Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jesse/openvswitch
[deliverable/linux.git] / arch / sparc / mm / init_64.c
1 /*
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/memblock.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
29
30 #include <asm/head.h>
31 #include <asm/page.h>
32 #include <asm/pgalloc.h>
33 #include <asm/pgtable.h>
34 #include <asm/oplib.h>
35 #include <asm/iommu.h>
36 #include <asm/io.h>
37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/dma.h>
41 #include <asm/starfire.h>
42 #include <asm/tlb.h>
43 #include <asm/spitfire.h>
44 #include <asm/sections.h>
45 #include <asm/tsb.h>
46 #include <asm/hypervisor.h>
47 #include <asm/prom.h>
48 #include <asm/mdesc.h>
49 #include <asm/cpudata.h>
50 #include <asm/irq.h>
51
52 #include "init_64.h"
53
54 unsigned long kern_linear_pte_xor[2] __read_mostly;
55
56 /* A bitmap, one bit for every 256MB of physical memory. If the bit
57 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
58 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
59 */
60 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
61
62 #ifndef CONFIG_DEBUG_PAGEALLOC
63 /* A special kernel TSB for 4MB and 256MB linear mappings.
64 * Space is allocated for this right after the trap table
65 * in arch/sparc64/kernel/head.S
66 */
67 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
68 #endif
69
70 #define MAX_BANKS 32
71
72 static struct linux_prom64_registers pavail[MAX_BANKS] __devinitdata;
73 static int pavail_ents __devinitdata;
74
75 static int cmp_p64(const void *a, const void *b)
76 {
77 const struct linux_prom64_registers *x = a, *y = b;
78
79 if (x->phys_addr > y->phys_addr)
80 return 1;
81 if (x->phys_addr < y->phys_addr)
82 return -1;
83 return 0;
84 }
85
86 static void __init read_obp_memory(const char *property,
87 struct linux_prom64_registers *regs,
88 int *num_ents)
89 {
90 phandle node = prom_finddevice("/memory");
91 int prop_size = prom_getproplen(node, property);
92 int ents, ret, i;
93
94 ents = prop_size / sizeof(struct linux_prom64_registers);
95 if (ents > MAX_BANKS) {
96 prom_printf("The machine has more %s property entries than "
97 "this kernel can support (%d).\n",
98 property, MAX_BANKS);
99 prom_halt();
100 }
101
102 ret = prom_getproperty(node, property, (char *) regs, prop_size);
103 if (ret == -1) {
104 prom_printf("Couldn't get %s property from /memory.\n");
105 prom_halt();
106 }
107
108 /* Sanitize what we got from the firmware, by page aligning
109 * everything.
110 */
111 for (i = 0; i < ents; i++) {
112 unsigned long base, size;
113
114 base = regs[i].phys_addr;
115 size = regs[i].reg_size;
116
117 size &= PAGE_MASK;
118 if (base & ~PAGE_MASK) {
119 unsigned long new_base = PAGE_ALIGN(base);
120
121 size -= new_base - base;
122 if ((long) size < 0L)
123 size = 0UL;
124 base = new_base;
125 }
126 if (size == 0UL) {
127 /* If it is empty, simply get rid of it.
128 * This simplifies the logic of the other
129 * functions that process these arrays.
130 */
131 memmove(&regs[i], &regs[i + 1],
132 (ents - i - 1) * sizeof(regs[0]));
133 i--;
134 ents--;
135 continue;
136 }
137 regs[i].phys_addr = base;
138 regs[i].reg_size = size;
139 }
140
141 *num_ents = ents;
142
143 sort(regs, ents, sizeof(struct linux_prom64_registers),
144 cmp_p64, NULL);
145 }
146
147 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
148 sizeof(unsigned long)];
149 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
150
151 /* Kernel physical address base and size in bytes. */
152 unsigned long kern_base __read_mostly;
153 unsigned long kern_size __read_mostly;
154
155 /* Initial ramdisk setup */
156 extern unsigned long sparc_ramdisk_image64;
157 extern unsigned int sparc_ramdisk_image;
158 extern unsigned int sparc_ramdisk_size;
159
160 struct page *mem_map_zero __read_mostly;
161 EXPORT_SYMBOL(mem_map_zero);
162
163 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
164
165 unsigned long sparc64_kern_pri_context __read_mostly;
166 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
167 unsigned long sparc64_kern_sec_context __read_mostly;
168
169 int num_kernel_image_mappings;
170
171 #ifdef CONFIG_DEBUG_DCFLUSH
172 atomic_t dcpage_flushes = ATOMIC_INIT(0);
173 #ifdef CONFIG_SMP
174 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
175 #endif
176 #endif
177
178 inline void flush_dcache_page_impl(struct page *page)
179 {
180 BUG_ON(tlb_type == hypervisor);
181 #ifdef CONFIG_DEBUG_DCFLUSH
182 atomic_inc(&dcpage_flushes);
183 #endif
184
185 #ifdef DCACHE_ALIASING_POSSIBLE
186 __flush_dcache_page(page_address(page),
187 ((tlb_type == spitfire) &&
188 page_mapping(page) != NULL));
189 #else
190 if (page_mapping(page) != NULL &&
191 tlb_type == spitfire)
192 __flush_icache_page(__pa(page_address(page)));
193 #endif
194 }
195
196 #define PG_dcache_dirty PG_arch_1
197 #define PG_dcache_cpu_shift 32UL
198 #define PG_dcache_cpu_mask \
199 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
200
201 #define dcache_dirty_cpu(page) \
202 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
203
204 static inline void set_dcache_dirty(struct page *page, int this_cpu)
205 {
206 unsigned long mask = this_cpu;
207 unsigned long non_cpu_bits;
208
209 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
210 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
211
212 __asm__ __volatile__("1:\n\t"
213 "ldx [%2], %%g7\n\t"
214 "and %%g7, %1, %%g1\n\t"
215 "or %%g1, %0, %%g1\n\t"
216 "casx [%2], %%g7, %%g1\n\t"
217 "cmp %%g7, %%g1\n\t"
218 "bne,pn %%xcc, 1b\n\t"
219 " nop"
220 : /* no outputs */
221 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
222 : "g1", "g7");
223 }
224
225 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
226 {
227 unsigned long mask = (1UL << PG_dcache_dirty);
228
229 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
230 "1:\n\t"
231 "ldx [%2], %%g7\n\t"
232 "srlx %%g7, %4, %%g1\n\t"
233 "and %%g1, %3, %%g1\n\t"
234 "cmp %%g1, %0\n\t"
235 "bne,pn %%icc, 2f\n\t"
236 " andn %%g7, %1, %%g1\n\t"
237 "casx [%2], %%g7, %%g1\n\t"
238 "cmp %%g7, %%g1\n\t"
239 "bne,pn %%xcc, 1b\n\t"
240 " nop\n"
241 "2:"
242 : /* no outputs */
243 : "r" (cpu), "r" (mask), "r" (&page->flags),
244 "i" (PG_dcache_cpu_mask),
245 "i" (PG_dcache_cpu_shift)
246 : "g1", "g7");
247 }
248
249 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
250 {
251 unsigned long tsb_addr = (unsigned long) ent;
252
253 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
254 tsb_addr = __pa(tsb_addr);
255
256 __tsb_insert(tsb_addr, tag, pte);
257 }
258
259 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
260 unsigned long _PAGE_SZBITS __read_mostly;
261
262 static void flush_dcache(unsigned long pfn)
263 {
264 struct page *page;
265
266 page = pfn_to_page(pfn);
267 if (page) {
268 unsigned long pg_flags;
269
270 pg_flags = page->flags;
271 if (pg_flags & (1UL << PG_dcache_dirty)) {
272 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
273 PG_dcache_cpu_mask);
274 int this_cpu = get_cpu();
275
276 /* This is just to optimize away some function calls
277 * in the SMP case.
278 */
279 if (cpu == this_cpu)
280 flush_dcache_page_impl(page);
281 else
282 smp_flush_dcache_page_impl(page, cpu);
283
284 clear_dcache_dirty_cpu(page, cpu);
285
286 put_cpu();
287 }
288 }
289 }
290
291 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
292 {
293 struct mm_struct *mm;
294 struct tsb *tsb;
295 unsigned long tag, flags;
296 unsigned long tsb_index, tsb_hash_shift;
297 pte_t pte = *ptep;
298
299 if (tlb_type != hypervisor) {
300 unsigned long pfn = pte_pfn(pte);
301
302 if (pfn_valid(pfn))
303 flush_dcache(pfn);
304 }
305
306 mm = vma->vm_mm;
307
308 tsb_index = MM_TSB_BASE;
309 tsb_hash_shift = PAGE_SHIFT;
310
311 spin_lock_irqsave(&mm->context.lock, flags);
312
313 #ifdef CONFIG_HUGETLB_PAGE
314 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
315 if ((tlb_type == hypervisor &&
316 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
317 (tlb_type != hypervisor &&
318 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
319 tsb_index = MM_TSB_HUGE;
320 tsb_hash_shift = HPAGE_SHIFT;
321 }
322 }
323 #endif
324
325 tsb = mm->context.tsb_block[tsb_index].tsb;
326 tsb += ((address >> tsb_hash_shift) &
327 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
328 tag = (address >> 22UL);
329 tsb_insert(tsb, tag, pte_val(pte));
330
331 spin_unlock_irqrestore(&mm->context.lock, flags);
332 }
333
334 void flush_dcache_page(struct page *page)
335 {
336 struct address_space *mapping;
337 int this_cpu;
338
339 if (tlb_type == hypervisor)
340 return;
341
342 /* Do not bother with the expensive D-cache flush if it
343 * is merely the zero page. The 'bigcore' testcase in GDB
344 * causes this case to run millions of times.
345 */
346 if (page == ZERO_PAGE(0))
347 return;
348
349 this_cpu = get_cpu();
350
351 mapping = page_mapping(page);
352 if (mapping && !mapping_mapped(mapping)) {
353 int dirty = test_bit(PG_dcache_dirty, &page->flags);
354 if (dirty) {
355 int dirty_cpu = dcache_dirty_cpu(page);
356
357 if (dirty_cpu == this_cpu)
358 goto out;
359 smp_flush_dcache_page_impl(page, dirty_cpu);
360 }
361 set_dcache_dirty(page, this_cpu);
362 } else {
363 /* We could delay the flush for the !page_mapping
364 * case too. But that case is for exec env/arg
365 * pages and those are %99 certainly going to get
366 * faulted into the tlb (and thus flushed) anyways.
367 */
368 flush_dcache_page_impl(page);
369 }
370
371 out:
372 put_cpu();
373 }
374 EXPORT_SYMBOL(flush_dcache_page);
375
376 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
377 {
378 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
379 if (tlb_type == spitfire) {
380 unsigned long kaddr;
381
382 /* This code only runs on Spitfire cpus so this is
383 * why we can assume _PAGE_PADDR_4U.
384 */
385 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
386 unsigned long paddr, mask = _PAGE_PADDR_4U;
387
388 if (kaddr >= PAGE_OFFSET)
389 paddr = kaddr & mask;
390 else {
391 pgd_t *pgdp = pgd_offset_k(kaddr);
392 pud_t *pudp = pud_offset(pgdp, kaddr);
393 pmd_t *pmdp = pmd_offset(pudp, kaddr);
394 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
395
396 paddr = pte_val(*ptep) & mask;
397 }
398 __flush_icache_page(paddr);
399 }
400 }
401 }
402 EXPORT_SYMBOL(flush_icache_range);
403
404 void mmu_info(struct seq_file *m)
405 {
406 if (tlb_type == cheetah)
407 seq_printf(m, "MMU Type\t: Cheetah\n");
408 else if (tlb_type == cheetah_plus)
409 seq_printf(m, "MMU Type\t: Cheetah+\n");
410 else if (tlb_type == spitfire)
411 seq_printf(m, "MMU Type\t: Spitfire\n");
412 else if (tlb_type == hypervisor)
413 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
414 else
415 seq_printf(m, "MMU Type\t: ???\n");
416
417 #ifdef CONFIG_DEBUG_DCFLUSH
418 seq_printf(m, "DCPageFlushes\t: %d\n",
419 atomic_read(&dcpage_flushes));
420 #ifdef CONFIG_SMP
421 seq_printf(m, "DCPageFlushesXC\t: %d\n",
422 atomic_read(&dcpage_flushes_xcall));
423 #endif /* CONFIG_SMP */
424 #endif /* CONFIG_DEBUG_DCFLUSH */
425 }
426
427 struct linux_prom_translation prom_trans[512] __read_mostly;
428 unsigned int prom_trans_ents __read_mostly;
429
430 unsigned long kern_locked_tte_data;
431
432 /* The obp translations are saved based on 8k pagesize, since obp can
433 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
434 * HI_OBP_ADDRESS range are handled in ktlb.S.
435 */
436 static inline int in_obp_range(unsigned long vaddr)
437 {
438 return (vaddr >= LOW_OBP_ADDRESS &&
439 vaddr < HI_OBP_ADDRESS);
440 }
441
442 static int cmp_ptrans(const void *a, const void *b)
443 {
444 const struct linux_prom_translation *x = a, *y = b;
445
446 if (x->virt > y->virt)
447 return 1;
448 if (x->virt < y->virt)
449 return -1;
450 return 0;
451 }
452
453 /* Read OBP translations property into 'prom_trans[]'. */
454 static void __init read_obp_translations(void)
455 {
456 int n, node, ents, first, last, i;
457
458 node = prom_finddevice("/virtual-memory");
459 n = prom_getproplen(node, "translations");
460 if (unlikely(n == 0 || n == -1)) {
461 prom_printf("prom_mappings: Couldn't get size.\n");
462 prom_halt();
463 }
464 if (unlikely(n > sizeof(prom_trans))) {
465 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
466 prom_halt();
467 }
468
469 if ((n = prom_getproperty(node, "translations",
470 (char *)&prom_trans[0],
471 sizeof(prom_trans))) == -1) {
472 prom_printf("prom_mappings: Couldn't get property.\n");
473 prom_halt();
474 }
475
476 n = n / sizeof(struct linux_prom_translation);
477
478 ents = n;
479
480 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
481 cmp_ptrans, NULL);
482
483 /* Now kick out all the non-OBP entries. */
484 for (i = 0; i < ents; i++) {
485 if (in_obp_range(prom_trans[i].virt))
486 break;
487 }
488 first = i;
489 for (; i < ents; i++) {
490 if (!in_obp_range(prom_trans[i].virt))
491 break;
492 }
493 last = i;
494
495 for (i = 0; i < (last - first); i++) {
496 struct linux_prom_translation *src = &prom_trans[i + first];
497 struct linux_prom_translation *dest = &prom_trans[i];
498
499 *dest = *src;
500 }
501 for (; i < ents; i++) {
502 struct linux_prom_translation *dest = &prom_trans[i];
503 dest->virt = dest->size = dest->data = 0x0UL;
504 }
505
506 prom_trans_ents = last - first;
507
508 if (tlb_type == spitfire) {
509 /* Clear diag TTE bits. */
510 for (i = 0; i < prom_trans_ents; i++)
511 prom_trans[i].data &= ~0x0003fe0000000000UL;
512 }
513
514 /* Force execute bit on. */
515 for (i = 0; i < prom_trans_ents; i++)
516 prom_trans[i].data |= (tlb_type == hypervisor ?
517 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
518 }
519
520 static void __init hypervisor_tlb_lock(unsigned long vaddr,
521 unsigned long pte,
522 unsigned long mmu)
523 {
524 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
525
526 if (ret != 0) {
527 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
528 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
529 prom_halt();
530 }
531 }
532
533 static unsigned long kern_large_tte(unsigned long paddr);
534
535 static void __init remap_kernel(void)
536 {
537 unsigned long phys_page, tte_vaddr, tte_data;
538 int i, tlb_ent = sparc64_highest_locked_tlbent();
539
540 tte_vaddr = (unsigned long) KERNBASE;
541 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
542 tte_data = kern_large_tte(phys_page);
543
544 kern_locked_tte_data = tte_data;
545
546 /* Now lock us into the TLBs via Hypervisor or OBP. */
547 if (tlb_type == hypervisor) {
548 for (i = 0; i < num_kernel_image_mappings; i++) {
549 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
550 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
551 tte_vaddr += 0x400000;
552 tte_data += 0x400000;
553 }
554 } else {
555 for (i = 0; i < num_kernel_image_mappings; i++) {
556 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
557 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
558 tte_vaddr += 0x400000;
559 tte_data += 0x400000;
560 }
561 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
562 }
563 if (tlb_type == cheetah_plus) {
564 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
565 CTX_CHEETAH_PLUS_NUC);
566 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
567 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
568 }
569 }
570
571
572 static void __init inherit_prom_mappings(void)
573 {
574 /* Now fixup OBP's idea about where we really are mapped. */
575 printk("Remapping the kernel... ");
576 remap_kernel();
577 printk("done.\n");
578 }
579
580 void prom_world(int enter)
581 {
582 if (!enter)
583 set_fs((mm_segment_t) { get_thread_current_ds() });
584
585 __asm__ __volatile__("flushw");
586 }
587
588 void __flush_dcache_range(unsigned long start, unsigned long end)
589 {
590 unsigned long va;
591
592 if (tlb_type == spitfire) {
593 int n = 0;
594
595 for (va = start; va < end; va += 32) {
596 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
597 if (++n >= 512)
598 break;
599 }
600 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
601 start = __pa(start);
602 end = __pa(end);
603 for (va = start; va < end; va += 32)
604 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
605 "membar #Sync"
606 : /* no outputs */
607 : "r" (va),
608 "i" (ASI_DCACHE_INVALIDATE));
609 }
610 }
611 EXPORT_SYMBOL(__flush_dcache_range);
612
613 /* get_new_mmu_context() uses "cache + 1". */
614 DEFINE_SPINLOCK(ctx_alloc_lock);
615 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
616 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
617 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
618 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
619
620 /* Caller does TLB context flushing on local CPU if necessary.
621 * The caller also ensures that CTX_VALID(mm->context) is false.
622 *
623 * We must be careful about boundary cases so that we never
624 * let the user have CTX 0 (nucleus) or we ever use a CTX
625 * version of zero (and thus NO_CONTEXT would not be caught
626 * by version mis-match tests in mmu_context.h).
627 *
628 * Always invoked with interrupts disabled.
629 */
630 void get_new_mmu_context(struct mm_struct *mm)
631 {
632 unsigned long ctx, new_ctx;
633 unsigned long orig_pgsz_bits;
634 unsigned long flags;
635 int new_version;
636
637 spin_lock_irqsave(&ctx_alloc_lock, flags);
638 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
639 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
640 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
641 new_version = 0;
642 if (new_ctx >= (1 << CTX_NR_BITS)) {
643 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
644 if (new_ctx >= ctx) {
645 int i;
646 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
647 CTX_FIRST_VERSION;
648 if (new_ctx == 1)
649 new_ctx = CTX_FIRST_VERSION;
650
651 /* Don't call memset, for 16 entries that's just
652 * plain silly...
653 */
654 mmu_context_bmap[0] = 3;
655 mmu_context_bmap[1] = 0;
656 mmu_context_bmap[2] = 0;
657 mmu_context_bmap[3] = 0;
658 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
659 mmu_context_bmap[i + 0] = 0;
660 mmu_context_bmap[i + 1] = 0;
661 mmu_context_bmap[i + 2] = 0;
662 mmu_context_bmap[i + 3] = 0;
663 }
664 new_version = 1;
665 goto out;
666 }
667 }
668 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
669 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
670 out:
671 tlb_context_cache = new_ctx;
672 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
673 spin_unlock_irqrestore(&ctx_alloc_lock, flags);
674
675 if (unlikely(new_version))
676 smp_new_mmu_context_version();
677 }
678
679 static int numa_enabled = 1;
680 static int numa_debug;
681
682 static int __init early_numa(char *p)
683 {
684 if (!p)
685 return 0;
686
687 if (strstr(p, "off"))
688 numa_enabled = 0;
689
690 if (strstr(p, "debug"))
691 numa_debug = 1;
692
693 return 0;
694 }
695 early_param("numa", early_numa);
696
697 #define numadbg(f, a...) \
698 do { if (numa_debug) \
699 printk(KERN_INFO f, ## a); \
700 } while (0)
701
702 static void __init find_ramdisk(unsigned long phys_base)
703 {
704 #ifdef CONFIG_BLK_DEV_INITRD
705 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
706 unsigned long ramdisk_image;
707
708 /* Older versions of the bootloader only supported a
709 * 32-bit physical address for the ramdisk image
710 * location, stored at sparc_ramdisk_image. Newer
711 * SILO versions set sparc_ramdisk_image to zero and
712 * provide a full 64-bit physical address at
713 * sparc_ramdisk_image64.
714 */
715 ramdisk_image = sparc_ramdisk_image;
716 if (!ramdisk_image)
717 ramdisk_image = sparc_ramdisk_image64;
718
719 /* Another bootloader quirk. The bootloader normalizes
720 * the physical address to KERNBASE, so we have to
721 * factor that back out and add in the lowest valid
722 * physical page address to get the true physical address.
723 */
724 ramdisk_image -= KERNBASE;
725 ramdisk_image += phys_base;
726
727 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
728 ramdisk_image, sparc_ramdisk_size);
729
730 initrd_start = ramdisk_image;
731 initrd_end = ramdisk_image + sparc_ramdisk_size;
732
733 memblock_reserve(initrd_start, sparc_ramdisk_size);
734
735 initrd_start += PAGE_OFFSET;
736 initrd_end += PAGE_OFFSET;
737 }
738 #endif
739 }
740
741 struct node_mem_mask {
742 unsigned long mask;
743 unsigned long val;
744 };
745 static struct node_mem_mask node_masks[MAX_NUMNODES];
746 static int num_node_masks;
747
748 int numa_cpu_lookup_table[NR_CPUS];
749 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
750
751 #ifdef CONFIG_NEED_MULTIPLE_NODES
752
753 struct mdesc_mblock {
754 u64 base;
755 u64 size;
756 u64 offset; /* RA-to-PA */
757 };
758 static struct mdesc_mblock *mblocks;
759 static int num_mblocks;
760
761 static unsigned long ra_to_pa(unsigned long addr)
762 {
763 int i;
764
765 for (i = 0; i < num_mblocks; i++) {
766 struct mdesc_mblock *m = &mblocks[i];
767
768 if (addr >= m->base &&
769 addr < (m->base + m->size)) {
770 addr += m->offset;
771 break;
772 }
773 }
774 return addr;
775 }
776
777 static int find_node(unsigned long addr)
778 {
779 int i;
780
781 addr = ra_to_pa(addr);
782 for (i = 0; i < num_node_masks; i++) {
783 struct node_mem_mask *p = &node_masks[i];
784
785 if ((addr & p->mask) == p->val)
786 return i;
787 }
788 return -1;
789 }
790
791 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
792 {
793 *nid = find_node(start);
794 start += PAGE_SIZE;
795 while (start < end) {
796 int n = find_node(start);
797
798 if (n != *nid)
799 break;
800 start += PAGE_SIZE;
801 }
802
803 if (start > end)
804 start = end;
805
806 return start;
807 }
808 #endif
809
810 /* This must be invoked after performing all of the necessary
811 * memblock_set_node() calls for 'nid'. We need to be able to get
812 * correct data from get_pfn_range_for_nid().
813 */
814 static void __init allocate_node_data(int nid)
815 {
816 struct pglist_data *p;
817 unsigned long start_pfn, end_pfn;
818 #ifdef CONFIG_NEED_MULTIPLE_NODES
819 unsigned long paddr;
820
821 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
822 if (!paddr) {
823 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
824 prom_halt();
825 }
826 NODE_DATA(nid) = __va(paddr);
827 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
828
829 NODE_DATA(nid)->node_id = nid;
830 #endif
831
832 p = NODE_DATA(nid);
833
834 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
835 p->node_start_pfn = start_pfn;
836 p->node_spanned_pages = end_pfn - start_pfn;
837 }
838
839 static void init_node_masks_nonnuma(void)
840 {
841 int i;
842
843 numadbg("Initializing tables for non-numa.\n");
844
845 node_masks[0].mask = node_masks[0].val = 0;
846 num_node_masks = 1;
847
848 for (i = 0; i < NR_CPUS; i++)
849 numa_cpu_lookup_table[i] = 0;
850
851 cpumask_setall(&numa_cpumask_lookup_table[0]);
852 }
853
854 #ifdef CONFIG_NEED_MULTIPLE_NODES
855 struct pglist_data *node_data[MAX_NUMNODES];
856
857 EXPORT_SYMBOL(numa_cpu_lookup_table);
858 EXPORT_SYMBOL(numa_cpumask_lookup_table);
859 EXPORT_SYMBOL(node_data);
860
861 struct mdesc_mlgroup {
862 u64 node;
863 u64 latency;
864 u64 match;
865 u64 mask;
866 };
867 static struct mdesc_mlgroup *mlgroups;
868 static int num_mlgroups;
869
870 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
871 u32 cfg_handle)
872 {
873 u64 arc;
874
875 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
876 u64 target = mdesc_arc_target(md, arc);
877 const u64 *val;
878
879 val = mdesc_get_property(md, target,
880 "cfg-handle", NULL);
881 if (val && *val == cfg_handle)
882 return 0;
883 }
884 return -ENODEV;
885 }
886
887 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
888 u32 cfg_handle)
889 {
890 u64 arc, candidate, best_latency = ~(u64)0;
891
892 candidate = MDESC_NODE_NULL;
893 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
894 u64 target = mdesc_arc_target(md, arc);
895 const char *name = mdesc_node_name(md, target);
896 const u64 *val;
897
898 if (strcmp(name, "pio-latency-group"))
899 continue;
900
901 val = mdesc_get_property(md, target, "latency", NULL);
902 if (!val)
903 continue;
904
905 if (*val < best_latency) {
906 candidate = target;
907 best_latency = *val;
908 }
909 }
910
911 if (candidate == MDESC_NODE_NULL)
912 return -ENODEV;
913
914 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
915 }
916
917 int of_node_to_nid(struct device_node *dp)
918 {
919 const struct linux_prom64_registers *regs;
920 struct mdesc_handle *md;
921 u32 cfg_handle;
922 int count, nid;
923 u64 grp;
924
925 /* This is the right thing to do on currently supported
926 * SUN4U NUMA platforms as well, as the PCI controller does
927 * not sit behind any particular memory controller.
928 */
929 if (!mlgroups)
930 return -1;
931
932 regs = of_get_property(dp, "reg", NULL);
933 if (!regs)
934 return -1;
935
936 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
937
938 md = mdesc_grab();
939
940 count = 0;
941 nid = -1;
942 mdesc_for_each_node_by_name(md, grp, "group") {
943 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
944 nid = count;
945 break;
946 }
947 count++;
948 }
949
950 mdesc_release(md);
951
952 return nid;
953 }
954
955 static void __init add_node_ranges(void)
956 {
957 struct memblock_region *reg;
958
959 for_each_memblock(memory, reg) {
960 unsigned long size = reg->size;
961 unsigned long start, end;
962
963 start = reg->base;
964 end = start + size;
965 while (start < end) {
966 unsigned long this_end;
967 int nid;
968
969 this_end = memblock_nid_range(start, end, &nid);
970
971 numadbg("Setting memblock NUMA node nid[%d] "
972 "start[%lx] end[%lx]\n",
973 nid, start, this_end);
974
975 memblock_set_node(start, this_end - start, nid);
976 start = this_end;
977 }
978 }
979 }
980
981 static int __init grab_mlgroups(struct mdesc_handle *md)
982 {
983 unsigned long paddr;
984 int count = 0;
985 u64 node;
986
987 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
988 count++;
989 if (!count)
990 return -ENOENT;
991
992 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
993 SMP_CACHE_BYTES);
994 if (!paddr)
995 return -ENOMEM;
996
997 mlgroups = __va(paddr);
998 num_mlgroups = count;
999
1000 count = 0;
1001 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1002 struct mdesc_mlgroup *m = &mlgroups[count++];
1003 const u64 *val;
1004
1005 m->node = node;
1006
1007 val = mdesc_get_property(md, node, "latency", NULL);
1008 m->latency = *val;
1009 val = mdesc_get_property(md, node, "address-match", NULL);
1010 m->match = *val;
1011 val = mdesc_get_property(md, node, "address-mask", NULL);
1012 m->mask = *val;
1013
1014 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1015 "match[%llx] mask[%llx]\n",
1016 count - 1, m->node, m->latency, m->match, m->mask);
1017 }
1018
1019 return 0;
1020 }
1021
1022 static int __init grab_mblocks(struct mdesc_handle *md)
1023 {
1024 unsigned long paddr;
1025 int count = 0;
1026 u64 node;
1027
1028 mdesc_for_each_node_by_name(md, node, "mblock")
1029 count++;
1030 if (!count)
1031 return -ENOENT;
1032
1033 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1034 SMP_CACHE_BYTES);
1035 if (!paddr)
1036 return -ENOMEM;
1037
1038 mblocks = __va(paddr);
1039 num_mblocks = count;
1040
1041 count = 0;
1042 mdesc_for_each_node_by_name(md, node, "mblock") {
1043 struct mdesc_mblock *m = &mblocks[count++];
1044 const u64 *val;
1045
1046 val = mdesc_get_property(md, node, "base", NULL);
1047 m->base = *val;
1048 val = mdesc_get_property(md, node, "size", NULL);
1049 m->size = *val;
1050 val = mdesc_get_property(md, node,
1051 "address-congruence-offset", NULL);
1052 m->offset = *val;
1053
1054 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1055 count - 1, m->base, m->size, m->offset);
1056 }
1057
1058 return 0;
1059 }
1060
1061 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1062 u64 grp, cpumask_t *mask)
1063 {
1064 u64 arc;
1065
1066 cpumask_clear(mask);
1067
1068 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1069 u64 target = mdesc_arc_target(md, arc);
1070 const char *name = mdesc_node_name(md, target);
1071 const u64 *id;
1072
1073 if (strcmp(name, "cpu"))
1074 continue;
1075 id = mdesc_get_property(md, target, "id", NULL);
1076 if (*id < nr_cpu_ids)
1077 cpumask_set_cpu(*id, mask);
1078 }
1079 }
1080
1081 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1082 {
1083 int i;
1084
1085 for (i = 0; i < num_mlgroups; i++) {
1086 struct mdesc_mlgroup *m = &mlgroups[i];
1087 if (m->node == node)
1088 return m;
1089 }
1090 return NULL;
1091 }
1092
1093 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1094 int index)
1095 {
1096 struct mdesc_mlgroup *candidate = NULL;
1097 u64 arc, best_latency = ~(u64)0;
1098 struct node_mem_mask *n;
1099
1100 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1101 u64 target = mdesc_arc_target(md, arc);
1102 struct mdesc_mlgroup *m = find_mlgroup(target);
1103 if (!m)
1104 continue;
1105 if (m->latency < best_latency) {
1106 candidate = m;
1107 best_latency = m->latency;
1108 }
1109 }
1110 if (!candidate)
1111 return -ENOENT;
1112
1113 if (num_node_masks != index) {
1114 printk(KERN_ERR "Inconsistent NUMA state, "
1115 "index[%d] != num_node_masks[%d]\n",
1116 index, num_node_masks);
1117 return -EINVAL;
1118 }
1119
1120 n = &node_masks[num_node_masks++];
1121
1122 n->mask = candidate->mask;
1123 n->val = candidate->match;
1124
1125 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1126 index, n->mask, n->val, candidate->latency);
1127
1128 return 0;
1129 }
1130
1131 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1132 int index)
1133 {
1134 cpumask_t mask;
1135 int cpu;
1136
1137 numa_parse_mdesc_group_cpus(md, grp, &mask);
1138
1139 for_each_cpu(cpu, &mask)
1140 numa_cpu_lookup_table[cpu] = index;
1141 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1142
1143 if (numa_debug) {
1144 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1145 for_each_cpu(cpu, &mask)
1146 printk("%d ", cpu);
1147 printk("]\n");
1148 }
1149
1150 return numa_attach_mlgroup(md, grp, index);
1151 }
1152
1153 static int __init numa_parse_mdesc(void)
1154 {
1155 struct mdesc_handle *md = mdesc_grab();
1156 int i, err, count;
1157 u64 node;
1158
1159 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1160 if (node == MDESC_NODE_NULL) {
1161 mdesc_release(md);
1162 return -ENOENT;
1163 }
1164
1165 err = grab_mblocks(md);
1166 if (err < 0)
1167 goto out;
1168
1169 err = grab_mlgroups(md);
1170 if (err < 0)
1171 goto out;
1172
1173 count = 0;
1174 mdesc_for_each_node_by_name(md, node, "group") {
1175 err = numa_parse_mdesc_group(md, node, count);
1176 if (err < 0)
1177 break;
1178 count++;
1179 }
1180
1181 add_node_ranges();
1182
1183 for (i = 0; i < num_node_masks; i++) {
1184 allocate_node_data(i);
1185 node_set_online(i);
1186 }
1187
1188 err = 0;
1189 out:
1190 mdesc_release(md);
1191 return err;
1192 }
1193
1194 static int __init numa_parse_jbus(void)
1195 {
1196 unsigned long cpu, index;
1197
1198 /* NUMA node id is encoded in bits 36 and higher, and there is
1199 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1200 */
1201 index = 0;
1202 for_each_present_cpu(cpu) {
1203 numa_cpu_lookup_table[cpu] = index;
1204 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1205 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1206 node_masks[index].val = cpu << 36UL;
1207
1208 index++;
1209 }
1210 num_node_masks = index;
1211
1212 add_node_ranges();
1213
1214 for (index = 0; index < num_node_masks; index++) {
1215 allocate_node_data(index);
1216 node_set_online(index);
1217 }
1218
1219 return 0;
1220 }
1221
1222 static int __init numa_parse_sun4u(void)
1223 {
1224 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1225 unsigned long ver;
1226
1227 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1228 if ((ver >> 32UL) == __JALAPENO_ID ||
1229 (ver >> 32UL) == __SERRANO_ID)
1230 return numa_parse_jbus();
1231 }
1232 return -1;
1233 }
1234
1235 static int __init bootmem_init_numa(void)
1236 {
1237 int err = -1;
1238
1239 numadbg("bootmem_init_numa()\n");
1240
1241 if (numa_enabled) {
1242 if (tlb_type == hypervisor)
1243 err = numa_parse_mdesc();
1244 else
1245 err = numa_parse_sun4u();
1246 }
1247 return err;
1248 }
1249
1250 #else
1251
1252 static int bootmem_init_numa(void)
1253 {
1254 return -1;
1255 }
1256
1257 #endif
1258
1259 static void __init bootmem_init_nonnuma(void)
1260 {
1261 unsigned long top_of_ram = memblock_end_of_DRAM();
1262 unsigned long total_ram = memblock_phys_mem_size();
1263
1264 numadbg("bootmem_init_nonnuma()\n");
1265
1266 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1267 top_of_ram, total_ram);
1268 printk(KERN_INFO "Memory hole size: %ldMB\n",
1269 (top_of_ram - total_ram) >> 20);
1270
1271 init_node_masks_nonnuma();
1272 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
1273 allocate_node_data(0);
1274 node_set_online(0);
1275 }
1276
1277 static unsigned long __init bootmem_init(unsigned long phys_base)
1278 {
1279 unsigned long end_pfn;
1280
1281 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1282 max_pfn = max_low_pfn = end_pfn;
1283 min_low_pfn = (phys_base >> PAGE_SHIFT);
1284
1285 if (bootmem_init_numa() < 0)
1286 bootmem_init_nonnuma();
1287
1288 /* Dump memblock with node info. */
1289 memblock_dump_all();
1290
1291 /* XXX cpu notifier XXX */
1292
1293 sparse_memory_present_with_active_regions(MAX_NUMNODES);
1294 sparse_init();
1295
1296 return end_pfn;
1297 }
1298
1299 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1300 static int pall_ents __initdata;
1301
1302 #ifdef CONFIG_DEBUG_PAGEALLOC
1303 static unsigned long __ref kernel_map_range(unsigned long pstart,
1304 unsigned long pend, pgprot_t prot)
1305 {
1306 unsigned long vstart = PAGE_OFFSET + pstart;
1307 unsigned long vend = PAGE_OFFSET + pend;
1308 unsigned long alloc_bytes = 0UL;
1309
1310 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1311 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1312 vstart, vend);
1313 prom_halt();
1314 }
1315
1316 while (vstart < vend) {
1317 unsigned long this_end, paddr = __pa(vstart);
1318 pgd_t *pgd = pgd_offset_k(vstart);
1319 pud_t *pud;
1320 pmd_t *pmd;
1321 pte_t *pte;
1322
1323 pud = pud_offset(pgd, vstart);
1324 if (pud_none(*pud)) {
1325 pmd_t *new;
1326
1327 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1328 alloc_bytes += PAGE_SIZE;
1329 pud_populate(&init_mm, pud, new);
1330 }
1331
1332 pmd = pmd_offset(pud, vstart);
1333 if (!pmd_present(*pmd)) {
1334 pte_t *new;
1335
1336 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1337 alloc_bytes += PAGE_SIZE;
1338 pmd_populate_kernel(&init_mm, pmd, new);
1339 }
1340
1341 pte = pte_offset_kernel(pmd, vstart);
1342 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1343 if (this_end > vend)
1344 this_end = vend;
1345
1346 while (vstart < this_end) {
1347 pte_val(*pte) = (paddr | pgprot_val(prot));
1348
1349 vstart += PAGE_SIZE;
1350 paddr += PAGE_SIZE;
1351 pte++;
1352 }
1353 }
1354
1355 return alloc_bytes;
1356 }
1357
1358 extern unsigned int kvmap_linear_patch[1];
1359 #endif /* CONFIG_DEBUG_PAGEALLOC */
1360
1361 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1362 {
1363 const unsigned long shift_256MB = 28;
1364 const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1365 const unsigned long size_256MB = (1UL << shift_256MB);
1366
1367 while (start < end) {
1368 long remains;
1369
1370 remains = end - start;
1371 if (remains < size_256MB)
1372 break;
1373
1374 if (start & mask_256MB) {
1375 start = (start + size_256MB) & ~mask_256MB;
1376 continue;
1377 }
1378
1379 while (remains >= size_256MB) {
1380 unsigned long index = start >> shift_256MB;
1381
1382 __set_bit(index, kpte_linear_bitmap);
1383
1384 start += size_256MB;
1385 remains -= size_256MB;
1386 }
1387 }
1388 }
1389
1390 static void __init init_kpte_bitmap(void)
1391 {
1392 unsigned long i;
1393
1394 for (i = 0; i < pall_ents; i++) {
1395 unsigned long phys_start, phys_end;
1396
1397 phys_start = pall[i].phys_addr;
1398 phys_end = phys_start + pall[i].reg_size;
1399
1400 mark_kpte_bitmap(phys_start, phys_end);
1401 }
1402 }
1403
1404 static void __init kernel_physical_mapping_init(void)
1405 {
1406 #ifdef CONFIG_DEBUG_PAGEALLOC
1407 unsigned long i, mem_alloced = 0UL;
1408
1409 for (i = 0; i < pall_ents; i++) {
1410 unsigned long phys_start, phys_end;
1411
1412 phys_start = pall[i].phys_addr;
1413 phys_end = phys_start + pall[i].reg_size;
1414
1415 mem_alloced += kernel_map_range(phys_start, phys_end,
1416 PAGE_KERNEL);
1417 }
1418
1419 printk("Allocated %ld bytes for kernel page tables.\n",
1420 mem_alloced);
1421
1422 kvmap_linear_patch[0] = 0x01000000; /* nop */
1423 flushi(&kvmap_linear_patch[0]);
1424
1425 __flush_tlb_all();
1426 #endif
1427 }
1428
1429 #ifdef CONFIG_DEBUG_PAGEALLOC
1430 void kernel_map_pages(struct page *page, int numpages, int enable)
1431 {
1432 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1433 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1434
1435 kernel_map_range(phys_start, phys_end,
1436 (enable ? PAGE_KERNEL : __pgprot(0)));
1437
1438 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1439 PAGE_OFFSET + phys_end);
1440
1441 /* we should perform an IPI and flush all tlbs,
1442 * but that can deadlock->flush only current cpu.
1443 */
1444 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1445 PAGE_OFFSET + phys_end);
1446 }
1447 #endif
1448
1449 unsigned long __init find_ecache_flush_span(unsigned long size)
1450 {
1451 int i;
1452
1453 for (i = 0; i < pavail_ents; i++) {
1454 if (pavail[i].reg_size >= size)
1455 return pavail[i].phys_addr;
1456 }
1457
1458 return ~0UL;
1459 }
1460
1461 static void __init tsb_phys_patch(void)
1462 {
1463 struct tsb_ldquad_phys_patch_entry *pquad;
1464 struct tsb_phys_patch_entry *p;
1465
1466 pquad = &__tsb_ldquad_phys_patch;
1467 while (pquad < &__tsb_ldquad_phys_patch_end) {
1468 unsigned long addr = pquad->addr;
1469
1470 if (tlb_type == hypervisor)
1471 *(unsigned int *) addr = pquad->sun4v_insn;
1472 else
1473 *(unsigned int *) addr = pquad->sun4u_insn;
1474 wmb();
1475 __asm__ __volatile__("flush %0"
1476 : /* no outputs */
1477 : "r" (addr));
1478
1479 pquad++;
1480 }
1481
1482 p = &__tsb_phys_patch;
1483 while (p < &__tsb_phys_patch_end) {
1484 unsigned long addr = p->addr;
1485
1486 *(unsigned int *) addr = p->insn;
1487 wmb();
1488 __asm__ __volatile__("flush %0"
1489 : /* no outputs */
1490 : "r" (addr));
1491
1492 p++;
1493 }
1494 }
1495
1496 /* Don't mark as init, we give this to the Hypervisor. */
1497 #ifndef CONFIG_DEBUG_PAGEALLOC
1498 #define NUM_KTSB_DESCR 2
1499 #else
1500 #define NUM_KTSB_DESCR 1
1501 #endif
1502 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1503 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1504
1505 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1506 {
1507 pa >>= KTSB_PHYS_SHIFT;
1508
1509 while (start < end) {
1510 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1511
1512 ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1513 __asm__ __volatile__("flush %0" : : "r" (ia));
1514
1515 ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1516 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
1517
1518 start++;
1519 }
1520 }
1521
1522 static void ktsb_phys_patch(void)
1523 {
1524 extern unsigned int __swapper_tsb_phys_patch;
1525 extern unsigned int __swapper_tsb_phys_patch_end;
1526 unsigned long ktsb_pa;
1527
1528 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1529 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1530 &__swapper_tsb_phys_patch_end, ktsb_pa);
1531 #ifndef CONFIG_DEBUG_PAGEALLOC
1532 {
1533 extern unsigned int __swapper_4m_tsb_phys_patch;
1534 extern unsigned int __swapper_4m_tsb_phys_patch_end;
1535 ktsb_pa = (kern_base +
1536 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1537 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1538 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1539 }
1540 #endif
1541 }
1542
1543 static void __init sun4v_ktsb_init(void)
1544 {
1545 unsigned long ktsb_pa;
1546
1547 /* First KTSB for PAGE_SIZE mappings. */
1548 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1549
1550 switch (PAGE_SIZE) {
1551 case 8 * 1024:
1552 default:
1553 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1554 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1555 break;
1556
1557 case 64 * 1024:
1558 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1559 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1560 break;
1561
1562 case 512 * 1024:
1563 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1564 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1565 break;
1566
1567 case 4 * 1024 * 1024:
1568 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1569 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1570 break;
1571 }
1572
1573 ktsb_descr[0].assoc = 1;
1574 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1575 ktsb_descr[0].ctx_idx = 0;
1576 ktsb_descr[0].tsb_base = ktsb_pa;
1577 ktsb_descr[0].resv = 0;
1578
1579 #ifndef CONFIG_DEBUG_PAGEALLOC
1580 /* Second KTSB for 4MB/256MB mappings. */
1581 ktsb_pa = (kern_base +
1582 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1583
1584 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1585 ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1586 HV_PGSZ_MASK_256MB);
1587 ktsb_descr[1].assoc = 1;
1588 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1589 ktsb_descr[1].ctx_idx = 0;
1590 ktsb_descr[1].tsb_base = ktsb_pa;
1591 ktsb_descr[1].resv = 0;
1592 #endif
1593 }
1594
1595 void __cpuinit sun4v_ktsb_register(void)
1596 {
1597 unsigned long pa, ret;
1598
1599 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1600
1601 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1602 if (ret != 0) {
1603 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1604 "errors with %lx\n", pa, ret);
1605 prom_halt();
1606 }
1607 }
1608
1609 /* paging_init() sets up the page tables */
1610
1611 static unsigned long last_valid_pfn;
1612 pgd_t swapper_pg_dir[2048];
1613
1614 static void sun4u_pgprot_init(void);
1615 static void sun4v_pgprot_init(void);
1616
1617 void __init paging_init(void)
1618 {
1619 unsigned long end_pfn, shift, phys_base;
1620 unsigned long real_end, i;
1621 int node;
1622
1623 /* These build time checkes make sure that the dcache_dirty_cpu()
1624 * page->flags usage will work.
1625 *
1626 * When a page gets marked as dcache-dirty, we store the
1627 * cpu number starting at bit 32 in the page->flags. Also,
1628 * functions like clear_dcache_dirty_cpu use the cpu mask
1629 * in 13-bit signed-immediate instruction fields.
1630 */
1631
1632 /*
1633 * Page flags must not reach into upper 32 bits that are used
1634 * for the cpu number
1635 */
1636 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1637
1638 /*
1639 * The bit fields placed in the high range must not reach below
1640 * the 32 bit boundary. Otherwise we cannot place the cpu field
1641 * at the 32 bit boundary.
1642 */
1643 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1644 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1645
1646 BUILD_BUG_ON(NR_CPUS > 4096);
1647
1648 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1649 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1650
1651 /* Invalidate both kernel TSBs. */
1652 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1653 #ifndef CONFIG_DEBUG_PAGEALLOC
1654 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1655 #endif
1656
1657 if (tlb_type == hypervisor)
1658 sun4v_pgprot_init();
1659 else
1660 sun4u_pgprot_init();
1661
1662 if (tlb_type == cheetah_plus ||
1663 tlb_type == hypervisor) {
1664 tsb_phys_patch();
1665 ktsb_phys_patch();
1666 }
1667
1668 if (tlb_type == hypervisor) {
1669 sun4v_patch_tlb_handlers();
1670 sun4v_ktsb_init();
1671 }
1672
1673 /* Find available physical memory...
1674 *
1675 * Read it twice in order to work around a bug in openfirmware.
1676 * The call to grab this table itself can cause openfirmware to
1677 * allocate memory, which in turn can take away some space from
1678 * the list of available memory. Reading it twice makes sure
1679 * we really do get the final value.
1680 */
1681 read_obp_translations();
1682 read_obp_memory("reg", &pall[0], &pall_ents);
1683 read_obp_memory("available", &pavail[0], &pavail_ents);
1684 read_obp_memory("available", &pavail[0], &pavail_ents);
1685
1686 phys_base = 0xffffffffffffffffUL;
1687 for (i = 0; i < pavail_ents; i++) {
1688 phys_base = min(phys_base, pavail[i].phys_addr);
1689 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1690 }
1691
1692 memblock_reserve(kern_base, kern_size);
1693
1694 find_ramdisk(phys_base);
1695
1696 memblock_enforce_memory_limit(cmdline_memory_size);
1697
1698 memblock_allow_resize();
1699 memblock_dump_all();
1700
1701 set_bit(0, mmu_context_bmap);
1702
1703 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1704
1705 real_end = (unsigned long)_end;
1706 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1707 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1708 num_kernel_image_mappings);
1709
1710 /* Set kernel pgd to upper alias so physical page computations
1711 * work.
1712 */
1713 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1714
1715 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1716
1717 /* Now can init the kernel/bad page tables. */
1718 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1719 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1720
1721 inherit_prom_mappings();
1722
1723 init_kpte_bitmap();
1724
1725 /* Ok, we can use our TLB miss and window trap handlers safely. */
1726 setup_tba();
1727
1728 __flush_tlb_all();
1729
1730 if (tlb_type == hypervisor)
1731 sun4v_ktsb_register();
1732
1733 prom_build_devicetree();
1734 of_populate_present_mask();
1735 #ifndef CONFIG_SMP
1736 of_fill_in_cpu_data();
1737 #endif
1738
1739 if (tlb_type == hypervisor) {
1740 sun4v_mdesc_init();
1741 mdesc_populate_present_mask(cpu_all_mask);
1742 #ifndef CONFIG_SMP
1743 mdesc_fill_in_cpu_data(cpu_all_mask);
1744 #endif
1745 }
1746
1747 /* Setup bootmem... */
1748 last_valid_pfn = end_pfn = bootmem_init(phys_base);
1749
1750 /* Once the OF device tree and MDESC have been setup, we know
1751 * the list of possible cpus. Therefore we can allocate the
1752 * IRQ stacks.
1753 */
1754 for_each_possible_cpu(i) {
1755 node = cpu_to_node(i);
1756
1757 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
1758 THREAD_SIZE,
1759 THREAD_SIZE, 0);
1760 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
1761 THREAD_SIZE,
1762 THREAD_SIZE, 0);
1763 }
1764
1765 kernel_physical_mapping_init();
1766
1767 {
1768 unsigned long max_zone_pfns[MAX_NR_ZONES];
1769
1770 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1771
1772 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1773
1774 free_area_init_nodes(max_zone_pfns);
1775 }
1776
1777 printk("Booting Linux...\n");
1778 }
1779
1780 int __devinit page_in_phys_avail(unsigned long paddr)
1781 {
1782 int i;
1783
1784 paddr &= PAGE_MASK;
1785
1786 for (i = 0; i < pavail_ents; i++) {
1787 unsigned long start, end;
1788
1789 start = pavail[i].phys_addr;
1790 end = start + pavail[i].reg_size;
1791
1792 if (paddr >= start && paddr < end)
1793 return 1;
1794 }
1795 if (paddr >= kern_base && paddr < (kern_base + kern_size))
1796 return 1;
1797 #ifdef CONFIG_BLK_DEV_INITRD
1798 if (paddr >= __pa(initrd_start) &&
1799 paddr < __pa(PAGE_ALIGN(initrd_end)))
1800 return 1;
1801 #endif
1802
1803 return 0;
1804 }
1805
1806 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1807 static int pavail_rescan_ents __initdata;
1808
1809 /* Certain OBP calls, such as fetching "available" properties, can
1810 * claim physical memory. So, along with initializing the valid
1811 * address bitmap, what we do here is refetch the physical available
1812 * memory list again, and make sure it provides at least as much
1813 * memory as 'pavail' does.
1814 */
1815 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1816 {
1817 int i;
1818
1819 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1820
1821 for (i = 0; i < pavail_ents; i++) {
1822 unsigned long old_start, old_end;
1823
1824 old_start = pavail[i].phys_addr;
1825 old_end = old_start + pavail[i].reg_size;
1826 while (old_start < old_end) {
1827 int n;
1828
1829 for (n = 0; n < pavail_rescan_ents; n++) {
1830 unsigned long new_start, new_end;
1831
1832 new_start = pavail_rescan[n].phys_addr;
1833 new_end = new_start +
1834 pavail_rescan[n].reg_size;
1835
1836 if (new_start <= old_start &&
1837 new_end >= (old_start + PAGE_SIZE)) {
1838 set_bit(old_start >> 22, bitmap);
1839 goto do_next_page;
1840 }
1841 }
1842
1843 prom_printf("mem_init: Lost memory in pavail\n");
1844 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1845 pavail[i].phys_addr,
1846 pavail[i].reg_size);
1847 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1848 pavail_rescan[i].phys_addr,
1849 pavail_rescan[i].reg_size);
1850 prom_printf("mem_init: Cannot continue, aborting.\n");
1851 prom_halt();
1852
1853 do_next_page:
1854 old_start += PAGE_SIZE;
1855 }
1856 }
1857 }
1858
1859 static void __init patch_tlb_miss_handler_bitmap(void)
1860 {
1861 extern unsigned int valid_addr_bitmap_insn[];
1862 extern unsigned int valid_addr_bitmap_patch[];
1863
1864 valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
1865 mb();
1866 valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
1867 flushi(&valid_addr_bitmap_insn[0]);
1868 }
1869
1870 void __init mem_init(void)
1871 {
1872 unsigned long codepages, datapages, initpages;
1873 unsigned long addr, last;
1874
1875 addr = PAGE_OFFSET + kern_base;
1876 last = PAGE_ALIGN(kern_size) + addr;
1877 while (addr < last) {
1878 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1879 addr += PAGE_SIZE;
1880 }
1881
1882 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
1883 patch_tlb_miss_handler_bitmap();
1884
1885 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1886
1887 #ifdef CONFIG_NEED_MULTIPLE_NODES
1888 {
1889 int i;
1890 for_each_online_node(i) {
1891 if (NODE_DATA(i)->node_spanned_pages != 0) {
1892 totalram_pages +=
1893 free_all_bootmem_node(NODE_DATA(i));
1894 }
1895 }
1896 totalram_pages += free_low_memory_core_early(MAX_NUMNODES);
1897 }
1898 #else
1899 totalram_pages = free_all_bootmem();
1900 #endif
1901
1902 /* We subtract one to account for the mem_map_zero page
1903 * allocated below.
1904 */
1905 totalram_pages -= 1;
1906 num_physpages = totalram_pages;
1907
1908 /*
1909 * Set up the zero page, mark it reserved, so that page count
1910 * is not manipulated when freeing the page from user ptes.
1911 */
1912 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1913 if (mem_map_zero == NULL) {
1914 prom_printf("paging_init: Cannot alloc zero page.\n");
1915 prom_halt();
1916 }
1917 SetPageReserved(mem_map_zero);
1918
1919 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1920 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1921 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1922 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1923 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1924 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1925
1926 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1927 nr_free_pages() << (PAGE_SHIFT-10),
1928 codepages << (PAGE_SHIFT-10),
1929 datapages << (PAGE_SHIFT-10),
1930 initpages << (PAGE_SHIFT-10),
1931 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1932
1933 if (tlb_type == cheetah || tlb_type == cheetah_plus)
1934 cheetah_ecache_flush_init();
1935 }
1936
1937 void free_initmem(void)
1938 {
1939 unsigned long addr, initend;
1940 int do_free = 1;
1941
1942 /* If the physical memory maps were trimmed by kernel command
1943 * line options, don't even try freeing this initmem stuff up.
1944 * The kernel image could have been in the trimmed out region
1945 * and if so the freeing below will free invalid page structs.
1946 */
1947 if (cmdline_memory_size)
1948 do_free = 0;
1949
1950 /*
1951 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1952 */
1953 addr = PAGE_ALIGN((unsigned long)(__init_begin));
1954 initend = (unsigned long)(__init_end) & PAGE_MASK;
1955 for (; addr < initend; addr += PAGE_SIZE) {
1956 unsigned long page;
1957 struct page *p;
1958
1959 page = (addr +
1960 ((unsigned long) __va(kern_base)) -
1961 ((unsigned long) KERNBASE));
1962 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1963
1964 if (do_free) {
1965 p = virt_to_page(page);
1966
1967 ClearPageReserved(p);
1968 init_page_count(p);
1969 __free_page(p);
1970 num_physpages++;
1971 totalram_pages++;
1972 }
1973 }
1974 }
1975
1976 #ifdef CONFIG_BLK_DEV_INITRD
1977 void free_initrd_mem(unsigned long start, unsigned long end)
1978 {
1979 if (start < end)
1980 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1981 for (; start < end; start += PAGE_SIZE) {
1982 struct page *p = virt_to_page(start);
1983
1984 ClearPageReserved(p);
1985 init_page_count(p);
1986 __free_page(p);
1987 num_physpages++;
1988 totalram_pages++;
1989 }
1990 }
1991 #endif
1992
1993 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
1994 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
1995 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1996 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1997 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1998 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1999
2000 pgprot_t PAGE_KERNEL __read_mostly;
2001 EXPORT_SYMBOL(PAGE_KERNEL);
2002
2003 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2004 pgprot_t PAGE_COPY __read_mostly;
2005
2006 pgprot_t PAGE_SHARED __read_mostly;
2007 EXPORT_SYMBOL(PAGE_SHARED);
2008
2009 unsigned long pg_iobits __read_mostly;
2010
2011 unsigned long _PAGE_IE __read_mostly;
2012 EXPORT_SYMBOL(_PAGE_IE);
2013
2014 unsigned long _PAGE_E __read_mostly;
2015 EXPORT_SYMBOL(_PAGE_E);
2016
2017 unsigned long _PAGE_CACHE __read_mostly;
2018 EXPORT_SYMBOL(_PAGE_CACHE);
2019
2020 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2021 unsigned long vmemmap_table[VMEMMAP_SIZE];
2022
2023 static long __meminitdata addr_start, addr_end;
2024 static int __meminitdata node_start;
2025
2026 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2027 {
2028 unsigned long vstart = (unsigned long) start;
2029 unsigned long vend = (unsigned long) (start + nr);
2030 unsigned long phys_start = (vstart - VMEMMAP_BASE);
2031 unsigned long phys_end = (vend - VMEMMAP_BASE);
2032 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2033 unsigned long end = VMEMMAP_ALIGN(phys_end);
2034 unsigned long pte_base;
2035
2036 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2037 _PAGE_CP_4U | _PAGE_CV_4U |
2038 _PAGE_P_4U | _PAGE_W_4U);
2039 if (tlb_type == hypervisor)
2040 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2041 _PAGE_CP_4V | _PAGE_CV_4V |
2042 _PAGE_P_4V | _PAGE_W_4V);
2043
2044 for (; addr < end; addr += VMEMMAP_CHUNK) {
2045 unsigned long *vmem_pp =
2046 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2047 void *block;
2048
2049 if (!(*vmem_pp & _PAGE_VALID)) {
2050 block = vmemmap_alloc_block(1UL << 22, node);
2051 if (!block)
2052 return -ENOMEM;
2053
2054 *vmem_pp = pte_base | __pa(block);
2055
2056 /* check to see if we have contiguous blocks */
2057 if (addr_end != addr || node_start != node) {
2058 if (addr_start)
2059 printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2060 addr_start, addr_end-1, node_start);
2061 addr_start = addr;
2062 node_start = node;
2063 }
2064 addr_end = addr + VMEMMAP_CHUNK;
2065 }
2066 }
2067 return 0;
2068 }
2069
2070 void __meminit vmemmap_populate_print_last(void)
2071 {
2072 if (addr_start) {
2073 printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2074 addr_start, addr_end-1, node_start);
2075 addr_start = 0;
2076 addr_end = 0;
2077 node_start = 0;
2078 }
2079 }
2080 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2081
2082 static void prot_init_common(unsigned long page_none,
2083 unsigned long page_shared,
2084 unsigned long page_copy,
2085 unsigned long page_readonly,
2086 unsigned long page_exec_bit)
2087 {
2088 PAGE_COPY = __pgprot(page_copy);
2089 PAGE_SHARED = __pgprot(page_shared);
2090
2091 protection_map[0x0] = __pgprot(page_none);
2092 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2093 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2094 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2095 protection_map[0x4] = __pgprot(page_readonly);
2096 protection_map[0x5] = __pgprot(page_readonly);
2097 protection_map[0x6] = __pgprot(page_copy);
2098 protection_map[0x7] = __pgprot(page_copy);
2099 protection_map[0x8] = __pgprot(page_none);
2100 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2101 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2102 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2103 protection_map[0xc] = __pgprot(page_readonly);
2104 protection_map[0xd] = __pgprot(page_readonly);
2105 protection_map[0xe] = __pgprot(page_shared);
2106 protection_map[0xf] = __pgprot(page_shared);
2107 }
2108
2109 static void __init sun4u_pgprot_init(void)
2110 {
2111 unsigned long page_none, page_shared, page_copy, page_readonly;
2112 unsigned long page_exec_bit;
2113
2114 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2115 _PAGE_CACHE_4U | _PAGE_P_4U |
2116 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2117 _PAGE_EXEC_4U);
2118 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2119 _PAGE_CACHE_4U | _PAGE_P_4U |
2120 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2121 _PAGE_EXEC_4U | _PAGE_L_4U);
2122
2123 _PAGE_IE = _PAGE_IE_4U;
2124 _PAGE_E = _PAGE_E_4U;
2125 _PAGE_CACHE = _PAGE_CACHE_4U;
2126
2127 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2128 __ACCESS_BITS_4U | _PAGE_E_4U);
2129
2130 #ifdef CONFIG_DEBUG_PAGEALLOC
2131 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2132 0xfffff80000000000UL;
2133 #else
2134 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2135 0xfffff80000000000UL;
2136 #endif
2137 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2138 _PAGE_P_4U | _PAGE_W_4U);
2139
2140 /* XXX Should use 256MB on Panther. XXX */
2141 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2142
2143 _PAGE_SZBITS = _PAGE_SZBITS_4U;
2144 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2145 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2146 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2147
2148
2149 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2150 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2151 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2152 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2153 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2154 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2155 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2156
2157 page_exec_bit = _PAGE_EXEC_4U;
2158
2159 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2160 page_exec_bit);
2161 }
2162
2163 static void __init sun4v_pgprot_init(void)
2164 {
2165 unsigned long page_none, page_shared, page_copy, page_readonly;
2166 unsigned long page_exec_bit;
2167
2168 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2169 _PAGE_CACHE_4V | _PAGE_P_4V |
2170 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2171 _PAGE_EXEC_4V);
2172 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2173
2174 _PAGE_IE = _PAGE_IE_4V;
2175 _PAGE_E = _PAGE_E_4V;
2176 _PAGE_CACHE = _PAGE_CACHE_4V;
2177
2178 #ifdef CONFIG_DEBUG_PAGEALLOC
2179 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2180 0xfffff80000000000UL;
2181 #else
2182 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2183 0xfffff80000000000UL;
2184 #endif
2185 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2186 _PAGE_P_4V | _PAGE_W_4V);
2187
2188 #ifdef CONFIG_DEBUG_PAGEALLOC
2189 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2190 0xfffff80000000000UL;
2191 #else
2192 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2193 0xfffff80000000000UL;
2194 #endif
2195 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2196 _PAGE_P_4V | _PAGE_W_4V);
2197
2198 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2199 __ACCESS_BITS_4V | _PAGE_E_4V);
2200
2201 _PAGE_SZBITS = _PAGE_SZBITS_4V;
2202 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2203 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2204 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2205 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2206
2207 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2208 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2209 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2210 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2211 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2212 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2213 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2214
2215 page_exec_bit = _PAGE_EXEC_4V;
2216
2217 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2218 page_exec_bit);
2219 }
2220
2221 unsigned long pte_sz_bits(unsigned long sz)
2222 {
2223 if (tlb_type == hypervisor) {
2224 switch (sz) {
2225 case 8 * 1024:
2226 default:
2227 return _PAGE_SZ8K_4V;
2228 case 64 * 1024:
2229 return _PAGE_SZ64K_4V;
2230 case 512 * 1024:
2231 return _PAGE_SZ512K_4V;
2232 case 4 * 1024 * 1024:
2233 return _PAGE_SZ4MB_4V;
2234 }
2235 } else {
2236 switch (sz) {
2237 case 8 * 1024:
2238 default:
2239 return _PAGE_SZ8K_4U;
2240 case 64 * 1024:
2241 return _PAGE_SZ64K_4U;
2242 case 512 * 1024:
2243 return _PAGE_SZ512K_4U;
2244 case 4 * 1024 * 1024:
2245 return _PAGE_SZ4MB_4U;
2246 }
2247 }
2248 }
2249
2250 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2251 {
2252 pte_t pte;
2253
2254 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2255 pte_val(pte) |= (((unsigned long)space) << 32);
2256 pte_val(pte) |= pte_sz_bits(page_size);
2257
2258 return pte;
2259 }
2260
2261 static unsigned long kern_large_tte(unsigned long paddr)
2262 {
2263 unsigned long val;
2264
2265 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2266 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2267 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2268 if (tlb_type == hypervisor)
2269 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2270 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2271 _PAGE_EXEC_4V | _PAGE_W_4V);
2272
2273 return val | paddr;
2274 }
2275
2276 /* If not locked, zap it. */
2277 void __flush_tlb_all(void)
2278 {
2279 unsigned long pstate;
2280 int i;
2281
2282 __asm__ __volatile__("flushw\n\t"
2283 "rdpr %%pstate, %0\n\t"
2284 "wrpr %0, %1, %%pstate"
2285 : "=r" (pstate)
2286 : "i" (PSTATE_IE));
2287 if (tlb_type == hypervisor) {
2288 sun4v_mmu_demap_all();
2289 } else if (tlb_type == spitfire) {
2290 for (i = 0; i < 64; i++) {
2291 /* Spitfire Errata #32 workaround */
2292 /* NOTE: Always runs on spitfire, so no
2293 * cheetah+ page size encodings.
2294 */
2295 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2296 "flush %%g6"
2297 : /* No outputs */
2298 : "r" (0),
2299 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2300
2301 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2302 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2303 "membar #Sync"
2304 : /* no outputs */
2305 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2306 spitfire_put_dtlb_data(i, 0x0UL);
2307 }
2308
2309 /* Spitfire Errata #32 workaround */
2310 /* NOTE: Always runs on spitfire, so no
2311 * cheetah+ page size encodings.
2312 */
2313 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2314 "flush %%g6"
2315 : /* No outputs */
2316 : "r" (0),
2317 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2318
2319 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2320 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2321 "membar #Sync"
2322 : /* no outputs */
2323 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2324 spitfire_put_itlb_data(i, 0x0UL);
2325 }
2326 }
2327 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2328 cheetah_flush_dtlb_all();
2329 cheetah_flush_itlb_all();
2330 }
2331 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2332 : : "r" (pstate));
2333 }
This page took 0.122508 seconds and 5 git commands to generate.