sparc64: fix sparse warning in tsb.c
[deliverable/linux.git] / arch / sparc / mm / tsb.c
1 /* arch/sparc64/mm/tsb.c
2 *
3 * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/preempt.h>
8 #include <linux/slab.h>
9 #include <asm/page.h>
10 #include <asm/pgtable.h>
11 #include <asm/mmu_context.h>
12 #include <asm/setup.h>
13 #include <asm/tsb.h>
14 #include <asm/tlb.h>
15 #include <asm/oplib.h>
16
17 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
18
19 static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
20 {
21 vaddr >>= hash_shift;
22 return vaddr & (nentries - 1);
23 }
24
25 static inline int tag_compare(unsigned long tag, unsigned long vaddr)
26 {
27 return (tag == (vaddr >> 22));
28 }
29
30 /* TSB flushes need only occur on the processor initiating the address
31 * space modification, not on each cpu the address space has run on.
32 * Only the TLB flush needs that treatment.
33 */
34
35 void flush_tsb_kernel_range(unsigned long start, unsigned long end)
36 {
37 unsigned long v;
38
39 for (v = start; v < end; v += PAGE_SIZE) {
40 unsigned long hash = tsb_hash(v, PAGE_SHIFT,
41 KERNEL_TSB_NENTRIES);
42 struct tsb *ent = &swapper_tsb[hash];
43
44 if (tag_compare(ent->tag, v))
45 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
46 }
47 }
48
49 static void __flush_tsb_one_entry(unsigned long tsb, unsigned long v,
50 unsigned long hash_shift,
51 unsigned long nentries)
52 {
53 unsigned long tag, ent, hash;
54
55 v &= ~0x1UL;
56 hash = tsb_hash(v, hash_shift, nentries);
57 ent = tsb + (hash * sizeof(struct tsb));
58 tag = (v >> 22UL);
59
60 tsb_flush(ent, tag);
61 }
62
63 static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
64 unsigned long tsb, unsigned long nentries)
65 {
66 unsigned long i;
67
68 for (i = 0; i < tb->tlb_nr; i++)
69 __flush_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries);
70 }
71
72 void flush_tsb_user(struct tlb_batch *tb)
73 {
74 struct mm_struct *mm = tb->mm;
75 unsigned long nentries, base, flags;
76
77 spin_lock_irqsave(&mm->context.lock, flags);
78
79 base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
80 nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
81 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
82 base = __pa(base);
83 __flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
84
85 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
86 if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
87 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
88 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
89 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
90 base = __pa(base);
91 __flush_tsb_one(tb, REAL_HPAGE_SHIFT, base, nentries);
92 }
93 #endif
94 spin_unlock_irqrestore(&mm->context.lock, flags);
95 }
96
97 void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr)
98 {
99 unsigned long nentries, base, flags;
100
101 spin_lock_irqsave(&mm->context.lock, flags);
102
103 base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
104 nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
105 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
106 base = __pa(base);
107 __flush_tsb_one_entry(base, vaddr, PAGE_SHIFT, nentries);
108
109 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
110 if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
111 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
112 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
113 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
114 base = __pa(base);
115 __flush_tsb_one_entry(base, vaddr, REAL_HPAGE_SHIFT, nentries);
116 }
117 #endif
118 spin_unlock_irqrestore(&mm->context.lock, flags);
119 }
120
121 #define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K
122 #define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K
123
124 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
125 #define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB
126 #define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB
127 #endif
128
129 static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
130 {
131 unsigned long tsb_reg, base, tsb_paddr;
132 unsigned long page_sz, tte;
133
134 mm->context.tsb_block[tsb_idx].tsb_nentries =
135 tsb_bytes / sizeof(struct tsb);
136
137 base = TSBMAP_BASE;
138 tte = pgprot_val(PAGE_KERNEL_LOCKED);
139 tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
140 BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
141
142 /* Use the smallest page size that can map the whole TSB
143 * in one TLB entry.
144 */
145 switch (tsb_bytes) {
146 case 8192 << 0:
147 tsb_reg = 0x0UL;
148 #ifdef DCACHE_ALIASING_POSSIBLE
149 base += (tsb_paddr & 8192);
150 #endif
151 page_sz = 8192;
152 break;
153
154 case 8192 << 1:
155 tsb_reg = 0x1UL;
156 page_sz = 64 * 1024;
157 break;
158
159 case 8192 << 2:
160 tsb_reg = 0x2UL;
161 page_sz = 64 * 1024;
162 break;
163
164 case 8192 << 3:
165 tsb_reg = 0x3UL;
166 page_sz = 64 * 1024;
167 break;
168
169 case 8192 << 4:
170 tsb_reg = 0x4UL;
171 page_sz = 512 * 1024;
172 break;
173
174 case 8192 << 5:
175 tsb_reg = 0x5UL;
176 page_sz = 512 * 1024;
177 break;
178
179 case 8192 << 6:
180 tsb_reg = 0x6UL;
181 page_sz = 512 * 1024;
182 break;
183
184 case 8192 << 7:
185 tsb_reg = 0x7UL;
186 page_sz = 4 * 1024 * 1024;
187 break;
188
189 default:
190 printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
191 current->comm, current->pid, tsb_bytes);
192 do_exit(SIGSEGV);
193 }
194 tte |= pte_sz_bits(page_sz);
195
196 if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
197 /* Physical mapping, no locked TLB entry for TSB. */
198 tsb_reg |= tsb_paddr;
199
200 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
201 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
202 mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
203 } else {
204 tsb_reg |= base;
205 tsb_reg |= (tsb_paddr & (page_sz - 1UL));
206 tte |= (tsb_paddr & ~(page_sz - 1UL));
207
208 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
209 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
210 mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
211 }
212
213 /* Setup the Hypervisor TSB descriptor. */
214 if (tlb_type == hypervisor) {
215 struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
216
217 switch (tsb_idx) {
218 case MM_TSB_BASE:
219 hp->pgsz_idx = HV_PGSZ_IDX_BASE;
220 break;
221 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
222 case MM_TSB_HUGE:
223 hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
224 break;
225 #endif
226 default:
227 BUG();
228 }
229 hp->assoc = 1;
230 hp->num_ttes = tsb_bytes / 16;
231 hp->ctx_idx = 0;
232 switch (tsb_idx) {
233 case MM_TSB_BASE:
234 hp->pgsz_mask = HV_PGSZ_MASK_BASE;
235 break;
236 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
237 case MM_TSB_HUGE:
238 hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
239 break;
240 #endif
241 default:
242 BUG();
243 }
244 hp->tsb_base = tsb_paddr;
245 hp->resv = 0;
246 }
247 }
248
249 struct kmem_cache *pgtable_cache __read_mostly;
250
251 static struct kmem_cache *tsb_caches[8] __read_mostly;
252
253 static const char *tsb_cache_names[8] = {
254 "tsb_8KB",
255 "tsb_16KB",
256 "tsb_32KB",
257 "tsb_64KB",
258 "tsb_128KB",
259 "tsb_256KB",
260 "tsb_512KB",
261 "tsb_1MB",
262 };
263
264 void __init pgtable_cache_init(void)
265 {
266 unsigned long i;
267
268 pgtable_cache = kmem_cache_create("pgtable_cache",
269 PAGE_SIZE, PAGE_SIZE,
270 0,
271 _clear_page);
272 if (!pgtable_cache) {
273 prom_printf("pgtable_cache_init(): Could not create!\n");
274 prom_halt();
275 }
276
277 for (i = 0; i < ARRAY_SIZE(tsb_cache_names); i++) {
278 unsigned long size = 8192 << i;
279 const char *name = tsb_cache_names[i];
280
281 tsb_caches[i] = kmem_cache_create(name,
282 size, size,
283 0, NULL);
284 if (!tsb_caches[i]) {
285 prom_printf("Could not create %s cache\n", name);
286 prom_halt();
287 }
288 }
289 }
290
291 int sysctl_tsb_ratio = -2;
292
293 static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
294 {
295 unsigned long num_ents = (new_size / sizeof(struct tsb));
296
297 if (sysctl_tsb_ratio < 0)
298 return num_ents - (num_ents >> -sysctl_tsb_ratio);
299 else
300 return num_ents + (num_ents >> sysctl_tsb_ratio);
301 }
302
303 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
304 * do_sparc64_fault() invokes this routine to try and grow it.
305 *
306 * When we reach the maximum TSB size supported, we stick ~0UL into
307 * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
308 * will not trigger any longer.
309 *
310 * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
311 * of two. The TSB must be aligned to it's size, so f.e. a 512K TSB
312 * must be 512K aligned. It also must be physically contiguous, so we
313 * cannot use vmalloc().
314 *
315 * The idea here is to grow the TSB when the RSS of the process approaches
316 * the number of entries that the current TSB can hold at once. Currently,
317 * we trigger when the RSS hits 3/4 of the TSB capacity.
318 */
319 void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
320 {
321 unsigned long max_tsb_size = 1 * 1024 * 1024;
322 unsigned long new_size, old_size, flags;
323 struct tsb *old_tsb, *new_tsb;
324 unsigned long new_cache_index, old_cache_index;
325 unsigned long new_rss_limit;
326 gfp_t gfp_flags;
327
328 if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
329 max_tsb_size = (PAGE_SIZE << MAX_ORDER);
330
331 new_cache_index = 0;
332 for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
333 new_rss_limit = tsb_size_to_rss_limit(new_size);
334 if (new_rss_limit > rss)
335 break;
336 new_cache_index++;
337 }
338
339 if (new_size == max_tsb_size)
340 new_rss_limit = ~0UL;
341
342 retry_tsb_alloc:
343 gfp_flags = GFP_KERNEL;
344 if (new_size > (PAGE_SIZE * 2))
345 gfp_flags |= __GFP_NOWARN | __GFP_NORETRY;
346
347 new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
348 gfp_flags, numa_node_id());
349 if (unlikely(!new_tsb)) {
350 /* Not being able to fork due to a high-order TSB
351 * allocation failure is very bad behavior. Just back
352 * down to a 0-order allocation and force no TSB
353 * growing for this address space.
354 */
355 if (mm->context.tsb_block[tsb_index].tsb == NULL &&
356 new_cache_index > 0) {
357 new_cache_index = 0;
358 new_size = 8192;
359 new_rss_limit = ~0UL;
360 goto retry_tsb_alloc;
361 }
362
363 /* If we failed on a TSB grow, we are under serious
364 * memory pressure so don't try to grow any more.
365 */
366 if (mm->context.tsb_block[tsb_index].tsb != NULL)
367 mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
368 return;
369 }
370
371 /* Mark all tags as invalid. */
372 tsb_init(new_tsb, new_size);
373
374 /* Ok, we are about to commit the changes. If we are
375 * growing an existing TSB the locking is very tricky,
376 * so WATCH OUT!
377 *
378 * We have to hold mm->context.lock while committing to the
379 * new TSB, this synchronizes us with processors in
380 * flush_tsb_user() and switch_mm() for this address space.
381 *
382 * But even with that lock held, processors run asynchronously
383 * accessing the old TSB via TLB miss handling. This is OK
384 * because those actions are just propagating state from the
385 * Linux page tables into the TSB, page table mappings are not
386 * being changed. If a real fault occurs, the processor will
387 * synchronize with us when it hits flush_tsb_user(), this is
388 * also true for the case where vmscan is modifying the page
389 * tables. The only thing we need to be careful with is to
390 * skip any locked TSB entries during copy_tsb().
391 *
392 * When we finish committing to the new TSB, we have to drop
393 * the lock and ask all other cpus running this address space
394 * to run tsb_context_switch() to see the new TSB table.
395 */
396 spin_lock_irqsave(&mm->context.lock, flags);
397
398 old_tsb = mm->context.tsb_block[tsb_index].tsb;
399 old_cache_index =
400 (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
401 old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
402 sizeof(struct tsb));
403
404
405 /* Handle multiple threads trying to grow the TSB at the same time.
406 * One will get in here first, and bump the size and the RSS limit.
407 * The others will get in here next and hit this check.
408 */
409 if (unlikely(old_tsb &&
410 (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
411 spin_unlock_irqrestore(&mm->context.lock, flags);
412
413 kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
414 return;
415 }
416
417 mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
418
419 if (old_tsb) {
420 extern void copy_tsb(unsigned long old_tsb_base,
421 unsigned long old_tsb_size,
422 unsigned long new_tsb_base,
423 unsigned long new_tsb_size);
424 unsigned long old_tsb_base = (unsigned long) old_tsb;
425 unsigned long new_tsb_base = (unsigned long) new_tsb;
426
427 if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
428 old_tsb_base = __pa(old_tsb_base);
429 new_tsb_base = __pa(new_tsb_base);
430 }
431 copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
432 }
433
434 mm->context.tsb_block[tsb_index].tsb = new_tsb;
435 setup_tsb_params(mm, tsb_index, new_size);
436
437 spin_unlock_irqrestore(&mm->context.lock, flags);
438
439 /* If old_tsb is NULL, we're being invoked for the first time
440 * from init_new_context().
441 */
442 if (old_tsb) {
443 /* Reload it on the local cpu. */
444 tsb_context_switch(mm);
445
446 /* Now force other processors to do the same. */
447 preempt_disable();
448 smp_tsb_sync(mm);
449 preempt_enable();
450
451 /* Now it is safe to free the old tsb. */
452 kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
453 }
454 }
455
456 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
457 {
458 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
459 unsigned long huge_pte_count;
460 #endif
461 unsigned int i;
462
463 spin_lock_init(&mm->context.lock);
464
465 mm->context.sparc64_ctx_val = 0UL;
466
467 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
468 /* We reset it to zero because the fork() page copying
469 * will re-increment the counters as the parent PTEs are
470 * copied into the child address space.
471 */
472 huge_pte_count = mm->context.huge_pte_count;
473 mm->context.huge_pte_count = 0;
474 #endif
475
476 /* copy_mm() copies over the parent's mm_struct before calling
477 * us, so we need to zero out the TSB pointer or else tsb_grow()
478 * will be confused and think there is an older TSB to free up.
479 */
480 for (i = 0; i < MM_NUM_TSBS; i++)
481 mm->context.tsb_block[i].tsb = NULL;
482
483 /* If this is fork, inherit the parent's TSB size. We would
484 * grow it to that size on the first page fault anyways.
485 */
486 tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
487
488 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
489 if (unlikely(huge_pte_count))
490 tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
491 #endif
492
493 if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
494 return -ENOMEM;
495
496 return 0;
497 }
498
499 static void tsb_destroy_one(struct tsb_config *tp)
500 {
501 unsigned long cache_index;
502
503 if (!tp->tsb)
504 return;
505 cache_index = tp->tsb_reg_val & 0x7UL;
506 kmem_cache_free(tsb_caches[cache_index], tp->tsb);
507 tp->tsb = NULL;
508 tp->tsb_reg_val = 0UL;
509 }
510
511 void destroy_context(struct mm_struct *mm)
512 {
513 unsigned long flags, i;
514
515 for (i = 0; i < MM_NUM_TSBS; i++)
516 tsb_destroy_one(&mm->context.tsb_block[i]);
517
518 spin_lock_irqsave(&ctx_alloc_lock, flags);
519
520 if (CTX_VALID(mm->context)) {
521 unsigned long nr = CTX_NRBITS(mm->context);
522 mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
523 }
524
525 spin_unlock_irqrestore(&ctx_alloc_lock, flags);
526 }
This page took 0.04329 seconds and 5 git commands to generate.