ab62595cf366984d4bca9deda828e1c38f021b86
[deliverable/linux.git] / arch / sparc / mm / srmmu.c
1 /*
2 * srmmu.c: SRMMU specific routines for memory management.
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
10
11 #include <linux/seq_file.h>
12 #include <linux/spinlock.h>
13 #include <linux/bootmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/kdebug.h>
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/log2.h>
20 #include <linux/gfp.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23
24 #include <asm/mmu_context.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <asm/io-unit.h>
28 #include <asm/pgalloc.h>
29 #include <asm/pgtable.h>
30 #include <asm/bitext.h>
31 #include <asm/vaddrs.h>
32 #include <asm/cache.h>
33 #include <asm/traps.h>
34 #include <asm/oplib.h>
35 #include <asm/mbus.h>
36 #include <asm/page.h>
37 #include <asm/asi.h>
38 #include <asm/msi.h>
39 #include <asm/smp.h>
40 #include <asm/io.h>
41
42 /* Now the cpu specific definitions. */
43 #include <asm/turbosparc.h>
44 #include <asm/tsunami.h>
45 #include <asm/viking.h>
46 #include <asm/swift.h>
47 #include <asm/leon.h>
48 #include <asm/mxcc.h>
49 #include <asm/ross.h>
50
51 #include "srmmu.h"
52
53 enum mbus_module srmmu_modtype;
54 static unsigned int hwbug_bitmask;
55 int vac_cache_size;
56 int vac_line_size;
57
58 struct ctx_list *ctx_list_pool;
59 struct ctx_list ctx_free;
60 struct ctx_list ctx_used;
61
62 extern struct resource sparc_iomap;
63
64 extern unsigned long last_valid_pfn;
65
66 static pgd_t *srmmu_swapper_pg_dir;
67
68 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
69
70 #ifdef CONFIG_SMP
71 const struct sparc32_cachetlb_ops *local_ops;
72
73 #define FLUSH_BEGIN(mm)
74 #define FLUSH_END
75 #else
76 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
77 #define FLUSH_END }
78 #endif
79
80 int flush_page_for_dma_global = 1;
81
82 char *srmmu_name;
83
84 ctxd_t *srmmu_ctx_table_phys;
85 static ctxd_t *srmmu_context_table;
86
87 int viking_mxcc_present;
88 static DEFINE_SPINLOCK(srmmu_context_spinlock);
89
90 static int is_hypersparc;
91
92 static int srmmu_cache_pagetables;
93
94 /* these will be initialized in srmmu_nocache_calcsize() */
95 static unsigned long srmmu_nocache_size;
96 static unsigned long srmmu_nocache_end;
97
98 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
99 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
100
101 /* The context table is a nocache user with the biggest alignment needs. */
102 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
103
104 void *srmmu_nocache_pool;
105 void *srmmu_nocache_bitmap;
106 static struct bit_map srmmu_nocache_map;
107
108 static inline int srmmu_pmd_none(pmd_t pmd)
109 { return !(pmd_val(pmd) & 0xFFFFFFF); }
110
111 /* XXX should we hyper_flush_whole_icache here - Anton */
112 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
113 { set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
114
115 void pmd_set(pmd_t *pmdp, pte_t *ptep)
116 {
117 unsigned long ptp; /* Physical address, shifted right by 4 */
118 int i;
119
120 ptp = __nocache_pa((unsigned long) ptep) >> 4;
121 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
122 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
123 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
124 }
125 }
126
127 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
128 {
129 unsigned long ptp; /* Physical address, shifted right by 4 */
130 int i;
131
132 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
133 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
134 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
135 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
136 }
137 }
138
139 /* Find an entry in the third-level page table.. */
140 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
141 {
142 void *pte;
143
144 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
145 return (pte_t *) pte +
146 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
147 }
148
149 /*
150 * size: bytes to allocate in the nocache area.
151 * align: bytes, number to align at.
152 * Returns the virtual address of the allocated area.
153 */
154 static void *__srmmu_get_nocache(int size, int align)
155 {
156 int offset;
157 unsigned long addr;
158
159 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
160 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
161 size);
162 size = SRMMU_NOCACHE_BITMAP_SHIFT;
163 }
164 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
165 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
166 size);
167 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
168 }
169 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
170
171 offset = bit_map_string_get(&srmmu_nocache_map,
172 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
173 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
174 if (offset == -1) {
175 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
176 size, (int) srmmu_nocache_size,
177 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
178 return 0;
179 }
180
181 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
182 return (void *)addr;
183 }
184
185 void *srmmu_get_nocache(int size, int align)
186 {
187 void *tmp;
188
189 tmp = __srmmu_get_nocache(size, align);
190
191 if (tmp)
192 memset(tmp, 0, size);
193
194 return tmp;
195 }
196
197 void srmmu_free_nocache(void *addr, int size)
198 {
199 unsigned long vaddr;
200 int offset;
201
202 vaddr = (unsigned long)addr;
203 if (vaddr < SRMMU_NOCACHE_VADDR) {
204 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
205 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
206 BUG();
207 }
208 if (vaddr + size > srmmu_nocache_end) {
209 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
210 vaddr, srmmu_nocache_end);
211 BUG();
212 }
213 if (!is_power_of_2(size)) {
214 printk("Size 0x%x is not a power of 2\n", size);
215 BUG();
216 }
217 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
218 printk("Size 0x%x is too small\n", size);
219 BUG();
220 }
221 if (vaddr & (size - 1)) {
222 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
223 BUG();
224 }
225
226 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
227 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
228
229 bit_map_clear(&srmmu_nocache_map, offset, size);
230 }
231
232 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
233 unsigned long end);
234
235 extern unsigned long probe_memory(void); /* in fault.c */
236
237 /*
238 * Reserve nocache dynamically proportionally to the amount of
239 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
240 */
241 static void __init srmmu_nocache_calcsize(void)
242 {
243 unsigned long sysmemavail = probe_memory() / 1024;
244 int srmmu_nocache_npages;
245
246 srmmu_nocache_npages =
247 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
248
249 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
250 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
251 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
252 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
253
254 /* anything above 1280 blows up */
255 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
256 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
257
258 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
259 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
260 }
261
262 static void __init srmmu_nocache_init(void)
263 {
264 unsigned int bitmap_bits;
265 pgd_t *pgd;
266 pmd_t *pmd;
267 pte_t *pte;
268 unsigned long paddr, vaddr;
269 unsigned long pteval;
270
271 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
272
273 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
274 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
275 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
276
277 srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
278 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
279
280 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
281 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
282 init_mm.pgd = srmmu_swapper_pg_dir;
283
284 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
285
286 paddr = __pa((unsigned long)srmmu_nocache_pool);
287 vaddr = SRMMU_NOCACHE_VADDR;
288
289 while (vaddr < srmmu_nocache_end) {
290 pgd = pgd_offset_k(vaddr);
291 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
292 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
293
294 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
295
296 if (srmmu_cache_pagetables)
297 pteval |= SRMMU_CACHE;
298
299 set_pte(__nocache_fix(pte), __pte(pteval));
300
301 vaddr += PAGE_SIZE;
302 paddr += PAGE_SIZE;
303 }
304
305 flush_cache_all();
306 flush_tlb_all();
307 }
308
309 pgd_t *get_pgd_fast(void)
310 {
311 pgd_t *pgd = NULL;
312
313 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
314 if (pgd) {
315 pgd_t *init = pgd_offset_k(0);
316 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
317 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
318 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
319 }
320
321 return pgd;
322 }
323
324 /*
325 * Hardware needs alignment to 256 only, but we align to whole page size
326 * to reduce fragmentation problems due to the buddy principle.
327 * XXX Provide actual fragmentation statistics in /proc.
328 *
329 * Alignments up to the page size are the same for physical and virtual
330 * addresses of the nocache area.
331 */
332 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
333 {
334 unsigned long pte;
335 struct page *page;
336
337 if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
338 return NULL;
339 page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
340 pgtable_page_ctor(page);
341 return page;
342 }
343
344 void pte_free(struct mm_struct *mm, pgtable_t pte)
345 {
346 unsigned long p;
347
348 pgtable_page_dtor(pte);
349 p = (unsigned long)page_address(pte); /* Cached address (for test) */
350 if (p == 0)
351 BUG();
352 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
353
354 /* free non cached virtual address*/
355 srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
356 }
357
358 /*
359 */
360 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
361 {
362 struct ctx_list *ctxp;
363
364 ctxp = ctx_free.next;
365 if (ctxp != &ctx_free) {
366 remove_from_ctx_list(ctxp);
367 add_to_used_ctxlist(ctxp);
368 mm->context = ctxp->ctx_number;
369 ctxp->ctx_mm = mm;
370 return;
371 }
372 ctxp = ctx_used.next;
373 if (ctxp->ctx_mm == old_mm)
374 ctxp = ctxp->next;
375 if (ctxp == &ctx_used)
376 panic("out of mmu contexts");
377 flush_cache_mm(ctxp->ctx_mm);
378 flush_tlb_mm(ctxp->ctx_mm);
379 remove_from_ctx_list(ctxp);
380 add_to_used_ctxlist(ctxp);
381 ctxp->ctx_mm->context = NO_CONTEXT;
382 ctxp->ctx_mm = mm;
383 mm->context = ctxp->ctx_number;
384 }
385
386 static inline void free_context(int context)
387 {
388 struct ctx_list *ctx_old;
389
390 ctx_old = ctx_list_pool + context;
391 remove_from_ctx_list(ctx_old);
392 add_to_free_ctxlist(ctx_old);
393 }
394
395
396 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
397 struct task_struct *tsk)
398 {
399 if (mm->context == NO_CONTEXT) {
400 spin_lock(&srmmu_context_spinlock);
401 alloc_context(old_mm, mm);
402 spin_unlock(&srmmu_context_spinlock);
403 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
404 }
405
406 if (sparc_cpu_model == sparc_leon)
407 leon_switch_mm();
408
409 if (is_hypersparc)
410 hyper_flush_whole_icache();
411
412 srmmu_set_context(mm->context);
413 }
414
415 /* Low level IO area allocation on the SRMMU. */
416 static inline void srmmu_mapioaddr(unsigned long physaddr,
417 unsigned long virt_addr, int bus_type)
418 {
419 pgd_t *pgdp;
420 pmd_t *pmdp;
421 pte_t *ptep;
422 unsigned long tmp;
423
424 physaddr &= PAGE_MASK;
425 pgdp = pgd_offset_k(virt_addr);
426 pmdp = pmd_offset(pgdp, virt_addr);
427 ptep = pte_offset_kernel(pmdp, virt_addr);
428 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
429
430 /* I need to test whether this is consistent over all
431 * sun4m's. The bus_type represents the upper 4 bits of
432 * 36-bit physical address on the I/O space lines...
433 */
434 tmp |= (bus_type << 28);
435 tmp |= SRMMU_PRIV;
436 __flush_page_to_ram(virt_addr);
437 set_pte(ptep, __pte(tmp));
438 }
439
440 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
441 unsigned long xva, unsigned int len)
442 {
443 while (len != 0) {
444 len -= PAGE_SIZE;
445 srmmu_mapioaddr(xpa, xva, bus);
446 xva += PAGE_SIZE;
447 xpa += PAGE_SIZE;
448 }
449 flush_tlb_all();
450 }
451
452 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
453 {
454 pgd_t *pgdp;
455 pmd_t *pmdp;
456 pte_t *ptep;
457
458 pgdp = pgd_offset_k(virt_addr);
459 pmdp = pmd_offset(pgdp, virt_addr);
460 ptep = pte_offset_kernel(pmdp, virt_addr);
461
462 /* No need to flush uncacheable page. */
463 __pte_clear(ptep);
464 }
465
466 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
467 {
468 while (len != 0) {
469 len -= PAGE_SIZE;
470 srmmu_unmapioaddr(virt_addr);
471 virt_addr += PAGE_SIZE;
472 }
473 flush_tlb_all();
474 }
475
476 /* tsunami.S */
477 extern void tsunami_flush_cache_all(void);
478 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
479 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
480 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
481 extern void tsunami_flush_page_to_ram(unsigned long page);
482 extern void tsunami_flush_page_for_dma(unsigned long page);
483 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
484 extern void tsunami_flush_tlb_all(void);
485 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
486 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
487 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
488 extern void tsunami_setup_blockops(void);
489
490 /* swift.S */
491 extern void swift_flush_cache_all(void);
492 extern void swift_flush_cache_mm(struct mm_struct *mm);
493 extern void swift_flush_cache_range(struct vm_area_struct *vma,
494 unsigned long start, unsigned long end);
495 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
496 extern void swift_flush_page_to_ram(unsigned long page);
497 extern void swift_flush_page_for_dma(unsigned long page);
498 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
499 extern void swift_flush_tlb_all(void);
500 extern void swift_flush_tlb_mm(struct mm_struct *mm);
501 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
502 unsigned long start, unsigned long end);
503 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
504
505 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
506 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
507 {
508 int cctx, ctx1;
509
510 page &= PAGE_MASK;
511 if ((ctx1 = vma->vm_mm->context) != -1) {
512 cctx = srmmu_get_context();
513 /* Is context # ever different from current context? P3 */
514 if (cctx != ctx1) {
515 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
516 srmmu_set_context(ctx1);
517 swift_flush_page(page);
518 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
519 "r" (page), "i" (ASI_M_FLUSH_PROBE));
520 srmmu_set_context(cctx);
521 } else {
522 /* Rm. prot. bits from virt. c. */
523 /* swift_flush_cache_all(); */
524 /* swift_flush_cache_page(vma, page); */
525 swift_flush_page(page);
526
527 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
528 "r" (page), "i" (ASI_M_FLUSH_PROBE));
529 /* same as above: srmmu_flush_tlb_page() */
530 }
531 }
532 }
533 #endif
534
535 /*
536 * The following are all MBUS based SRMMU modules, and therefore could
537 * be found in a multiprocessor configuration. On the whole, these
538 * chips seems to be much more touchy about DVMA and page tables
539 * with respect to cache coherency.
540 */
541
542 /* viking.S */
543 extern void viking_flush_cache_all(void);
544 extern void viking_flush_cache_mm(struct mm_struct *mm);
545 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
546 unsigned long end);
547 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
548 extern void viking_flush_page_to_ram(unsigned long page);
549 extern void viking_flush_page_for_dma(unsigned long page);
550 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
551 extern void viking_flush_page(unsigned long page);
552 extern void viking_mxcc_flush_page(unsigned long page);
553 extern void viking_flush_tlb_all(void);
554 extern void viking_flush_tlb_mm(struct mm_struct *mm);
555 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
556 unsigned long end);
557 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
558 unsigned long page);
559 extern void sun4dsmp_flush_tlb_all(void);
560 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
561 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
562 unsigned long end);
563 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
564 unsigned long page);
565
566 /* hypersparc.S */
567 extern void hypersparc_flush_cache_all(void);
568 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
569 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
570 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
571 extern void hypersparc_flush_page_to_ram(unsigned long page);
572 extern void hypersparc_flush_page_for_dma(unsigned long page);
573 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
574 extern void hypersparc_flush_tlb_all(void);
575 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
576 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
577 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
578 extern void hypersparc_setup_blockops(void);
579
580 /*
581 * NOTE: All of this startup code assumes the low 16mb (approx.) of
582 * kernel mappings are done with one single contiguous chunk of
583 * ram. On small ram machines (classics mainly) we only get
584 * around 8mb mapped for us.
585 */
586
587 static void __init early_pgtable_allocfail(char *type)
588 {
589 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
590 prom_halt();
591 }
592
593 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
594 unsigned long end)
595 {
596 pgd_t *pgdp;
597 pmd_t *pmdp;
598 pte_t *ptep;
599
600 while (start < end) {
601 pgdp = pgd_offset_k(start);
602 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
603 pmdp = __srmmu_get_nocache(
604 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
605 if (pmdp == NULL)
606 early_pgtable_allocfail("pmd");
607 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
608 pgd_set(__nocache_fix(pgdp), pmdp);
609 }
610 pmdp = pmd_offset(__nocache_fix(pgdp), start);
611 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
612 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
613 if (ptep == NULL)
614 early_pgtable_allocfail("pte");
615 memset(__nocache_fix(ptep), 0, PTE_SIZE);
616 pmd_set(__nocache_fix(pmdp), ptep);
617 }
618 if (start > (0xffffffffUL - PMD_SIZE))
619 break;
620 start = (start + PMD_SIZE) & PMD_MASK;
621 }
622 }
623
624 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
625 unsigned long end)
626 {
627 pgd_t *pgdp;
628 pmd_t *pmdp;
629 pte_t *ptep;
630
631 while (start < end) {
632 pgdp = pgd_offset_k(start);
633 if (pgd_none(*pgdp)) {
634 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
635 if (pmdp == NULL)
636 early_pgtable_allocfail("pmd");
637 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
638 pgd_set(pgdp, pmdp);
639 }
640 pmdp = pmd_offset(pgdp, start);
641 if (srmmu_pmd_none(*pmdp)) {
642 ptep = __srmmu_get_nocache(PTE_SIZE,
643 PTE_SIZE);
644 if (ptep == NULL)
645 early_pgtable_allocfail("pte");
646 memset(ptep, 0, PTE_SIZE);
647 pmd_set(pmdp, ptep);
648 }
649 if (start > (0xffffffffUL - PMD_SIZE))
650 break;
651 start = (start + PMD_SIZE) & PMD_MASK;
652 }
653 }
654
655 /* These flush types are not available on all chips... */
656 static inline unsigned long srmmu_probe(unsigned long vaddr)
657 {
658 unsigned long retval;
659
660 if (sparc_cpu_model != sparc_leon) {
661
662 vaddr &= PAGE_MASK;
663 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
664 "=r" (retval) :
665 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
666 } else {
667 retval = leon_swprobe(vaddr, 0);
668 }
669 return retval;
670 }
671
672 /*
673 * This is much cleaner than poking around physical address space
674 * looking at the prom's page table directly which is what most
675 * other OS's do. Yuck... this is much better.
676 */
677 static void __init srmmu_inherit_prom_mappings(unsigned long start,
678 unsigned long end)
679 {
680 unsigned long probed;
681 unsigned long addr;
682 pgd_t *pgdp;
683 pmd_t *pmdp;
684 pte_t *ptep;
685 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
686
687 while (start <= end) {
688 if (start == 0)
689 break; /* probably wrap around */
690 if (start == 0xfef00000)
691 start = KADB_DEBUGGER_BEGVM;
692 probed = srmmu_probe(start);
693 if (!probed) {
694 /* continue probing until we find an entry */
695 start += PAGE_SIZE;
696 continue;
697 }
698
699 /* A red snapper, see what it really is. */
700 what = 0;
701 addr = start - PAGE_SIZE;
702
703 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
704 if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
705 what = 1;
706 }
707
708 if (!(start & ~(SRMMU_PGDIR_MASK))) {
709 if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
710 what = 2;
711 }
712
713 pgdp = pgd_offset_k(start);
714 if (what == 2) {
715 *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
716 start += SRMMU_PGDIR_SIZE;
717 continue;
718 }
719 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
720 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
721 SRMMU_PMD_TABLE_SIZE);
722 if (pmdp == NULL)
723 early_pgtable_allocfail("pmd");
724 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
725 pgd_set(__nocache_fix(pgdp), pmdp);
726 }
727 pmdp = pmd_offset(__nocache_fix(pgdp), start);
728 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
729 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
730 if (ptep == NULL)
731 early_pgtable_allocfail("pte");
732 memset(__nocache_fix(ptep), 0, PTE_SIZE);
733 pmd_set(__nocache_fix(pmdp), ptep);
734 }
735 if (what == 1) {
736 /* We bend the rule where all 16 PTPs in a pmd_t point
737 * inside the same PTE page, and we leak a perfectly
738 * good hardware PTE piece. Alternatives seem worse.
739 */
740 unsigned int x; /* Index of HW PMD in soft cluster */
741 unsigned long *val;
742 x = (start >> PMD_SHIFT) & 15;
743 val = &pmdp->pmdv[x];
744 *(unsigned long *)__nocache_fix(val) = probed;
745 start += SRMMU_REAL_PMD_SIZE;
746 continue;
747 }
748 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
749 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
750 start += PAGE_SIZE;
751 }
752 }
753
754 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
755
756 /* Create a third-level SRMMU 16MB page mapping. */
757 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
758 {
759 pgd_t *pgdp = pgd_offset_k(vaddr);
760 unsigned long big_pte;
761
762 big_pte = KERNEL_PTE(phys_base >> 4);
763 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
764 }
765
766 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
767 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
768 {
769 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
770 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
771 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
772 /* Map "low" memory only */
773 const unsigned long min_vaddr = PAGE_OFFSET;
774 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
775
776 if (vstart < min_vaddr || vstart >= max_vaddr)
777 return vstart;
778
779 if (vend > max_vaddr || vend < min_vaddr)
780 vend = max_vaddr;
781
782 while (vstart < vend) {
783 do_large_mapping(vstart, pstart);
784 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
785 }
786 return vstart;
787 }
788
789 static void __init map_kernel(void)
790 {
791 int i;
792
793 if (phys_base > 0) {
794 do_large_mapping(PAGE_OFFSET, phys_base);
795 }
796
797 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
798 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
799 }
800 }
801
802 /* Paging initialization on the Sparc Reference MMU. */
803 extern void sparc_context_init(int);
804
805 void (*poke_srmmu)(void) __cpuinitdata = NULL;
806
807 extern unsigned long bootmem_init(unsigned long *pages_avail);
808
809 void __init srmmu_paging_init(void)
810 {
811 int i;
812 phandle cpunode;
813 char node_str[128];
814 pgd_t *pgd;
815 pmd_t *pmd;
816 pte_t *pte;
817 unsigned long pages_avail;
818
819 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
820
821 if (sparc_cpu_model == sun4d)
822 num_contexts = 65536; /* We know it is Viking */
823 else {
824 /* Find the number of contexts on the srmmu. */
825 cpunode = prom_getchild(prom_root_node);
826 num_contexts = 0;
827 while (cpunode != 0) {
828 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
829 if (!strcmp(node_str, "cpu")) {
830 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
831 break;
832 }
833 cpunode = prom_getsibling(cpunode);
834 }
835 }
836
837 if (!num_contexts) {
838 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
839 prom_halt();
840 }
841
842 pages_avail = 0;
843 last_valid_pfn = bootmem_init(&pages_avail);
844
845 srmmu_nocache_calcsize();
846 srmmu_nocache_init();
847 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
848 map_kernel();
849
850 /* ctx table has to be physically aligned to its size */
851 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
852 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
853
854 for (i = 0; i < num_contexts; i++)
855 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
856
857 flush_cache_all();
858 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
859 #ifdef CONFIG_SMP
860 /* Stop from hanging here... */
861 local_ops->tlb_all();
862 #else
863 flush_tlb_all();
864 #endif
865 poke_srmmu();
866
867 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
868 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
869
870 srmmu_allocate_ptable_skeleton(
871 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
872 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
873
874 pgd = pgd_offset_k(PKMAP_BASE);
875 pmd = pmd_offset(pgd, PKMAP_BASE);
876 pte = pte_offset_kernel(pmd, PKMAP_BASE);
877 pkmap_page_table = pte;
878
879 flush_cache_all();
880 flush_tlb_all();
881
882 sparc_context_init(num_contexts);
883
884 kmap_init();
885
886 {
887 unsigned long zones_size[MAX_NR_ZONES];
888 unsigned long zholes_size[MAX_NR_ZONES];
889 unsigned long npages;
890 int znum;
891
892 for (znum = 0; znum < MAX_NR_ZONES; znum++)
893 zones_size[znum] = zholes_size[znum] = 0;
894
895 npages = max_low_pfn - pfn_base;
896
897 zones_size[ZONE_DMA] = npages;
898 zholes_size[ZONE_DMA] = npages - pages_avail;
899
900 npages = highend_pfn - max_low_pfn;
901 zones_size[ZONE_HIGHMEM] = npages;
902 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
903
904 free_area_init_node(0, zones_size, pfn_base, zholes_size);
905 }
906 }
907
908 void mmu_info(struct seq_file *m)
909 {
910 seq_printf(m,
911 "MMU type\t: %s\n"
912 "contexts\t: %d\n"
913 "nocache total\t: %ld\n"
914 "nocache used\t: %d\n",
915 srmmu_name,
916 num_contexts,
917 srmmu_nocache_size,
918 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
919 }
920
921 void destroy_context(struct mm_struct *mm)
922 {
923
924 if (mm->context != NO_CONTEXT) {
925 flush_cache_mm(mm);
926 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
927 flush_tlb_mm(mm);
928 spin_lock(&srmmu_context_spinlock);
929 free_context(mm->context);
930 spin_unlock(&srmmu_context_spinlock);
931 mm->context = NO_CONTEXT;
932 }
933 }
934
935 /* Init various srmmu chip types. */
936 static void __init srmmu_is_bad(void)
937 {
938 prom_printf("Could not determine SRMMU chip type.\n");
939 prom_halt();
940 }
941
942 static void __init init_vac_layout(void)
943 {
944 phandle nd;
945 int cache_lines;
946 char node_str[128];
947 #ifdef CONFIG_SMP
948 int cpu = 0;
949 unsigned long max_size = 0;
950 unsigned long min_line_size = 0x10000000;
951 #endif
952
953 nd = prom_getchild(prom_root_node);
954 while ((nd = prom_getsibling(nd)) != 0) {
955 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
956 if (!strcmp(node_str, "cpu")) {
957 vac_line_size = prom_getint(nd, "cache-line-size");
958 if (vac_line_size == -1) {
959 prom_printf("can't determine cache-line-size, halting.\n");
960 prom_halt();
961 }
962 cache_lines = prom_getint(nd, "cache-nlines");
963 if (cache_lines == -1) {
964 prom_printf("can't determine cache-nlines, halting.\n");
965 prom_halt();
966 }
967
968 vac_cache_size = cache_lines * vac_line_size;
969 #ifdef CONFIG_SMP
970 if (vac_cache_size > max_size)
971 max_size = vac_cache_size;
972 if (vac_line_size < min_line_size)
973 min_line_size = vac_line_size;
974 //FIXME: cpus not contiguous!!
975 cpu++;
976 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
977 break;
978 #else
979 break;
980 #endif
981 }
982 }
983 if (nd == 0) {
984 prom_printf("No CPU nodes found, halting.\n");
985 prom_halt();
986 }
987 #ifdef CONFIG_SMP
988 vac_cache_size = max_size;
989 vac_line_size = min_line_size;
990 #endif
991 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
992 (int)vac_cache_size, (int)vac_line_size);
993 }
994
995 static void __cpuinit poke_hypersparc(void)
996 {
997 volatile unsigned long clear;
998 unsigned long mreg = srmmu_get_mmureg();
999
1000 hyper_flush_unconditional_combined();
1001
1002 mreg &= ~(HYPERSPARC_CWENABLE);
1003 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1004 mreg |= (HYPERSPARC_CMODE);
1005
1006 srmmu_set_mmureg(mreg);
1007
1008 #if 0 /* XXX I think this is bad news... -DaveM */
1009 hyper_clear_all_tags();
1010 #endif
1011
1012 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1013 hyper_flush_whole_icache();
1014 clear = srmmu_get_faddr();
1015 clear = srmmu_get_fstatus();
1016 }
1017
1018 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1019 .cache_all = hypersparc_flush_cache_all,
1020 .cache_mm = hypersparc_flush_cache_mm,
1021 .cache_page = hypersparc_flush_cache_page,
1022 .cache_range = hypersparc_flush_cache_range,
1023 .tlb_all = hypersparc_flush_tlb_all,
1024 .tlb_mm = hypersparc_flush_tlb_mm,
1025 .tlb_page = hypersparc_flush_tlb_page,
1026 .tlb_range = hypersparc_flush_tlb_range,
1027 .page_to_ram = hypersparc_flush_page_to_ram,
1028 .sig_insns = hypersparc_flush_sig_insns,
1029 .page_for_dma = hypersparc_flush_page_for_dma,
1030 };
1031
1032 static void __init init_hypersparc(void)
1033 {
1034 srmmu_name = "ROSS HyperSparc";
1035 srmmu_modtype = HyperSparc;
1036
1037 init_vac_layout();
1038
1039 is_hypersparc = 1;
1040 sparc32_cachetlb_ops = &hypersparc_ops;
1041
1042 poke_srmmu = poke_hypersparc;
1043
1044 hypersparc_setup_blockops();
1045 }
1046
1047 static void __cpuinit poke_swift(void)
1048 {
1049 unsigned long mreg;
1050
1051 /* Clear any crap from the cache or else... */
1052 swift_flush_cache_all();
1053
1054 /* Enable I & D caches */
1055 mreg = srmmu_get_mmureg();
1056 mreg |= (SWIFT_IE | SWIFT_DE);
1057 /*
1058 * The Swift branch folding logic is completely broken. At
1059 * trap time, if things are just right, if can mistakenly
1060 * think that a trap is coming from kernel mode when in fact
1061 * it is coming from user mode (it mis-executes the branch in
1062 * the trap code). So you see things like crashme completely
1063 * hosing your machine which is completely unacceptable. Turn
1064 * this shit off... nice job Fujitsu.
1065 */
1066 mreg &= ~(SWIFT_BF);
1067 srmmu_set_mmureg(mreg);
1068 }
1069
1070 static const struct sparc32_cachetlb_ops swift_ops = {
1071 .cache_all = swift_flush_cache_all,
1072 .cache_mm = swift_flush_cache_mm,
1073 .cache_page = swift_flush_cache_page,
1074 .cache_range = swift_flush_cache_range,
1075 .tlb_all = swift_flush_tlb_all,
1076 .tlb_mm = swift_flush_tlb_mm,
1077 .tlb_page = swift_flush_tlb_page,
1078 .tlb_range = swift_flush_tlb_range,
1079 .page_to_ram = swift_flush_page_to_ram,
1080 .sig_insns = swift_flush_sig_insns,
1081 .page_for_dma = swift_flush_page_for_dma,
1082 };
1083
1084 #define SWIFT_MASKID_ADDR 0x10003018
1085 static void __init init_swift(void)
1086 {
1087 unsigned long swift_rev;
1088
1089 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1090 "srl %0, 0x18, %0\n\t" :
1091 "=r" (swift_rev) :
1092 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1093 srmmu_name = "Fujitsu Swift";
1094 switch (swift_rev) {
1095 case 0x11:
1096 case 0x20:
1097 case 0x23:
1098 case 0x30:
1099 srmmu_modtype = Swift_lots_o_bugs;
1100 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1101 /*
1102 * Gee george, I wonder why Sun is so hush hush about
1103 * this hardware bug... really braindamage stuff going
1104 * on here. However I think we can find a way to avoid
1105 * all of the workaround overhead under Linux. Basically,
1106 * any page fault can cause kernel pages to become user
1107 * accessible (the mmu gets confused and clears some of
1108 * the ACC bits in kernel ptes). Aha, sounds pretty
1109 * horrible eh? But wait, after extensive testing it appears
1110 * that if you use pgd_t level large kernel pte's (like the
1111 * 4MB pages on the Pentium) the bug does not get tripped
1112 * at all. This avoids almost all of the major overhead.
1113 * Welcome to a world where your vendor tells you to,
1114 * "apply this kernel patch" instead of "sorry for the
1115 * broken hardware, send it back and we'll give you
1116 * properly functioning parts"
1117 */
1118 break;
1119 case 0x25:
1120 case 0x31:
1121 srmmu_modtype = Swift_bad_c;
1122 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1123 /*
1124 * You see Sun allude to this hardware bug but never
1125 * admit things directly, they'll say things like,
1126 * "the Swift chip cache problems" or similar.
1127 */
1128 break;
1129 default:
1130 srmmu_modtype = Swift_ok;
1131 break;
1132 }
1133
1134 sparc32_cachetlb_ops = &swift_ops;
1135 flush_page_for_dma_global = 0;
1136
1137 /*
1138 * Are you now convinced that the Swift is one of the
1139 * biggest VLSI abortions of all time? Bravo Fujitsu!
1140 * Fujitsu, the !#?!%$'d up processor people. I bet if
1141 * you examined the microcode of the Swift you'd find
1142 * XXX's all over the place.
1143 */
1144 poke_srmmu = poke_swift;
1145 }
1146
1147 static void turbosparc_flush_cache_all(void)
1148 {
1149 flush_user_windows();
1150 turbosparc_idflash_clear();
1151 }
1152
1153 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1154 {
1155 FLUSH_BEGIN(mm)
1156 flush_user_windows();
1157 turbosparc_idflash_clear();
1158 FLUSH_END
1159 }
1160
1161 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1162 {
1163 FLUSH_BEGIN(vma->vm_mm)
1164 flush_user_windows();
1165 turbosparc_idflash_clear();
1166 FLUSH_END
1167 }
1168
1169 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1170 {
1171 FLUSH_BEGIN(vma->vm_mm)
1172 flush_user_windows();
1173 if (vma->vm_flags & VM_EXEC)
1174 turbosparc_flush_icache();
1175 turbosparc_flush_dcache();
1176 FLUSH_END
1177 }
1178
1179 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1180 static void turbosparc_flush_page_to_ram(unsigned long page)
1181 {
1182 #ifdef TURBOSPARC_WRITEBACK
1183 volatile unsigned long clear;
1184
1185 if (srmmu_probe(page))
1186 turbosparc_flush_page_cache(page);
1187 clear = srmmu_get_fstatus();
1188 #endif
1189 }
1190
1191 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1192 {
1193 }
1194
1195 static void turbosparc_flush_page_for_dma(unsigned long page)
1196 {
1197 turbosparc_flush_dcache();
1198 }
1199
1200 static void turbosparc_flush_tlb_all(void)
1201 {
1202 srmmu_flush_whole_tlb();
1203 }
1204
1205 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1206 {
1207 FLUSH_BEGIN(mm)
1208 srmmu_flush_whole_tlb();
1209 FLUSH_END
1210 }
1211
1212 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1213 {
1214 FLUSH_BEGIN(vma->vm_mm)
1215 srmmu_flush_whole_tlb();
1216 FLUSH_END
1217 }
1218
1219 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1220 {
1221 FLUSH_BEGIN(vma->vm_mm)
1222 srmmu_flush_whole_tlb();
1223 FLUSH_END
1224 }
1225
1226
1227 static void __cpuinit poke_turbosparc(void)
1228 {
1229 unsigned long mreg = srmmu_get_mmureg();
1230 unsigned long ccreg;
1231
1232 /* Clear any crap from the cache or else... */
1233 turbosparc_flush_cache_all();
1234 /* Temporarily disable I & D caches */
1235 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1236 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1237 srmmu_set_mmureg(mreg);
1238
1239 ccreg = turbosparc_get_ccreg();
1240
1241 #ifdef TURBOSPARC_WRITEBACK
1242 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1243 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1244 /* Write-back D-cache, emulate VLSI
1245 * abortion number three, not number one */
1246 #else
1247 /* For now let's play safe, optimize later */
1248 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1249 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1250 ccreg &= ~(TURBOSPARC_uS2);
1251 /* Emulate VLSI abortion number three, not number one */
1252 #endif
1253
1254 switch (ccreg & 7) {
1255 case 0: /* No SE cache */
1256 case 7: /* Test mode */
1257 break;
1258 default:
1259 ccreg |= (TURBOSPARC_SCENABLE);
1260 }
1261 turbosparc_set_ccreg(ccreg);
1262
1263 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1264 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1265 srmmu_set_mmureg(mreg);
1266 }
1267
1268 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1269 .cache_all = turbosparc_flush_cache_all,
1270 .cache_mm = turbosparc_flush_cache_mm,
1271 .cache_page = turbosparc_flush_cache_page,
1272 .cache_range = turbosparc_flush_cache_range,
1273 .tlb_all = turbosparc_flush_tlb_all,
1274 .tlb_mm = turbosparc_flush_tlb_mm,
1275 .tlb_page = turbosparc_flush_tlb_page,
1276 .tlb_range = turbosparc_flush_tlb_range,
1277 .page_to_ram = turbosparc_flush_page_to_ram,
1278 .sig_insns = turbosparc_flush_sig_insns,
1279 .page_for_dma = turbosparc_flush_page_for_dma,
1280 };
1281
1282 static void __init init_turbosparc(void)
1283 {
1284 srmmu_name = "Fujitsu TurboSparc";
1285 srmmu_modtype = TurboSparc;
1286 sparc32_cachetlb_ops = &turbosparc_ops;
1287 poke_srmmu = poke_turbosparc;
1288 }
1289
1290 static void __cpuinit poke_tsunami(void)
1291 {
1292 unsigned long mreg = srmmu_get_mmureg();
1293
1294 tsunami_flush_icache();
1295 tsunami_flush_dcache();
1296 mreg &= ~TSUNAMI_ITD;
1297 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1298 srmmu_set_mmureg(mreg);
1299 }
1300
1301 static const struct sparc32_cachetlb_ops tsunami_ops = {
1302 .cache_all = tsunami_flush_cache_all,
1303 .cache_mm = tsunami_flush_cache_mm,
1304 .cache_page = tsunami_flush_cache_page,
1305 .cache_range = tsunami_flush_cache_range,
1306 .tlb_all = tsunami_flush_tlb_all,
1307 .tlb_mm = tsunami_flush_tlb_mm,
1308 .tlb_page = tsunami_flush_tlb_page,
1309 .tlb_range = tsunami_flush_tlb_range,
1310 .page_to_ram = tsunami_flush_page_to_ram,
1311 .sig_insns = tsunami_flush_sig_insns,
1312 .page_for_dma = tsunami_flush_page_for_dma,
1313 };
1314
1315 static void __init init_tsunami(void)
1316 {
1317 /*
1318 * Tsunami's pretty sane, Sun and TI actually got it
1319 * somewhat right this time. Fujitsu should have
1320 * taken some lessons from them.
1321 */
1322
1323 srmmu_name = "TI Tsunami";
1324 srmmu_modtype = Tsunami;
1325 sparc32_cachetlb_ops = &tsunami_ops;
1326 poke_srmmu = poke_tsunami;
1327
1328 tsunami_setup_blockops();
1329 }
1330
1331 static void __cpuinit poke_viking(void)
1332 {
1333 unsigned long mreg = srmmu_get_mmureg();
1334 static int smp_catch;
1335
1336 if (viking_mxcc_present) {
1337 unsigned long mxcc_control = mxcc_get_creg();
1338
1339 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1340 mxcc_control &= ~(MXCC_CTL_RRC);
1341 mxcc_set_creg(mxcc_control);
1342
1343 /*
1344 * We don't need memory parity checks.
1345 * XXX This is a mess, have to dig out later. ecd.
1346 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1347 */
1348
1349 /* We do cache ptables on MXCC. */
1350 mreg |= VIKING_TCENABLE;
1351 } else {
1352 unsigned long bpreg;
1353
1354 mreg &= ~(VIKING_TCENABLE);
1355 if (smp_catch++) {
1356 /* Must disable mixed-cmd mode here for other cpu's. */
1357 bpreg = viking_get_bpreg();
1358 bpreg &= ~(VIKING_ACTION_MIX);
1359 viking_set_bpreg(bpreg);
1360
1361 /* Just in case PROM does something funny. */
1362 msi_set_sync();
1363 }
1364 }
1365
1366 mreg |= VIKING_SPENABLE;
1367 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1368 mreg |= VIKING_SBENABLE;
1369 mreg &= ~(VIKING_ACENABLE);
1370 srmmu_set_mmureg(mreg);
1371 }
1372
1373 static struct sparc32_cachetlb_ops viking_ops = {
1374 .cache_all = viking_flush_cache_all,
1375 .cache_mm = viking_flush_cache_mm,
1376 .cache_page = viking_flush_cache_page,
1377 .cache_range = viking_flush_cache_range,
1378 .tlb_all = viking_flush_tlb_all,
1379 .tlb_mm = viking_flush_tlb_mm,
1380 .tlb_page = viking_flush_tlb_page,
1381 .tlb_range = viking_flush_tlb_range,
1382 .page_to_ram = viking_flush_page_to_ram,
1383 .sig_insns = viking_flush_sig_insns,
1384 .page_for_dma = viking_flush_page_for_dma,
1385 };
1386
1387 #ifdef CONFIG_SMP
1388 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1389 * perform the local TLB flush and all the other cpus will see it.
1390 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1391 * that requires that we add some synchronization to these flushes.
1392 *
1393 * The bug is that the fifo which keeps track of all the pending TLB
1394 * broadcasts in the system is an entry or two too small, so if we
1395 * have too many going at once we'll overflow that fifo and lose a TLB
1396 * flush resulting in corruption.
1397 *
1398 * Our workaround is to take a global spinlock around the TLB flushes,
1399 * which guarentees we won't ever have too many pending. It's a big
1400 * hammer, but a semaphore like system to make sure we only have N TLB
1401 * flushes going at once will require SMP locking anyways so there's
1402 * no real value in trying any harder than this.
1403 */
1404 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1405 .cache_all = viking_flush_cache_all,
1406 .cache_mm = viking_flush_cache_mm,
1407 .cache_page = viking_flush_cache_page,
1408 .cache_range = viking_flush_cache_range,
1409 .tlb_all = sun4dsmp_flush_tlb_all,
1410 .tlb_mm = sun4dsmp_flush_tlb_mm,
1411 .tlb_page = sun4dsmp_flush_tlb_page,
1412 .tlb_range = sun4dsmp_flush_tlb_range,
1413 .page_to_ram = viking_flush_page_to_ram,
1414 .sig_insns = viking_flush_sig_insns,
1415 .page_for_dma = viking_flush_page_for_dma,
1416 };
1417 #endif
1418
1419 static void __init init_viking(void)
1420 {
1421 unsigned long mreg = srmmu_get_mmureg();
1422
1423 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1424 if (mreg & VIKING_MMODE) {
1425 srmmu_name = "TI Viking";
1426 viking_mxcc_present = 0;
1427 msi_set_sync();
1428
1429 /*
1430 * We need this to make sure old viking takes no hits
1431 * on it's cache for dma snoops to workaround the
1432 * "load from non-cacheable memory" interrupt bug.
1433 * This is only necessary because of the new way in
1434 * which we use the IOMMU.
1435 */
1436 viking_ops.page_for_dma = viking_flush_page;
1437 #ifdef CONFIG_SMP
1438 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1439 #endif
1440 flush_page_for_dma_global = 0;
1441 } else {
1442 srmmu_name = "TI Viking/MXCC";
1443 viking_mxcc_present = 1;
1444 srmmu_cache_pagetables = 1;
1445 }
1446
1447 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1448 &viking_ops;
1449 #ifdef CONFIG_SMP
1450 if (sparc_cpu_model == sun4d)
1451 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1452 &viking_sun4d_smp_ops;
1453 #endif
1454
1455 poke_srmmu = poke_viking;
1456 }
1457
1458 /* Probe for the srmmu chip version. */
1459 static void __init get_srmmu_type(void)
1460 {
1461 unsigned long mreg, psr;
1462 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1463
1464 srmmu_modtype = SRMMU_INVAL_MOD;
1465 hwbug_bitmask = 0;
1466
1467 mreg = srmmu_get_mmureg(); psr = get_psr();
1468 mod_typ = (mreg & 0xf0000000) >> 28;
1469 mod_rev = (mreg & 0x0f000000) >> 24;
1470 psr_typ = (psr >> 28) & 0xf;
1471 psr_vers = (psr >> 24) & 0xf;
1472
1473 /* First, check for sparc-leon. */
1474 if (sparc_cpu_model == sparc_leon) {
1475 init_leon();
1476 return;
1477 }
1478
1479 /* Second, check for HyperSparc or Cypress. */
1480 if (mod_typ == 1) {
1481 switch (mod_rev) {
1482 case 7:
1483 /* UP or MP Hypersparc */
1484 init_hypersparc();
1485 break;
1486 case 0:
1487 case 2:
1488 case 10:
1489 case 11:
1490 case 12:
1491 case 13:
1492 case 14:
1493 case 15:
1494 default:
1495 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1496 prom_halt();
1497 break;
1498 }
1499 return;
1500 }
1501
1502 /* Now Fujitsu TurboSparc. It might happen that it is
1503 * in Swift emulation mode, so we will check later...
1504 */
1505 if (psr_typ == 0 && psr_vers == 5) {
1506 init_turbosparc();
1507 return;
1508 }
1509
1510 /* Next check for Fujitsu Swift. */
1511 if (psr_typ == 0 && psr_vers == 4) {
1512 phandle cpunode;
1513 char node_str[128];
1514
1515 /* Look if it is not a TurboSparc emulating Swift... */
1516 cpunode = prom_getchild(prom_root_node);
1517 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1518 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1519 if (!strcmp(node_str, "cpu")) {
1520 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1521 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1522 init_turbosparc();
1523 return;
1524 }
1525 break;
1526 }
1527 }
1528
1529 init_swift();
1530 return;
1531 }
1532
1533 /* Now the Viking family of srmmu. */
1534 if (psr_typ == 4 &&
1535 ((psr_vers == 0) ||
1536 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1537 init_viking();
1538 return;
1539 }
1540
1541 /* Finally the Tsunami. */
1542 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1543 init_tsunami();
1544 return;
1545 }
1546
1547 /* Oh well */
1548 srmmu_is_bad();
1549 }
1550
1551 #ifdef CONFIG_SMP
1552 /* Local cross-calls. */
1553 static void smp_flush_page_for_dma(unsigned long page)
1554 {
1555 xc1((smpfunc_t) local_ops->page_for_dma, page);
1556 local_ops->page_for_dma(page);
1557 }
1558
1559 static void smp_flush_cache_all(void)
1560 {
1561 xc0((smpfunc_t) local_ops->cache_all);
1562 local_ops->cache_all();
1563 }
1564
1565 static void smp_flush_tlb_all(void)
1566 {
1567 xc0((smpfunc_t) local_ops->tlb_all);
1568 local_ops->tlb_all();
1569 }
1570
1571 static void smp_flush_cache_mm(struct mm_struct *mm)
1572 {
1573 if (mm->context != NO_CONTEXT) {
1574 cpumask_t cpu_mask;
1575 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1576 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1577 if (!cpumask_empty(&cpu_mask))
1578 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1579 local_ops->cache_mm(mm);
1580 }
1581 }
1582
1583 static void smp_flush_tlb_mm(struct mm_struct *mm)
1584 {
1585 if (mm->context != NO_CONTEXT) {
1586 cpumask_t cpu_mask;
1587 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1588 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1589 if (!cpumask_empty(&cpu_mask)) {
1590 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1591 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1592 cpumask_copy(mm_cpumask(mm),
1593 cpumask_of(smp_processor_id()));
1594 }
1595 local_ops->tlb_mm(mm);
1596 }
1597 }
1598
1599 static void smp_flush_cache_range(struct vm_area_struct *vma,
1600 unsigned long start,
1601 unsigned long end)
1602 {
1603 struct mm_struct *mm = vma->vm_mm;
1604
1605 if (mm->context != NO_CONTEXT) {
1606 cpumask_t cpu_mask;
1607 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1608 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1609 if (!cpumask_empty(&cpu_mask))
1610 xc3((smpfunc_t) local_ops->cache_range,
1611 (unsigned long) vma, start, end);
1612 local_ops->cache_range(vma, start, end);
1613 }
1614 }
1615
1616 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1617 unsigned long start,
1618 unsigned long end)
1619 {
1620 struct mm_struct *mm = vma->vm_mm;
1621
1622 if (mm->context != NO_CONTEXT) {
1623 cpumask_t cpu_mask;
1624 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1625 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1626 if (!cpumask_empty(&cpu_mask))
1627 xc3((smpfunc_t) local_ops->tlb_range,
1628 (unsigned long) vma, start, end);
1629 local_ops->tlb_range(vma, start, end);
1630 }
1631 }
1632
1633 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1634 {
1635 struct mm_struct *mm = vma->vm_mm;
1636
1637 if (mm->context != NO_CONTEXT) {
1638 cpumask_t cpu_mask;
1639 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1640 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1641 if (!cpumask_empty(&cpu_mask))
1642 xc2((smpfunc_t) local_ops->cache_page,
1643 (unsigned long) vma, page);
1644 local_ops->cache_page(vma, page);
1645 }
1646 }
1647
1648 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1649 {
1650 struct mm_struct *mm = vma->vm_mm;
1651
1652 if (mm->context != NO_CONTEXT) {
1653 cpumask_t cpu_mask;
1654 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1655 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1656 if (!cpumask_empty(&cpu_mask))
1657 xc2((smpfunc_t) local_ops->tlb_page,
1658 (unsigned long) vma, page);
1659 local_ops->tlb_page(vma, page);
1660 }
1661 }
1662
1663 static void smp_flush_page_to_ram(unsigned long page)
1664 {
1665 /* Current theory is that those who call this are the one's
1666 * who have just dirtied their cache with the pages contents
1667 * in kernel space, therefore we only run this on local cpu.
1668 *
1669 * XXX This experiment failed, research further... -DaveM
1670 */
1671 #if 1
1672 xc1((smpfunc_t) local_ops->page_to_ram, page);
1673 #endif
1674 local_ops->page_to_ram(page);
1675 }
1676
1677 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1678 {
1679 cpumask_t cpu_mask;
1680 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1681 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1682 if (!cpumask_empty(&cpu_mask))
1683 xc2((smpfunc_t) local_ops->sig_insns,
1684 (unsigned long) mm, insn_addr);
1685 local_ops->sig_insns(mm, insn_addr);
1686 }
1687
1688 static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1689 .cache_all = smp_flush_cache_all,
1690 .cache_mm = smp_flush_cache_mm,
1691 .cache_page = smp_flush_cache_page,
1692 .cache_range = smp_flush_cache_range,
1693 .tlb_all = smp_flush_tlb_all,
1694 .tlb_mm = smp_flush_tlb_mm,
1695 .tlb_page = smp_flush_tlb_page,
1696 .tlb_range = smp_flush_tlb_range,
1697 .page_to_ram = smp_flush_page_to_ram,
1698 .sig_insns = smp_flush_sig_insns,
1699 .page_for_dma = smp_flush_page_for_dma,
1700 };
1701 #endif
1702
1703 /* Load up routines and constants for sun4m and sun4d mmu */
1704 void __init load_mmu(void)
1705 {
1706 extern void ld_mmu_iommu(void);
1707 extern void ld_mmu_iounit(void);
1708
1709 /* Functions */
1710 get_srmmu_type();
1711
1712 #ifdef CONFIG_SMP
1713 /* El switcheroo... */
1714 local_ops = sparc32_cachetlb_ops;
1715
1716 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1717 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1718 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1719 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1720 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1721 }
1722
1723 if (poke_srmmu == poke_viking) {
1724 /* Avoid unnecessary cross calls. */
1725 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1726 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1727 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1728 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1729
1730 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1731 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1732 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1733 }
1734
1735 /* It really is const after this point. */
1736 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1737 &smp_cachetlb_ops;
1738 #endif
1739
1740 if (sparc_cpu_model == sun4d)
1741 ld_mmu_iounit();
1742 else
1743 ld_mmu_iommu();
1744 #ifdef CONFIG_SMP
1745 if (sparc_cpu_model == sun4d)
1746 sun4d_init_smp();
1747 else if (sparc_cpu_model == sparc_leon)
1748 leon_init_smp();
1749 else
1750 sun4m_init_smp();
1751 #endif
1752 }
This page took 0.067748 seconds and 4 git commands to generate.