[SPARC64]: Fix conflicts in SBUS/PCI/EBUS/ISA DMA handling.
[deliverable/linux.git] / arch / sparc64 / kernel / iommu.c
1 /* iommu.c: Generic sparc64 IOMMU support.
2 *
3 * Copyright (C) 1999, 2007 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1999, 2000 Jakub Jelinek (jakub@redhat.com)
5 */
6
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/delay.h>
10 #include <linux/device.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/errno.h>
13
14 #ifdef CONFIG_PCI
15 #include <linux/pci.h>
16 #endif
17
18 #include <asm/iommu.h>
19
20 #include "iommu_common.h"
21
22 #define STC_CTXMATCH_ADDR(STC, CTX) \
23 ((STC)->strbuf_ctxmatch_base + ((CTX) << 3))
24 #define STC_FLUSHFLAG_INIT(STC) \
25 (*((STC)->strbuf_flushflag) = 0UL)
26 #define STC_FLUSHFLAG_SET(STC) \
27 (*((STC)->strbuf_flushflag) != 0UL)
28
29 #define iommu_read(__reg) \
30 ({ u64 __ret; \
31 __asm__ __volatile__("ldxa [%1] %2, %0" \
32 : "=r" (__ret) \
33 : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
34 : "memory"); \
35 __ret; \
36 })
37 #define iommu_write(__reg, __val) \
38 __asm__ __volatile__("stxa %0, [%1] %2" \
39 : /* no outputs */ \
40 : "r" (__val), "r" (__reg), \
41 "i" (ASI_PHYS_BYPASS_EC_E))
42
43 /* Must be invoked under the IOMMU lock. */
44 static void __iommu_flushall(struct iommu *iommu)
45 {
46 if (iommu->iommu_flushinv) {
47 iommu_write(iommu->iommu_flushinv, ~(u64)0);
48 } else {
49 unsigned long tag;
50 int entry;
51
52 tag = iommu->iommu_tags;
53 for (entry = 0; entry < 16; entry++) {
54 iommu_write(tag, 0);
55 tag += 8;
56 }
57
58 /* Ensure completion of previous PIO writes. */
59 (void) iommu_read(iommu->write_complete_reg);
60 }
61 }
62
63 #define IOPTE_CONSISTENT(CTX) \
64 (IOPTE_VALID | IOPTE_CACHE | \
65 (((CTX) << 47) & IOPTE_CONTEXT))
66
67 #define IOPTE_STREAMING(CTX) \
68 (IOPTE_CONSISTENT(CTX) | IOPTE_STBUF)
69
70 /* Existing mappings are never marked invalid, instead they
71 * are pointed to a dummy page.
72 */
73 #define IOPTE_IS_DUMMY(iommu, iopte) \
74 ((iopte_val(*iopte) & IOPTE_PAGE) == (iommu)->dummy_page_pa)
75
76 static inline void iopte_make_dummy(struct iommu *iommu, iopte_t *iopte)
77 {
78 unsigned long val = iopte_val(*iopte);
79
80 val &= ~IOPTE_PAGE;
81 val |= iommu->dummy_page_pa;
82
83 iopte_val(*iopte) = val;
84 }
85
86 /* Based largely upon the ppc64 iommu allocator. */
87 static long arena_alloc(struct iommu *iommu, unsigned long npages)
88 {
89 struct iommu_arena *arena = &iommu->arena;
90 unsigned long n, i, start, end, limit;
91 int pass;
92
93 limit = arena->limit;
94 start = arena->hint;
95 pass = 0;
96
97 again:
98 n = find_next_zero_bit(arena->map, limit, start);
99 end = n + npages;
100 if (unlikely(end >= limit)) {
101 if (likely(pass < 1)) {
102 limit = start;
103 start = 0;
104 __iommu_flushall(iommu);
105 pass++;
106 goto again;
107 } else {
108 /* Scanned the whole thing, give up. */
109 return -1;
110 }
111 }
112
113 for (i = n; i < end; i++) {
114 if (test_bit(i, arena->map)) {
115 start = i + 1;
116 goto again;
117 }
118 }
119
120 for (i = n; i < end; i++)
121 __set_bit(i, arena->map);
122
123 arena->hint = end;
124
125 return n;
126 }
127
128 static void arena_free(struct iommu_arena *arena, unsigned long base, unsigned long npages)
129 {
130 unsigned long i;
131
132 for (i = base; i < (base + npages); i++)
133 __clear_bit(i, arena->map);
134 }
135
136 int iommu_table_init(struct iommu *iommu, int tsbsize,
137 u32 dma_offset, u32 dma_addr_mask)
138 {
139 unsigned long i, tsbbase, order, sz, num_tsb_entries;
140
141 num_tsb_entries = tsbsize / sizeof(iopte_t);
142
143 /* Setup initial software IOMMU state. */
144 spin_lock_init(&iommu->lock);
145 iommu->ctx_lowest_free = 1;
146 iommu->page_table_map_base = dma_offset;
147 iommu->dma_addr_mask = dma_addr_mask;
148
149 /* Allocate and initialize the free area map. */
150 sz = num_tsb_entries / 8;
151 sz = (sz + 7UL) & ~7UL;
152 iommu->arena.map = kzalloc(sz, GFP_KERNEL);
153 if (!iommu->arena.map) {
154 printk(KERN_ERR "IOMMU: Error, kmalloc(arena.map) failed.\n");
155 return -ENOMEM;
156 }
157 iommu->arena.limit = num_tsb_entries;
158
159 /* Allocate and initialize the dummy page which we
160 * set inactive IO PTEs to point to.
161 */
162 iommu->dummy_page = __get_free_pages(GFP_KERNEL, 0);
163 if (!iommu->dummy_page) {
164 printk(KERN_ERR "IOMMU: Error, gfp(dummy_page) failed.\n");
165 goto out_free_map;
166 }
167 memset((void *)iommu->dummy_page, 0, PAGE_SIZE);
168 iommu->dummy_page_pa = (unsigned long) __pa(iommu->dummy_page);
169
170 /* Now allocate and setup the IOMMU page table itself. */
171 order = get_order(tsbsize);
172 tsbbase = __get_free_pages(GFP_KERNEL, order);
173 if (!tsbbase) {
174 printk(KERN_ERR "IOMMU: Error, gfp(tsb) failed.\n");
175 goto out_free_dummy_page;
176 }
177 iommu->page_table = (iopte_t *)tsbbase;
178
179 for (i = 0; i < num_tsb_entries; i++)
180 iopte_make_dummy(iommu, &iommu->page_table[i]);
181
182 return 0;
183
184 out_free_dummy_page:
185 free_page(iommu->dummy_page);
186 iommu->dummy_page = 0UL;
187
188 out_free_map:
189 kfree(iommu->arena.map);
190 iommu->arena.map = NULL;
191
192 return -ENOMEM;
193 }
194
195 static inline iopte_t *alloc_npages(struct iommu *iommu, unsigned long npages)
196 {
197 long entry;
198
199 entry = arena_alloc(iommu, npages);
200 if (unlikely(entry < 0))
201 return NULL;
202
203 return iommu->page_table + entry;
204 }
205
206 static inline void free_npages(struct iommu *iommu, dma_addr_t base, unsigned long npages)
207 {
208 arena_free(&iommu->arena, base >> IO_PAGE_SHIFT, npages);
209 }
210
211 static int iommu_alloc_ctx(struct iommu *iommu)
212 {
213 int lowest = iommu->ctx_lowest_free;
214 int sz = IOMMU_NUM_CTXS - lowest;
215 int n = find_next_zero_bit(iommu->ctx_bitmap, sz, lowest);
216
217 if (unlikely(n == sz)) {
218 n = find_next_zero_bit(iommu->ctx_bitmap, lowest, 1);
219 if (unlikely(n == lowest)) {
220 printk(KERN_WARNING "IOMMU: Ran out of contexts.\n");
221 n = 0;
222 }
223 }
224 if (n)
225 __set_bit(n, iommu->ctx_bitmap);
226
227 return n;
228 }
229
230 static inline void iommu_free_ctx(struct iommu *iommu, int ctx)
231 {
232 if (likely(ctx)) {
233 __clear_bit(ctx, iommu->ctx_bitmap);
234 if (ctx < iommu->ctx_lowest_free)
235 iommu->ctx_lowest_free = ctx;
236 }
237 }
238
239 static void *dma_4u_alloc_coherent(struct device *dev, size_t size,
240 dma_addr_t *dma_addrp, gfp_t gfp)
241 {
242 struct iommu *iommu;
243 iopte_t *iopte;
244 unsigned long flags, order, first_page;
245 void *ret;
246 int npages;
247
248 size = IO_PAGE_ALIGN(size);
249 order = get_order(size);
250 if (order >= 10)
251 return NULL;
252
253 first_page = __get_free_pages(gfp, order);
254 if (first_page == 0UL)
255 return NULL;
256 memset((char *)first_page, 0, PAGE_SIZE << order);
257
258 iommu = dev->archdata.iommu;
259
260 spin_lock_irqsave(&iommu->lock, flags);
261 iopte = alloc_npages(iommu, size >> IO_PAGE_SHIFT);
262 spin_unlock_irqrestore(&iommu->lock, flags);
263
264 if (unlikely(iopte == NULL)) {
265 free_pages(first_page, order);
266 return NULL;
267 }
268
269 *dma_addrp = (iommu->page_table_map_base +
270 ((iopte - iommu->page_table) << IO_PAGE_SHIFT));
271 ret = (void *) first_page;
272 npages = size >> IO_PAGE_SHIFT;
273 first_page = __pa(first_page);
274 while (npages--) {
275 iopte_val(*iopte) = (IOPTE_CONSISTENT(0UL) |
276 IOPTE_WRITE |
277 (first_page & IOPTE_PAGE));
278 iopte++;
279 first_page += IO_PAGE_SIZE;
280 }
281
282 return ret;
283 }
284
285 static void dma_4u_free_coherent(struct device *dev, size_t size,
286 void *cpu, dma_addr_t dvma)
287 {
288 struct iommu *iommu;
289 iopte_t *iopte;
290 unsigned long flags, order, npages;
291
292 npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT;
293 iommu = dev->archdata.iommu;
294 iopte = iommu->page_table +
295 ((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
296
297 spin_lock_irqsave(&iommu->lock, flags);
298
299 free_npages(iommu, dvma - iommu->page_table_map_base, npages);
300
301 spin_unlock_irqrestore(&iommu->lock, flags);
302
303 order = get_order(size);
304 if (order < 10)
305 free_pages((unsigned long)cpu, order);
306 }
307
308 static dma_addr_t dma_4u_map_single(struct device *dev, void *ptr, size_t sz,
309 enum dma_data_direction direction)
310 {
311 struct iommu *iommu;
312 struct strbuf *strbuf;
313 iopte_t *base;
314 unsigned long flags, npages, oaddr;
315 unsigned long i, base_paddr, ctx;
316 u32 bus_addr, ret;
317 unsigned long iopte_protection;
318
319 iommu = dev->archdata.iommu;
320 strbuf = dev->archdata.stc;
321
322 if (unlikely(direction == DMA_NONE))
323 goto bad_no_ctx;
324
325 oaddr = (unsigned long)ptr;
326 npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK);
327 npages >>= IO_PAGE_SHIFT;
328
329 spin_lock_irqsave(&iommu->lock, flags);
330 base = alloc_npages(iommu, npages);
331 ctx = 0;
332 if (iommu->iommu_ctxflush)
333 ctx = iommu_alloc_ctx(iommu);
334 spin_unlock_irqrestore(&iommu->lock, flags);
335
336 if (unlikely(!base))
337 goto bad;
338
339 bus_addr = (iommu->page_table_map_base +
340 ((base - iommu->page_table) << IO_PAGE_SHIFT));
341 ret = bus_addr | (oaddr & ~IO_PAGE_MASK);
342 base_paddr = __pa(oaddr & IO_PAGE_MASK);
343 if (strbuf->strbuf_enabled)
344 iopte_protection = IOPTE_STREAMING(ctx);
345 else
346 iopte_protection = IOPTE_CONSISTENT(ctx);
347 if (direction != DMA_TO_DEVICE)
348 iopte_protection |= IOPTE_WRITE;
349
350 for (i = 0; i < npages; i++, base++, base_paddr += IO_PAGE_SIZE)
351 iopte_val(*base) = iopte_protection | base_paddr;
352
353 return ret;
354
355 bad:
356 iommu_free_ctx(iommu, ctx);
357 bad_no_ctx:
358 if (printk_ratelimit())
359 WARN_ON(1);
360 return DMA_ERROR_CODE;
361 }
362
363 static void strbuf_flush(struct strbuf *strbuf, struct iommu *iommu,
364 u32 vaddr, unsigned long ctx, unsigned long npages,
365 enum dma_data_direction direction)
366 {
367 int limit;
368
369 if (strbuf->strbuf_ctxflush &&
370 iommu->iommu_ctxflush) {
371 unsigned long matchreg, flushreg;
372 u64 val;
373
374 flushreg = strbuf->strbuf_ctxflush;
375 matchreg = STC_CTXMATCH_ADDR(strbuf, ctx);
376
377 iommu_write(flushreg, ctx);
378 val = iommu_read(matchreg);
379 val &= 0xffff;
380 if (!val)
381 goto do_flush_sync;
382
383 while (val) {
384 if (val & 0x1)
385 iommu_write(flushreg, ctx);
386 val >>= 1;
387 }
388 val = iommu_read(matchreg);
389 if (unlikely(val)) {
390 printk(KERN_WARNING "strbuf_flush: ctx flush "
391 "timeout matchreg[%lx] ctx[%lx]\n",
392 val, ctx);
393 goto do_page_flush;
394 }
395 } else {
396 unsigned long i;
397
398 do_page_flush:
399 for (i = 0; i < npages; i++, vaddr += IO_PAGE_SIZE)
400 iommu_write(strbuf->strbuf_pflush, vaddr);
401 }
402
403 do_flush_sync:
404 /* If the device could not have possibly put dirty data into
405 * the streaming cache, no flush-flag synchronization needs
406 * to be performed.
407 */
408 if (direction == DMA_TO_DEVICE)
409 return;
410
411 STC_FLUSHFLAG_INIT(strbuf);
412 iommu_write(strbuf->strbuf_fsync, strbuf->strbuf_flushflag_pa);
413 (void) iommu_read(iommu->write_complete_reg);
414
415 limit = 100000;
416 while (!STC_FLUSHFLAG_SET(strbuf)) {
417 limit--;
418 if (!limit)
419 break;
420 udelay(1);
421 rmb();
422 }
423 if (!limit)
424 printk(KERN_WARNING "strbuf_flush: flushflag timeout "
425 "vaddr[%08x] ctx[%lx] npages[%ld]\n",
426 vaddr, ctx, npages);
427 }
428
429 static void dma_4u_unmap_single(struct device *dev, dma_addr_t bus_addr,
430 size_t sz, enum dma_data_direction direction)
431 {
432 struct iommu *iommu;
433 struct strbuf *strbuf;
434 iopte_t *base;
435 unsigned long flags, npages, ctx, i;
436
437 if (unlikely(direction == DMA_NONE)) {
438 if (printk_ratelimit())
439 WARN_ON(1);
440 return;
441 }
442
443 iommu = dev->archdata.iommu;
444 strbuf = dev->archdata.stc;
445
446 npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
447 npages >>= IO_PAGE_SHIFT;
448 base = iommu->page_table +
449 ((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
450 bus_addr &= IO_PAGE_MASK;
451
452 spin_lock_irqsave(&iommu->lock, flags);
453
454 /* Record the context, if any. */
455 ctx = 0;
456 if (iommu->iommu_ctxflush)
457 ctx = (iopte_val(*base) & IOPTE_CONTEXT) >> 47UL;
458
459 /* Step 1: Kick data out of streaming buffers if necessary. */
460 if (strbuf->strbuf_enabled)
461 strbuf_flush(strbuf, iommu, bus_addr, ctx,
462 npages, direction);
463
464 /* Step 2: Clear out TSB entries. */
465 for (i = 0; i < npages; i++)
466 iopte_make_dummy(iommu, base + i);
467
468 free_npages(iommu, bus_addr - iommu->page_table_map_base, npages);
469
470 iommu_free_ctx(iommu, ctx);
471
472 spin_unlock_irqrestore(&iommu->lock, flags);
473 }
474
475 #define SG_ENT_PHYS_ADDRESS(SG) \
476 (__pa(page_address((SG)->page)) + (SG)->offset)
477
478 static inline void fill_sg(iopte_t *iopte, struct scatterlist *sg,
479 int nused, int nelems,
480 unsigned long iopte_protection)
481 {
482 struct scatterlist *dma_sg = sg;
483 struct scatterlist *sg_end = sg + nelems;
484 int i;
485
486 for (i = 0; i < nused; i++) {
487 unsigned long pteval = ~0UL;
488 u32 dma_npages;
489
490 dma_npages = ((dma_sg->dma_address & (IO_PAGE_SIZE - 1UL)) +
491 dma_sg->dma_length +
492 ((IO_PAGE_SIZE - 1UL))) >> IO_PAGE_SHIFT;
493 do {
494 unsigned long offset;
495 signed int len;
496
497 /* If we are here, we know we have at least one
498 * more page to map. So walk forward until we
499 * hit a page crossing, and begin creating new
500 * mappings from that spot.
501 */
502 for (;;) {
503 unsigned long tmp;
504
505 tmp = SG_ENT_PHYS_ADDRESS(sg);
506 len = sg->length;
507 if (((tmp ^ pteval) >> IO_PAGE_SHIFT) != 0UL) {
508 pteval = tmp & IO_PAGE_MASK;
509 offset = tmp & (IO_PAGE_SIZE - 1UL);
510 break;
511 }
512 if (((tmp ^ (tmp + len - 1UL)) >> IO_PAGE_SHIFT) != 0UL) {
513 pteval = (tmp + IO_PAGE_SIZE) & IO_PAGE_MASK;
514 offset = 0UL;
515 len -= (IO_PAGE_SIZE - (tmp & (IO_PAGE_SIZE - 1UL)));
516 break;
517 }
518 sg++;
519 }
520
521 pteval = iopte_protection | (pteval & IOPTE_PAGE);
522 while (len > 0) {
523 *iopte++ = __iopte(pteval);
524 pteval += IO_PAGE_SIZE;
525 len -= (IO_PAGE_SIZE - offset);
526 offset = 0;
527 dma_npages--;
528 }
529
530 pteval = (pteval & IOPTE_PAGE) + len;
531 sg++;
532
533 /* Skip over any tail mappings we've fully mapped,
534 * adjusting pteval along the way. Stop when we
535 * detect a page crossing event.
536 */
537 while (sg < sg_end &&
538 (pteval << (64 - IO_PAGE_SHIFT)) != 0UL &&
539 (pteval == SG_ENT_PHYS_ADDRESS(sg)) &&
540 ((pteval ^
541 (SG_ENT_PHYS_ADDRESS(sg) + sg->length - 1UL)) >> IO_PAGE_SHIFT) == 0UL) {
542 pteval += sg->length;
543 sg++;
544 }
545 if ((pteval << (64 - IO_PAGE_SHIFT)) == 0UL)
546 pteval = ~0UL;
547 } while (dma_npages != 0);
548 dma_sg++;
549 }
550 }
551
552 static int dma_4u_map_sg(struct device *dev, struct scatterlist *sglist,
553 int nelems, enum dma_data_direction direction)
554 {
555 struct iommu *iommu;
556 struct strbuf *strbuf;
557 unsigned long flags, ctx, npages, iopte_protection;
558 iopte_t *base;
559 u32 dma_base;
560 struct scatterlist *sgtmp;
561 int used;
562
563 /* Fast path single entry scatterlists. */
564 if (nelems == 1) {
565 sglist->dma_address =
566 dma_4u_map_single(dev,
567 (page_address(sglist->page) +
568 sglist->offset),
569 sglist->length, direction);
570 if (unlikely(sglist->dma_address == DMA_ERROR_CODE))
571 return 0;
572 sglist->dma_length = sglist->length;
573 return 1;
574 }
575
576 iommu = dev->archdata.iommu;
577 strbuf = dev->archdata.stc;
578
579 if (unlikely(direction == DMA_NONE))
580 goto bad_no_ctx;
581
582 /* Step 1: Prepare scatter list. */
583
584 npages = prepare_sg(sglist, nelems);
585
586 /* Step 2: Allocate a cluster and context, if necessary. */
587
588 spin_lock_irqsave(&iommu->lock, flags);
589
590 base = alloc_npages(iommu, npages);
591 ctx = 0;
592 if (iommu->iommu_ctxflush)
593 ctx = iommu_alloc_ctx(iommu);
594
595 spin_unlock_irqrestore(&iommu->lock, flags);
596
597 if (base == NULL)
598 goto bad;
599
600 dma_base = iommu->page_table_map_base +
601 ((base - iommu->page_table) << IO_PAGE_SHIFT);
602
603 /* Step 3: Normalize DMA addresses. */
604 used = nelems;
605
606 sgtmp = sglist;
607 while (used && sgtmp->dma_length) {
608 sgtmp->dma_address += dma_base;
609 sgtmp++;
610 used--;
611 }
612 used = nelems - used;
613
614 /* Step 4: Create the mappings. */
615 if (strbuf->strbuf_enabled)
616 iopte_protection = IOPTE_STREAMING(ctx);
617 else
618 iopte_protection = IOPTE_CONSISTENT(ctx);
619 if (direction != DMA_TO_DEVICE)
620 iopte_protection |= IOPTE_WRITE;
621
622 fill_sg(base, sglist, used, nelems, iopte_protection);
623
624 #ifdef VERIFY_SG
625 verify_sglist(sglist, nelems, base, npages);
626 #endif
627
628 return used;
629
630 bad:
631 iommu_free_ctx(iommu, ctx);
632 bad_no_ctx:
633 if (printk_ratelimit())
634 WARN_ON(1);
635 return 0;
636 }
637
638 static void dma_4u_unmap_sg(struct device *dev, struct scatterlist *sglist,
639 int nelems, enum dma_data_direction direction)
640 {
641 struct iommu *iommu;
642 struct strbuf *strbuf;
643 iopte_t *base;
644 unsigned long flags, ctx, i, npages;
645 u32 bus_addr;
646
647 if (unlikely(direction == DMA_NONE)) {
648 if (printk_ratelimit())
649 WARN_ON(1);
650 }
651
652 iommu = dev->archdata.iommu;
653 strbuf = dev->archdata.stc;
654
655 bus_addr = sglist->dma_address & IO_PAGE_MASK;
656
657 for (i = 1; i < nelems; i++)
658 if (sglist[i].dma_length == 0)
659 break;
660 i--;
661 npages = (IO_PAGE_ALIGN(sglist[i].dma_address + sglist[i].dma_length) -
662 bus_addr) >> IO_PAGE_SHIFT;
663
664 base = iommu->page_table +
665 ((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
666
667 spin_lock_irqsave(&iommu->lock, flags);
668
669 /* Record the context, if any. */
670 ctx = 0;
671 if (iommu->iommu_ctxflush)
672 ctx = (iopte_val(*base) & IOPTE_CONTEXT) >> 47UL;
673
674 /* Step 1: Kick data out of streaming buffers if necessary. */
675 if (strbuf->strbuf_enabled)
676 strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction);
677
678 /* Step 2: Clear out the TSB entries. */
679 for (i = 0; i < npages; i++)
680 iopte_make_dummy(iommu, base + i);
681
682 free_npages(iommu, bus_addr - iommu->page_table_map_base, npages);
683
684 iommu_free_ctx(iommu, ctx);
685
686 spin_unlock_irqrestore(&iommu->lock, flags);
687 }
688
689 static void dma_4u_sync_single_for_cpu(struct device *dev,
690 dma_addr_t bus_addr, size_t sz,
691 enum dma_data_direction direction)
692 {
693 struct iommu *iommu;
694 struct strbuf *strbuf;
695 unsigned long flags, ctx, npages;
696
697 iommu = dev->archdata.iommu;
698 strbuf = dev->archdata.stc;
699
700 if (!strbuf->strbuf_enabled)
701 return;
702
703 spin_lock_irqsave(&iommu->lock, flags);
704
705 npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
706 npages >>= IO_PAGE_SHIFT;
707 bus_addr &= IO_PAGE_MASK;
708
709 /* Step 1: Record the context, if any. */
710 ctx = 0;
711 if (iommu->iommu_ctxflush &&
712 strbuf->strbuf_ctxflush) {
713 iopte_t *iopte;
714
715 iopte = iommu->page_table +
716 ((bus_addr - iommu->page_table_map_base)>>IO_PAGE_SHIFT);
717 ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL;
718 }
719
720 /* Step 2: Kick data out of streaming buffers. */
721 strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction);
722
723 spin_unlock_irqrestore(&iommu->lock, flags);
724 }
725
726 static void dma_4u_sync_sg_for_cpu(struct device *dev,
727 struct scatterlist *sglist, int nelems,
728 enum dma_data_direction direction)
729 {
730 struct iommu *iommu;
731 struct strbuf *strbuf;
732 unsigned long flags, ctx, npages, i;
733 u32 bus_addr;
734
735 iommu = dev->archdata.iommu;
736 strbuf = dev->archdata.stc;
737
738 if (!strbuf->strbuf_enabled)
739 return;
740
741 spin_lock_irqsave(&iommu->lock, flags);
742
743 /* Step 1: Record the context, if any. */
744 ctx = 0;
745 if (iommu->iommu_ctxflush &&
746 strbuf->strbuf_ctxflush) {
747 iopte_t *iopte;
748
749 iopte = iommu->page_table +
750 ((sglist[0].dma_address - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
751 ctx = (iopte_val(*iopte) & IOPTE_CONTEXT) >> 47UL;
752 }
753
754 /* Step 2: Kick data out of streaming buffers. */
755 bus_addr = sglist[0].dma_address & IO_PAGE_MASK;
756 for(i = 1; i < nelems; i++)
757 if (!sglist[i].dma_length)
758 break;
759 i--;
760 npages = (IO_PAGE_ALIGN(sglist[i].dma_address + sglist[i].dma_length)
761 - bus_addr) >> IO_PAGE_SHIFT;
762 strbuf_flush(strbuf, iommu, bus_addr, ctx, npages, direction);
763
764 spin_unlock_irqrestore(&iommu->lock, flags);
765 }
766
767 const struct dma_ops sun4u_dma_ops = {
768 .alloc_coherent = dma_4u_alloc_coherent,
769 .free_coherent = dma_4u_free_coherent,
770 .map_single = dma_4u_map_single,
771 .unmap_single = dma_4u_unmap_single,
772 .map_sg = dma_4u_map_sg,
773 .unmap_sg = dma_4u_unmap_sg,
774 .sync_single_for_cpu = dma_4u_sync_single_for_cpu,
775 .sync_sg_for_cpu = dma_4u_sync_sg_for_cpu,
776 };
777
778 const struct dma_ops *dma_ops = &sun4u_dma_ops;
779 EXPORT_SYMBOL(dma_ops);
780
781 int dma_supported(struct device *dev, u64 device_mask)
782 {
783 struct iommu *iommu = dev->archdata.iommu;
784 u64 dma_addr_mask = iommu->dma_addr_mask;
785
786 if (device_mask >= (1UL << 32UL))
787 return 0;
788
789 if ((device_mask & dma_addr_mask) == dma_addr_mask)
790 return 1;
791
792 #ifdef CONFIG_PCI
793 if (dev->bus == &pci_bus_type)
794 return pci_dma_supported(to_pci_dev(dev), device_mask);
795 #endif
796
797 return 0;
798 }
799 EXPORT_SYMBOL(dma_supported);
800
801 int dma_set_mask(struct device *dev, u64 dma_mask)
802 {
803 #ifdef CONFIG_PCI
804 if (dev->bus == &pci_bus_type)
805 return pci_set_dma_mask(to_pci_dev(dev), dma_mask);
806 #endif
807 return -EINVAL;
808 }
809 EXPORT_SYMBOL(dma_set_mask);
This page took 0.046648 seconds and 5 git commands to generate.