948
1949 real_end = (unsigned long)_end;
1950 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
1951 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1952 num_kernel_image_mappings);
1953
1954 /* Set kernel pgd to upper alias so physical page computations
1955 * work.
1956 */
1957 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1958
1959 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1960
1961 /* Now can init the kernel/bad page tables. */
1962 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1963 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1964
1965 inherit_prom_mappings();
1966
1967 init_kpte_bitmap();
1968
1969 /* Ok, we can use our TLB miss and window trap handlers safely. */
1970 setup_tba();
1971
1972 __flush_tlb_all();
1973
1974 prom_build_devicetree();
1975 of_populate_present_mask();
1976 #ifndef CONFIG_SMP
1977 of_fill_in_cpu_data();
1978 #endif
1979
1980 if (tlb_type == hypervisor) {
1981 sun4v_mdesc_init();
1982 mdesc_populate_present_mask(cpu_all_mask);
1983 #ifndef CONFIG_SMP
1984 mdesc_fill_in_cpu_data(cpu_all_mask);
1985 #endif
1986 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
1987
1988 sun4v_linear_pte_xor_finalize();
1989
1990 sun4v_ktsb_init();
1991 sun4v_ktsb_register();
1992 } else {
1993 unsigned long impl, ver;
1994
1995 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
1996 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
1997
1998 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
1999 impl = ((ver >> 32) & 0xffff);
2000 if (impl == PANTHER_IMPL)
2001 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2002 HV_PGSZ_MASK_256MB);
2003
2004 sun4u_linear_pte_xor_finalize();
2005 }
2006
2007 /* Flush the TLBs and the 4M TSB so that the updated linear
2008 * pte XOR settings are realized for all mappings.
2009 */
2010 __flush_tlb_all();
2011 #ifndef CONFIG_DEBUG_PAGEALLOC
2012 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2013 #endif
2014 __flush_tlb_all();
2015
2016 /* Setup bootmem... */
2017 last_valid_pfn = end_pfn = bootmem_init(phys_base);
2018
2019 /* Once the OF device tree and MDESC have been setup, we know
2020 * the list of possible cpus. Therefore we can allocate the
2021 * IRQ stacks.
2022 */
2023 for_each_possible_cpu(i) {
2024 node = cpu_to_node(i);
2025
2026 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2027 THREAD_SIZE,
2028 THREAD_SIZE, 0);
2029 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2030 THREAD_SIZE,
2031 THREAD_SIZE, 0);
2032 }
2033
2034 kernel_physical_mapping_init();
2035
2036 {
2037 unsigned long max_zone_pfns[MAX_NR_ZONES];
2038
2039 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2040
2041 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2042
2043 free_area_init_nodes(max_zone_pfns);
2044 }
2045
2046 printk("Booting Linux...\n");
2047 }
2048
2049 int page_in_phys_avail(unsigned long paddr)
2050 {
2051 int i;
2052
2053 paddr &= PAGE_MASK;
2054
2055 for (i = 0; i < pavail_ents; i++) {
2056 unsigned long start, end;
2057
2058 start = pavail[i].phys_addr;
2059 end = start + pavail[i].reg_size;
2060
2061 if (paddr >= start && paddr < end)
2062 return 1;
2063 }
2064 if (paddr >= kern_base && paddr < (kern_base + kern_size))
2065 return 1;
2066 #ifdef CONFIG_BLK_DEV_INITRD
2067 if (paddr >= __pa(initrd_start) &&
2068 paddr < __pa(PAGE_ALIGN(initrd_end)))
2069 return 1;
2070 #endif
2071
2072 return 0;
2073 }
2074
2075 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
2076 static int pavail_rescan_ents __initdata;
2077
2078 /* Certain OBP calls, such as fetching "available" properties, can
2079 * claim physical memory. So, along with initializing the valid
2080 * address bitmap, what we do here is refetch the physical available
2081 * memory list again, and make sure it provides at least as much
2082 * memory as 'pavail' does.
2083 */
2084 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
2085 {
2086 int i;
2087
2088 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
2089
2090 for (i = 0; i < pavail_ents; i++) {
2091 unsigned long old_start, old_end;
2092
2093 old_start = pavail[i].phys_addr;
2094 old_end = old_start + pavail[i].reg_size;
2095 while (old_start < old_end) {
2096 int n;
2097
2098 for (n = 0; n < pavail_rescan_ents; n++) {
2099 unsigned long new_start, new_end;
2100
2101 new_start = pavail_rescan[n].phys_addr;
2102 new_end = new_start +
2103 pavail_rescan[n].reg_size;
2104
2105 if (new_start <= old_start &&
2106 new_end >= (old_start + PAGE_SIZE)) {
2107 set_bit(old_start >> ILOG2_4MB, bitmap);
2108 goto do_next_page;
2109 }
2110 }
2111
2112 prom_printf("mem_init: Lost memory in pavail\n");
2113 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
2114 pavail[i].phys_addr,
2115 pavail[i].reg_size);
2116 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
2117 pavail_rescan[i].phys_addr,
2118 pavail_rescan[i].reg_size);
2119 prom_printf("mem_init: Cannot continue, aborting.\n");
2120 prom_halt();
2121
2122 do_next_page:
2123 old_start += PAGE_SIZE;
2124 }
2125 }
2126 }
2127
2128 static void __init patch_tlb_miss_handler_bitmap(void)
2129 {
2130 extern unsigned int valid_addr_bitmap_insn[];
2131 extern unsigned int valid_addr_bitmap_patch[];
2132
2133 valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
2134 mb();
2135 valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
2136 flushi(&valid_addr_bitmap_insn[0]);
2137 }
2138
2139 static void __init register_page_bootmem_info(void)
2140 {
2141 #ifdef CONFIG_NEED_MULTIPLE_NODES
2142 int i;
2143
2144 for_each_online_node(i)
2145 if (NODE_DATA(i)->node_spanned_pages)
2146 register_page_bootmem_info_node(NODE_DATA(i));
2147 #endif
2148 }
2149 void __init mem_init(void)
2150 {
2151 unsigned long addr, last;
2152
2153 addr = PAGE_OFFSET + kern_base;
2154 last = PAGE_ALIGN(kern_size) + addr;
2155 while (addr < last) {
2156 set_bit(__pa(addr) >> ILOG2_4MB, sparc64_valid_addr_bitmap);
2157 addr += PAGE_SIZE;
2158 }
2159
2160 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
2161 patch_tlb_miss_handler_bitmap();
2162
2163 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2164
2165 register_page_bootmem_info();
2166 free_all_bootmem();
2167
2168 /*
2169 * Set up the zero page, mark it reserved, so that page count
2170 * is not manipulated when freeing the page from user ptes.
2171 */
2172 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2173 if (mem_map_zero == NULL) {
2174 prom_printf("paging_init: Cannot alloc zero page.\n");
2175 prom_halt();
2176 }
2177 mark_page_reserved(mem_map_zero);
2178
2179 mem_init_print_info(NULL);
2180
2181 if (tlb_type == cheetah || tlb_type == cheetah_plus)
2182 cheetah_ecache_flush_init();
2183 }
2184
2185 void free_initmem(void)
2186 {
2187 unsigned long addr, initend;
2188 int do_free = 1;
2189
2190 /* If the physical memory maps were trimmed by kernel command
2191 * line options, don't even try freeing this initmem stuff up.
2192 * The kernel image could have been in the trimmed out region
2193 * and if so the freeing below will free invalid page structs.
2194 */
2195 if (cmdline_memory_size)
2196 do_free = 0;
2197
2198 /*
2199 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2200 */
2201 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2202 initend = (unsigned long)(__init_end) & PAGE_MASK;
2203 for (; addr < initend; addr += PAGE_SIZE) {
2204 unsigned long page;
2205
2206 page = (addr +
2207 ((unsigned long) __va(kern_base)) -
2208 ((unsigned long) KERNBASE));
2209 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2210
2211 if (do_free)
2212 free_reserved_page(virt_to_page(page));
2213 }
2214 }
2215
2216 #ifdef CONFIG_BLK_DEV_INITRD
2217 void free_initrd_mem(unsigned long start, unsigned long end)
2218 {
2219 free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2220 "initrd");
2221 }
2222 #endif
2223
2224 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2225 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2226 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2227 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2228 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2229 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2230
2231 pgprot_t PAGE_KERNEL __read_mostly;
2232 EXPORT_SYMBOL(PAGE_KERNEL);
2233
2234 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2235 pgprot_t PAGE_COPY __read_mostly;
2236
2237 pgprot_t PAGE_SHARED __read_mostly;
2238 EXPORT_SYMBOL(PAGE_SHARED);
2239
2240 unsigned long pg_iobits __read_mostly;
2241
2242 unsigned long _PAGE_IE __read_mostly;
2243 EXPORT_SYMBOL(_PAGE_IE);
2244
2245 unsigned long _PAGE_E __read_mostly;
2246 EXPORT_SYMBOL(_PAGE_E);
2247
2248 unsigned long _PAGE_CACHE __read_mostly;
2249 EXPORT_SYMBOL(_PAGE_CACHE);
2250
2251 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2252 unsigned long vmemmap_table[VMEMMAP_SIZE];
2253
2254 static long __meminitdata addr_start, addr_end;
2255 static int __meminitdata node_start;
2256
2257 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2258 int node)
2259 {
2260 unsigned long phys_start = (vstart - VMEMMAP_BASE);
2261 unsigned long phys_end = (vend - VMEMMAP_BASE);
2262 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2263 unsigned long end = VMEMMAP_ALIGN(phys_end);
2264 unsigned long pte_base;
2265
2266 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2267 _PAGE_CP_4U | _PAGE_CV_4U |
2268 _PAGE_P_4U | _PAGE_W_4U);
2269 if (tlb_type == hypervisor)
2270 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2271 _PAGE_CP_4V | _PAGE_CV_4V |
2272 _PAGE_P_4V | _PAGE_W_4V);
2273
2274 for (; addr < end; addr += VMEMMAP_CHUNK) {
2275 unsigned long *vmem_pp =
2276 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2277 void *block;
2278
2279 if (!(*vmem_pp & _PAGE_VALID)) {
2280 block = vmemmap_alloc_block(1UL << ILOG2_4MB, node);
2281 if (!block)
2282 return -ENOMEM;
2283
2284 *vmem_pp = pte_base | __pa(block);
2285
2286 /* check to see if we have contiguous blocks */
2287 if (addr_end != addr || node_start != node) {
2288 if (addr_start)
2289 printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2290 addr_start, addr_end-1, node_start);
2291 addr_start = addr;
2292 node_start = node;
2293 }
2294 addr_end = addr + VMEMMAP_CHUNK;
2295 }
2296 }
2297 return 0;
2298 }
2299
2300 void __meminit vmemmap_populate_print_last(void)
2301 {
2302 if (addr_start) {
2303 printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2304 addr_start, addr_end-1, node_start);
2305 addr_start = 0;
2306 addr_end = 0;
2307 node_start = 0;
2308 }
2309 }
2310
2311 void vmemmap_free(unsigned long start, unsigned long end)
2312 {
2313 }
2314
2315 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2316
2317 static void prot_init_common(unsigned long page_none,
2318 unsigned long page_shared,
2319 unsigned long page_copy,
2320 unsigned long page_readonly,
2321 unsigned long page_exec_bit)
2322 {
2323 PAGE_COPY = __pgprot(page_copy);
2324 PAGE_SHARED = __pgprot(page_shared);
2325
2326 protection_map[0x0] = __pgprot(page_none);
2327 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2328 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2329 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2330 protection_map[0x4] = __pgprot(page_readonly);
2331 protection_map[0x5] = __pgprot(page_readonly);
2332 protection_map[0x6] = __pgprot(page_copy);
2333 protection_map[0x7] = __pgprot(page_copy);
2334 protection_map[0x8] = __pgprot(page_none);
2335 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2336 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2337 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2338 protection_map[0xc] = __pgprot(page_readonly);
2339 protection_map[0xd] = __pgprot(page_readonly);
2340 protection_map[0xe] = __pgprot(page_shared);
2341 protection_map[0xf] = __pgprot(page_shared);
2342 }
2343
2344 static void __init sun4u_pgprot_init(void)
2345 {
2346 unsigned long page_none, page_shared, page_copy, page_readonly;
2347 unsigned long page_exec_bit;
2348 int i;
2349
2350 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2351 _PAGE_CACHE_4U | _PAGE_P_4U |
2352 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2353 _PAGE_EXEC_4U);
2354 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2355 _PAGE_CACHE_4U | _PAGE_P_4U |
2356 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2357 _PAGE_EXEC_4U | _PAGE_L_4U);
2358
2359 _PAGE_IE = _PAGE_IE_4U;
2360 _PAGE_E = _PAGE_E_4U;
2361 _PAGE_CACHE = _PAGE_CACHE_4U;
2362
2363 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2364 __ACCESS_BITS_4U | _PAGE_E_4U);
2365
2366 #ifdef CONFIG_DEBUG_PAGEALLOC
2367 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2368 #else
2369 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2370 PAGE_OFFSET;
2371 #endif
2372 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2373 _PAGE_P_4U | _PAGE_W_4U);
2374
2375 for (i = 1; i < 4; i++)
2376 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2377
2378 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2379 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2380 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2381
2382
2383 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2384 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2385 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2386 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2387 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2388 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2389 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2390
2391 page_exec_bit = _PAGE_EXEC_4U;
2392
2393 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2394 page_exec_bit);
2395 }
2396
2397 static void __init sun4v_pgprot_init(void)
2398 {
2399 unsigned long page_none, page_shared, page_copy, page_readonly;
2400 unsigned long page_exec_bit;
2401 int i;
2402
2403 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2404 _PAGE_CACHE_4V | _PAGE_P_4V |
2405 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2406 _PAGE_EXEC_4V);
2407 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2408
2409 _PAGE_IE = _PAGE_IE_4V;
2410 _PAGE_E = _PAGE_E_4V;
2411 _PAGE_CACHE = _PAGE_CACHE_4V;
2412
2413 #ifdef CONFIG_DEBUG_PAGEALLOC
2414 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2415 #else
2416 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2417 PAGE_OFFSET;
2418 #endif
2419 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2420 _PAGE_P_4V | _PAGE_W_4V);
2421
2422 for (i = 1; i < 4; i++)
2423 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2424
2425 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2426 __ACCESS_BITS_4V | _PAGE_E_4V);
2427
2428 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2429 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2430 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2431 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2432
2433 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2434 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2435 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2436 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2437 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2438 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2439 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2440
2441 page_exec_bit = _PAGE_EXEC_4V;
2442
2443 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2444 page_exec_bit);
2445 }
2446
2447 unsigned long pte_sz_bits(unsigned long sz)
2448 {
2449 if (tlb_type == hypervisor) {
2450 switch (sz) {
2451 case 8 * 1024:
2452 default:
2453 return _PAGE_SZ8K_4V;
2454 case 64 * 1024:
2455 return _PAGE_SZ64K_4V;
2456 case 512 * 1024:
2457 return _PAGE_SZ512K_4V;
2458 case 4 * 1024 * 1024:
2459 return _PAGE_SZ4MB_4V;
2460 }
2461 } else {
2462 switch (sz) {
2463 case 8 * 1024:
2464 default:
2465 return _PAGE_SZ8K_4U;
2466 case 64 * 1024:
2467 return _PAGE_SZ64K_4U;
2468 case 512 * 1024:
2469 return _PAGE_SZ512K_4U;
2470 case 4 * 1024 * 1024:
2471 return _PAGE_SZ4MB_4U;
2472 }
2473 }
2474 }
2475
2476 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2477 {
2478 pte_t pte;
2479
2480 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2481 pte_val(pte) |= (((unsigned long)space) << 32);
2482 pte_val(pte) |= pte_sz_bits(page_size);
2483
2484 return pte;
2485 }
2486
2487 static unsigned long kern_large_tte(unsigned long paddr)
2488 {
2489 unsigned long val;
2490
2491 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2492 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2493 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2494 if (tlb_type == hypervisor)
2495 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2496 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2497 _PAGE_EXEC_4V | _PAGE_W_4V);
2498
2499 return val | paddr;
2500 }
2501
2502 /* If not locked, zap it. */
2503 void __flush_tlb_all(void)
2504 {
2505 unsigned long pstate;
2506 int i;
2507
2508 __asm__ __volatile__("flushw\n\t"
2509 "rdpr %%pstate, %0\n\t"
2510 "wrpr %0, %1, %%pstate"
2511 : "=r" (pstate)
2512 : "i" (PSTATE_IE));
2513 if (tlb_type == hypervisor) {
2514 sun4v_mmu_demap_all();
2515 } else if (tlb_type == spitfire) {
2516 for (i = 0; i < 64; i++) {
2517 /* Spitfire Errata #32 workaround */
2518 /* NOTE: Always runs on spitfire, so no
2519 * cheetah+ page size encodings.
2520 */
2521 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2522 "flush %%g6"
2523 : /* No outputs */
2524 : "r" (0),
2525 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2526
2527 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2528 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2529 "membar #Sync"
2530 : /* no outputs */
2531 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2532 spitfire_put_dtlb_data(i, 0x0UL);
2533 }
2534
2535 /* Spitfire Errata #32 workaround */
2536 /* NOTE: Always runs on spitfire, so no
2537 * cheetah+ page size encodings.
2538 */
2539 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2540 "flush %%g6"
2541 : /* No outputs */
2542 : "r" (0),
2543 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2544
2545 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2546 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2547 "membar #Sync"
2548 : /* no outputs */
2549 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2550 spitfire_put_itlb_data(i, 0x0UL);
2551 }
2552 }
2553 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2554 cheetah_flush_dtlb_all();
2555 cheetah_flush_itlb_all();
2556 }
2557 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2558 : : "r" (pstate));
2559 }
2560
2561 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2562 unsigned long address)
2563 {
2564 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2565 __GFP_REPEAT | __GFP_ZERO);
2566 pte_t *pte = NULL;
2567
2568 if (page)
2569 pte = (pte_t *) page_address(page);
2570
2571 return pte;
2572 }
2573
2574 pgtable_t pte_alloc_one(struct mm_struct *mm,
2575 unsigned long address)
2576 {
2577 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2578 __GFP_REPEAT | __GFP_ZERO);
2579 if (!page)
2580 return NULL;
2581 if (!pgtable_page_ctor(page)) {
2582 free_hot_cold_page(page, 0);
2583 return NULL;
2584 }
2585 return (pte_t *) page_address(page);
2586 }
2587
2588 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2589 {
2590 free_page((unsigned long)pte);
2591 }
2592
2593 static void __pte_free(pgtable_t pte)
2594 {
2595 struct page *page = virt_to_page(pte);
2596
2597 pgtable_page_dtor(page);
2598 __free_page(page);
2599 }
2600
2601 void pte_free(struct mm_struct *mm, pgtable_t pte)
2602 {
2603 __pte_free(pte);
2604 }
2605
2606 void pgtable_free(void *table, bool is_page)
2607 {
2608 if (is_page)
2609 __pte_free(table);
2610 else
2611 kmem_cache_free(pgtable_cache, table);
2612 }
2613
2614 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2615 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2616 pmd_t *pmd)
2617 {
2618 unsigned long pte, flags;
2619 struct mm_struct *mm;
2620 pmd_t entry = *pmd;
2621
2622 if (!pmd_large(entry) || !pmd_young(entry))
2623 return;
2624
2625 pte = pmd_val(entry);
2626
2627 /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */
2628 if (!(pte & _PAGE_VALID))
2629 return;
2630
2631 /* We are fabricating 8MB pages using 4MB real hw pages. */
2632 pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2633
2634 mm = vma->vm_mm;
2635
2636 spin_lock_irqsave(&mm->context.lock, flags);
2637
2638 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2639 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2640 addr, pte);
2641
2642 spin_unlock_irqrestore(&mm->context.lock, flags);
2643 }
2644 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2645
2646 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2647 static void context_reload(void *__data)
2648 {
2649 struct mm_struct *mm = __data;
2650
2651 if (mm == current->mm)
2652 load_secondary_context(mm);
2653 }
2654
2655 void hugetlb_setup(struct pt_regs *regs)
2656 {
2657 struct mm_struct *mm = current->mm;
2658 struct tsb_config *tp;
2659
2660 if (in_atomic() || !mm) {
2661 const struct exception_table_entry *entry;
2662
2663 entry = search_exception_tables(regs->tpc);
2664 if (entry) {
2665 regs->tpc = entry->fixup;
2666 regs->tnpc = regs->tpc + 4;
2667 return;
2668 }
2669 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2670 die_if_kernel("HugeTSB in atomic", regs);
2671 }
2672
2673 tp = &mm->context.tsb_block[MM_TSB_HUGE];
2674 if (likely(tp->tsb == NULL))
2675 tsb_grow(mm, MM_TSB_HUGE, 0);
2676
2677 tsb_context_switch(mm);
2678 smp_tsb_sync(mm);
2679
2680 /* On UltraSPARC-III+ and later, configure the second half of
2681 * the Data-TLB for huge pages.
2682 */
2683 if (tlb_type == cheetah_plus) {
2684 unsigned long ctx;
2685
2686 spin_lock(&ctx_alloc_lock);
2687 ctx = mm->context.sparc64_ctx_val;
2688 ctx &= ~CTX_PGSZ_MASK;
2689 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2690 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2691
2692 if (ctx != mm->context.sparc64_ctx_val) {
2693 /* When changing the page size fields, we
2694 * must perform a context flush so that no
2695 * stale entries match. This flush must
2696 * occur with the original context register
2697 * settings.
2698 */
2699 do_flush_tlb_mm(mm);
2700
2701 /* Reload the context register of all processors
2702 * also executing in this address space.
2703 */
2704 mm->context.sparc64_ctx_val = ctx;
2705 on_each_cpu(context_reload, mm, 0);
2706 }
2707 spin_unlock(&ctx_alloc_lock);
2708 }
2709 }
2710 #endif
2711
2712 static struct resource code_resource = {
2713 .name = "Kernel code",
2714 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
2715 };
2716
2717 static struct resource data_resource = {
2718 .name = "Kernel data",
2719 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
2720 };
2721
2722 static struct resource bss_resource = {
2723 .name = "Kernel bss",
2724 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
2725 };
2726
2727 static inline resource_size_t compute_kern_paddr(void *addr)
2728 {
2729 return (resource_size_t) (addr - KERNBASE + kern_base);
2730 }
2731
2732 static void __init kernel_lds_init(void)
2733 {
2734 code_resource.start = compute_kern_paddr(_text);
2735 code_resource.end = compute_kern_paddr(_etext - 1);
2736 data_resource.start = compute_kern_paddr(_etext);
2737 data_resource.end = compute_kern_paddr(_edata - 1);
2738 bss_resource.start = compute_kern_paddr(__bss_start);
2739 bss_resource.end = compute_kern_paddr(_end - 1);
2740 }
2741
2742 static int __init report_memory(void)
2743 {
2744 int i;
2745 struct resource *res;
2746
2747 kernel_lds_init();
2748
2749 for (i = 0; i < pavail_ents; i++) {
2750 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
2751
2752 if (!res) {
2753 pr_warn("Failed to allocate source.\n");
2754 break;
2755 }
2756
2757 res->name = "System RAM";
2758 res->start = pavail[i].phys_addr;
2759 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
2760 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
2761
2762 if (insert_resource(&iomem_resource, res) < 0) {
2763 pr_warn("Resource insertion failed.\n");
2764 break;
2765 }
2766
2767 insert_resource(res, &code_resource);
2768 insert_resource(res, &data_resource);
2769 insert_resource(res, &bss_resource);
2770 }
2771
2772 return 0;
2773 }
2774 device_initcall(report_memory);
2775
2776 #ifdef CONFIG_SMP
2777 #define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range
2778 #else
2779 #define do_flush_tlb_kernel_range __flush_tlb_kernel_range
2780 #endif
2781
2782 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
2783 {
2784 if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
2785 if (start < LOW_OBP_ADDRESS) {
2786 flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
2787 do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
2788 }
2789 if (end > HI_OBP_ADDRESS) {
2790 flush_tsb_kernel_range(end, HI_OBP_ADDRESS);
2791 do_flush_tlb_kernel_range(end, HI_OBP_ADDRESS);
2792 }
2793 } else {
2794 flush_tsb_kernel_range(start, end);
2795 do_flush_tlb_kernel_range(start, end);
2796 }
2797 }
This page took 0.098225 seconds and 5 git commands to generate.