[SPARC64]: Sun4v interrupt handling.
[deliverable/linux.git] / arch / sparc64 / kernel / irq.c
1 /* $Id: irq.c,v 1.114 2002/01/11 08:45:38 davem Exp $
2 * irq.c: UltraSparc IRQ handling/init/registry.
3 *
4 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
7 */
8
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/sched.h>
12 #include <linux/ptrace.h>
13 #include <linux/errno.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/signal.h>
16 #include <linux/mm.h>
17 #include <linux/interrupt.h>
18 #include <linux/slab.h>
19 #include <linux/random.h>
20 #include <linux/init.h>
21 #include <linux/delay.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24
25 #include <asm/ptrace.h>
26 #include <asm/processor.h>
27 #include <asm/atomic.h>
28 #include <asm/system.h>
29 #include <asm/irq.h>
30 #include <asm/io.h>
31 #include <asm/sbus.h>
32 #include <asm/iommu.h>
33 #include <asm/upa.h>
34 #include <asm/oplib.h>
35 #include <asm/timer.h>
36 #include <asm/smp.h>
37 #include <asm/starfire.h>
38 #include <asm/uaccess.h>
39 #include <asm/cache.h>
40 #include <asm/cpudata.h>
41 #include <asm/auxio.h>
42 #include <asm/head.h>
43
44 #ifdef CONFIG_SMP
45 static void distribute_irqs(void);
46 #endif
47
48 /* UPA nodes send interrupt packet to UltraSparc with first data reg
49 * value low 5 (7 on Starfire) bits holding the IRQ identifier being
50 * delivered. We must translate this into a non-vector IRQ so we can
51 * set the softint on this cpu.
52 *
53 * To make processing these packets efficient and race free we use
54 * an array of irq buckets below. The interrupt vector handler in
55 * entry.S feeds incoming packets into per-cpu pil-indexed lists.
56 * The IVEC handler does not need to act atomically, the PIL dispatch
57 * code uses CAS to get an atomic snapshot of the list and clear it
58 * at the same time.
59 */
60
61 struct ino_bucket ivector_table[NUM_IVECS] __attribute__ ((aligned (SMP_CACHE_BYTES)));
62
63 /* This has to be in the main kernel image, it cannot be
64 * turned into per-cpu data. The reason is that the main
65 * kernel image is locked into the TLB and this structure
66 * is accessed from the vectored interrupt trap handler. If
67 * access to this structure takes a TLB miss it could cause
68 * the 5-level sparc v9 trap stack to overflow.
69 */
70 struct irq_work_struct {
71 unsigned int irq_worklists[16];
72 };
73 struct irq_work_struct __irq_work[NR_CPUS];
74 #define irq_work(__cpu, __pil) &(__irq_work[(__cpu)].irq_worklists[(__pil)])
75
76 static struct irqaction *irq_action[NR_IRQS+1];
77
78 /* This only synchronizes entities which modify IRQ handler
79 * state and some selected user-level spots that want to
80 * read things in the table. IRQ handler processing orders
81 * its' accesses such that no locking is needed.
82 */
83 static DEFINE_SPINLOCK(irq_action_lock);
84
85 static void register_irq_proc (unsigned int irq);
86
87 /*
88 * Upper 2b of irqaction->flags holds the ino.
89 * irqaction->mask holds the smp affinity information.
90 */
91 #define put_ino_in_irqaction(action, irq) \
92 action->flags &= 0xffffffffffffUL; \
93 if (__bucket(irq) == &pil0_dummy_bucket) \
94 action->flags |= 0xdeadUL << 48; \
95 else \
96 action->flags |= __irq_ino(irq) << 48;
97 #define get_ino_in_irqaction(action) (action->flags >> 48)
98
99 #define put_smpaff_in_irqaction(action, smpaff) (action)->mask = (smpaff)
100 #define get_smpaff_in_irqaction(action) ((action)->mask)
101
102 int show_interrupts(struct seq_file *p, void *v)
103 {
104 unsigned long flags;
105 int i = *(loff_t *) v;
106 struct irqaction *action;
107 #ifdef CONFIG_SMP
108 int j;
109 #endif
110
111 spin_lock_irqsave(&irq_action_lock, flags);
112 if (i <= NR_IRQS) {
113 if (!(action = *(i + irq_action)))
114 goto out_unlock;
115 seq_printf(p, "%3d: ", i);
116 #ifndef CONFIG_SMP
117 seq_printf(p, "%10u ", kstat_irqs(i));
118 #else
119 for (j = 0; j < NR_CPUS; j++) {
120 if (!cpu_online(j))
121 continue;
122 seq_printf(p, "%10u ",
123 kstat_cpu(j).irqs[i]);
124 }
125 #endif
126 seq_printf(p, " %s:%lx", action->name,
127 get_ino_in_irqaction(action));
128 for (action = action->next; action; action = action->next) {
129 seq_printf(p, ", %s:%lx", action->name,
130 get_ino_in_irqaction(action));
131 }
132 seq_putc(p, '\n');
133 }
134 out_unlock:
135 spin_unlock_irqrestore(&irq_action_lock, flags);
136
137 return 0;
138 }
139
140 /* Now these are always passed a true fully specified sun4u INO. */
141 void enable_irq(unsigned int irq)
142 {
143 struct ino_bucket *bucket = __bucket(irq);
144 unsigned long imap;
145 unsigned long tid;
146
147 imap = bucket->imap;
148 if (imap == 0UL)
149 return;
150
151 preempt_disable();
152
153 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
154 unsigned long ver;
155
156 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
157 if ((ver >> 32) == __JALAPENO_ID ||
158 (ver >> 32) == __SERRANO_ID) {
159 /* We set it to our JBUS ID. */
160 __asm__ __volatile__("ldxa [%%g0] %1, %0"
161 : "=r" (tid)
162 : "i" (ASI_JBUS_CONFIG));
163 tid = ((tid & (0x1fUL<<17)) << 9);
164 tid &= IMAP_TID_JBUS;
165 } else {
166 /* We set it to our Safari AID. */
167 __asm__ __volatile__("ldxa [%%g0] %1, %0"
168 : "=r" (tid)
169 : "i" (ASI_SAFARI_CONFIG));
170 tid = ((tid & (0x3ffUL<<17)) << 9);
171 tid &= IMAP_AID_SAFARI;
172 }
173 } else if (this_is_starfire == 0) {
174 /* We set it to our UPA MID. */
175 __asm__ __volatile__("ldxa [%%g0] %1, %0"
176 : "=r" (tid)
177 : "i" (ASI_UPA_CONFIG));
178 tid = ((tid & UPA_CONFIG_MID) << 9);
179 tid &= IMAP_TID_UPA;
180 } else {
181 tid = (starfire_translate(imap, smp_processor_id()) << 26);
182 tid &= IMAP_TID_UPA;
183 }
184
185 /* NOTE NOTE NOTE, IGN and INO are read-only, IGN is a product
186 * of this SYSIO's preconfigured IGN in the SYSIO Control
187 * Register, the hardware just mirrors that value here.
188 * However for Graphics and UPA Slave devices the full
189 * IMAP_INR field can be set by the programmer here.
190 *
191 * Things like FFB can now be handled via the new IRQ mechanism.
192 */
193 upa_writel(tid | IMAP_VALID, imap);
194
195 preempt_enable();
196 }
197
198 /* This now gets passed true ino's as well. */
199 void disable_irq(unsigned int irq)
200 {
201 struct ino_bucket *bucket = __bucket(irq);
202 unsigned long imap;
203
204 imap = bucket->imap;
205 if (imap != 0UL) {
206 u32 tmp;
207
208 /* NOTE: We do not want to futz with the IRQ clear registers
209 * and move the state to IDLE, the SCSI code does call
210 * disable_irq() to assure atomicity in the queue cmd
211 * SCSI adapter driver code. Thus we'd lose interrupts.
212 */
213 tmp = upa_readl(imap);
214 tmp &= ~IMAP_VALID;
215 upa_writel(tmp, imap);
216 }
217 }
218
219 /* The timer is the one "weird" interrupt which is generated by
220 * the CPU %tick register and not by some normal vectored interrupt
221 * source. To handle this special case, we use this dummy INO bucket.
222 */
223 static struct irq_desc pil0_dummy_desc;
224 static struct ino_bucket pil0_dummy_bucket = {
225 .irq_info = &pil0_dummy_desc,
226 };
227
228 static void build_irq_error(const char *msg, unsigned int ino, int pil, int inofixup,
229 unsigned long iclr, unsigned long imap,
230 struct ino_bucket *bucket)
231 {
232 prom_printf("IRQ: INO %04x (%d:%016lx:%016lx) --> "
233 "(%d:%d:%016lx:%016lx), halting...\n",
234 ino, bucket->pil, bucket->iclr, bucket->imap,
235 pil, inofixup, iclr, imap);
236 prom_halt();
237 }
238
239 unsigned int build_irq(int pil, int inofixup, unsigned long iclr, unsigned long imap)
240 {
241 struct ino_bucket *bucket;
242 int ino;
243
244 if (pil == 0) {
245 if (iclr != 0UL || imap != 0UL) {
246 prom_printf("Invalid dummy bucket for PIL0 (%lx:%lx)\n",
247 iclr, imap);
248 prom_halt();
249 }
250 return __irq(&pil0_dummy_bucket);
251 }
252
253 /* RULE: Both must be specified in all other cases. */
254 if (iclr == 0UL || imap == 0UL) {
255 prom_printf("Invalid build_irq %d %d %016lx %016lx\n",
256 pil, inofixup, iclr, imap);
257 prom_halt();
258 }
259
260 ino = (upa_readl(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
261 if (ino > NUM_IVECS) {
262 prom_printf("Invalid INO %04x (%d:%d:%016lx:%016lx)\n",
263 ino, pil, inofixup, iclr, imap);
264 prom_halt();
265 }
266
267 bucket = &ivector_table[ino];
268 if (bucket->flags & IBF_ACTIVE)
269 build_irq_error("IRQ: Trying to build active INO bucket.\n",
270 ino, pil, inofixup, iclr, imap, bucket);
271
272 if (bucket->irq_info) {
273 if (bucket->imap != imap || bucket->iclr != iclr)
274 build_irq_error("IRQ: Trying to reinit INO bucket.\n",
275 ino, pil, inofixup, iclr, imap, bucket);
276
277 goto out;
278 }
279
280 bucket->irq_info = kmalloc(sizeof(struct irq_desc), GFP_ATOMIC);
281 if (!bucket->irq_info) {
282 prom_printf("IRQ: Error, kmalloc(irq_desc) failed.\n");
283 prom_halt();
284 }
285 memset(bucket->irq_info, 0, sizeof(struct irq_desc));
286
287 /* Ok, looks good, set it up. Don't touch the irq_chain or
288 * the pending flag.
289 */
290 bucket->imap = imap;
291 bucket->iclr = iclr;
292 bucket->pil = pil;
293 bucket->flags = 0;
294
295 out:
296 return __irq(bucket);
297 }
298
299 static void atomic_bucket_insert(struct ino_bucket *bucket)
300 {
301 unsigned long pstate;
302 unsigned int *ent;
303
304 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
305 __asm__ __volatile__("wrpr %0, %1, %%pstate"
306 : : "r" (pstate), "i" (PSTATE_IE));
307 ent = irq_work(smp_processor_id(), bucket->pil);
308 bucket->irq_chain = *ent;
309 *ent = __irq(bucket);
310 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate));
311 }
312
313 static int check_irq_sharing(int pil, unsigned long irqflags)
314 {
315 struct irqaction *action, *tmp;
316
317 action = *(irq_action + pil);
318 if (action) {
319 if ((action->flags & SA_SHIRQ) && (irqflags & SA_SHIRQ)) {
320 for (tmp = action; tmp->next; tmp = tmp->next)
321 ;
322 } else {
323 return -EBUSY;
324 }
325 }
326 return 0;
327 }
328
329 static void append_irq_action(int pil, struct irqaction *action)
330 {
331 struct irqaction **pp = irq_action + pil;
332
333 while (*pp)
334 pp = &((*pp)->next);
335 *pp = action;
336 }
337
338 static struct irqaction *get_action_slot(struct ino_bucket *bucket)
339 {
340 struct irq_desc *desc = bucket->irq_info;
341 int max_irq, i;
342
343 max_irq = 1;
344 if (bucket->flags & IBF_PCI)
345 max_irq = MAX_IRQ_DESC_ACTION;
346 for (i = 0; i < max_irq; i++) {
347 struct irqaction *p = &desc->action[i];
348 u32 mask = (1 << i);
349
350 if (desc->action_active_mask & mask)
351 continue;
352
353 desc->action_active_mask |= mask;
354 return p;
355 }
356 return NULL;
357 }
358
359 int request_irq(unsigned int irq, irqreturn_t (*handler)(int, void *, struct pt_regs *),
360 unsigned long irqflags, const char *name, void *dev_id)
361 {
362 struct irqaction *action;
363 struct ino_bucket *bucket = __bucket(irq);
364 unsigned long flags;
365 int pending = 0;
366
367 if (unlikely(!handler))
368 return -EINVAL;
369
370 if (unlikely(!bucket->irq_info))
371 return -ENODEV;
372
373 if ((bucket != &pil0_dummy_bucket) && (irqflags & SA_SAMPLE_RANDOM)) {
374 /*
375 * This function might sleep, we want to call it first,
376 * outside of the atomic block. In SA_STATIC_ALLOC case,
377 * random driver's kmalloc will fail, but it is safe.
378 * If already initialized, random driver will not reinit.
379 * Yes, this might clear the entropy pool if the wrong
380 * driver is attempted to be loaded, without actually
381 * installing a new handler, but is this really a problem,
382 * only the sysadmin is able to do this.
383 */
384 rand_initialize_irq(irq);
385 }
386
387 spin_lock_irqsave(&irq_action_lock, flags);
388
389 if (check_irq_sharing(bucket->pil, irqflags)) {
390 spin_unlock_irqrestore(&irq_action_lock, flags);
391 return -EBUSY;
392 }
393
394 action = get_action_slot(bucket);
395 if (!action) {
396 spin_unlock_irqrestore(&irq_action_lock, flags);
397 return -ENOMEM;
398 }
399
400 bucket->flags |= IBF_ACTIVE;
401 pending = 0;
402 if (bucket != &pil0_dummy_bucket) {
403 pending = bucket->pending;
404 if (pending)
405 bucket->pending = 0;
406 }
407
408 action->handler = handler;
409 action->flags = irqflags;
410 action->name = name;
411 action->next = NULL;
412 action->dev_id = dev_id;
413 put_ino_in_irqaction(action, irq);
414 put_smpaff_in_irqaction(action, CPU_MASK_NONE);
415
416 append_irq_action(bucket->pil, action);
417
418 enable_irq(irq);
419
420 /* We ate the IVEC already, this makes sure it does not get lost. */
421 if (pending) {
422 atomic_bucket_insert(bucket);
423 set_softint(1 << bucket->pil);
424 }
425
426 spin_unlock_irqrestore(&irq_action_lock, flags);
427
428 if (bucket != &pil0_dummy_bucket)
429 register_irq_proc(__irq_ino(irq));
430
431 #ifdef CONFIG_SMP
432 distribute_irqs();
433 #endif
434 return 0;
435 }
436
437 EXPORT_SYMBOL(request_irq);
438
439 static struct irqaction *unlink_irq_action(unsigned int irq, void *dev_id)
440 {
441 struct ino_bucket *bucket = __bucket(irq);
442 struct irqaction *action, **pp;
443
444 pp = irq_action + bucket->pil;
445 action = *pp;
446 if (unlikely(!action))
447 return NULL;
448
449 if (unlikely(!action->handler)) {
450 printk("Freeing free IRQ %d\n", bucket->pil);
451 return NULL;
452 }
453
454 while (action && action->dev_id != dev_id) {
455 pp = &action->next;
456 action = *pp;
457 }
458
459 if (likely(action))
460 *pp = action->next;
461
462 return action;
463 }
464
465 void free_irq(unsigned int irq, void *dev_id)
466 {
467 struct irqaction *action;
468 struct ino_bucket *bucket;
469 unsigned long flags;
470
471 spin_lock_irqsave(&irq_action_lock, flags);
472
473 action = unlink_irq_action(irq, dev_id);
474
475 spin_unlock_irqrestore(&irq_action_lock, flags);
476
477 if (unlikely(!action))
478 return;
479
480 synchronize_irq(irq);
481
482 spin_lock_irqsave(&irq_action_lock, flags);
483
484 bucket = __bucket(irq);
485 if (bucket != &pil0_dummy_bucket) {
486 struct irq_desc *desc = bucket->irq_info;
487 unsigned long imap = bucket->imap;
488 int ent, i;
489
490 for (i = 0; i < MAX_IRQ_DESC_ACTION; i++) {
491 struct irqaction *p = &desc->action[i];
492
493 if (p == action) {
494 desc->action_active_mask &= ~(1 << i);
495 break;
496 }
497 }
498
499 if (!desc->action_active_mask) {
500 /* This unique interrupt source is now inactive. */
501 bucket->flags &= ~IBF_ACTIVE;
502
503 /* See if any other buckets share this bucket's IMAP
504 * and are still active.
505 */
506 for (ent = 0; ent < NUM_IVECS; ent++) {
507 struct ino_bucket *bp = &ivector_table[ent];
508 if (bp != bucket &&
509 bp->imap == imap &&
510 (bp->flags & IBF_ACTIVE) != 0)
511 break;
512 }
513
514 /* Only disable when no other sub-irq levels of
515 * the same IMAP are active.
516 */
517 if (ent == NUM_IVECS)
518 disable_irq(irq);
519 }
520 }
521
522 spin_unlock_irqrestore(&irq_action_lock, flags);
523 }
524
525 EXPORT_SYMBOL(free_irq);
526
527 #ifdef CONFIG_SMP
528 void synchronize_irq(unsigned int irq)
529 {
530 struct ino_bucket *bucket = __bucket(irq);
531
532 #if 0
533 /* The following is how I wish I could implement this.
534 * Unfortunately the ICLR registers are read-only, you can
535 * only write ICLR_foo values to them. To get the current
536 * IRQ status you would need to get at the IRQ diag registers
537 * in the PCI/SBUS controller and the layout of those vary
538 * from one controller to the next, sigh... -DaveM
539 */
540 unsigned long iclr = bucket->iclr;
541
542 while (1) {
543 u32 tmp = upa_readl(iclr);
544
545 if (tmp == ICLR_TRANSMIT ||
546 tmp == ICLR_PENDING) {
547 cpu_relax();
548 continue;
549 }
550 break;
551 }
552 #else
553 /* So we have to do this with a INPROGRESS bit just like x86. */
554 while (bucket->flags & IBF_INPROGRESS)
555 cpu_relax();
556 #endif
557 }
558 #endif /* CONFIG_SMP */
559
560 static void process_bucket(int irq, struct ino_bucket *bp, struct pt_regs *regs)
561 {
562 struct irq_desc *desc = bp->irq_info;
563 unsigned char flags = bp->flags;
564 u32 action_mask, i;
565 int random;
566
567 bp->flags |= IBF_INPROGRESS;
568
569 if (unlikely(!(flags & IBF_ACTIVE))) {
570 bp->pending = 1;
571 goto out;
572 }
573
574 if (desc->pre_handler)
575 desc->pre_handler(bp,
576 desc->pre_handler_arg1,
577 desc->pre_handler_arg2);
578
579 action_mask = desc->action_active_mask;
580 random = 0;
581 for (i = 0; i < MAX_IRQ_DESC_ACTION; i++) {
582 struct irqaction *p = &desc->action[i];
583 u32 mask = (1 << i);
584
585 if (!(action_mask & mask))
586 continue;
587
588 action_mask &= ~mask;
589
590 if (p->handler(__irq(bp), p->dev_id, regs) == IRQ_HANDLED)
591 random |= p->flags;
592
593 if (!action_mask)
594 break;
595 }
596 if (bp->pil != 0) {
597 upa_writel(ICLR_IDLE, bp->iclr);
598 /* Test and add entropy */
599 if (random & SA_SAMPLE_RANDOM)
600 add_interrupt_randomness(irq);
601 }
602 out:
603 bp->flags &= ~IBF_INPROGRESS;
604 }
605
606 void handler_irq(int irq, struct pt_regs *regs)
607 {
608 struct ino_bucket *bp;
609 int cpu = smp_processor_id();
610
611 #ifndef CONFIG_SMP
612 /*
613 * Check for TICK_INT on level 14 softint.
614 */
615 {
616 unsigned long clr_mask = 1 << irq;
617 unsigned long tick_mask = tick_ops->softint_mask;
618
619 if ((irq == 14) && (get_softint() & tick_mask)) {
620 irq = 0;
621 clr_mask = tick_mask;
622 }
623 clear_softint(clr_mask);
624 }
625 #else
626 clear_softint(1 << irq);
627 #endif
628
629 irq_enter();
630 kstat_this_cpu.irqs[irq]++;
631
632 /* Sliiiick... */
633 #ifndef CONFIG_SMP
634 bp = ((irq != 0) ?
635 __bucket(xchg32(irq_work(cpu, irq), 0)) :
636 &pil0_dummy_bucket);
637 #else
638 bp = __bucket(xchg32(irq_work(cpu, irq), 0));
639 #endif
640 while (bp) {
641 struct ino_bucket *nbp = __bucket(bp->irq_chain);
642
643 bp->irq_chain = 0;
644 process_bucket(irq, bp, regs);
645 bp = nbp;
646 }
647 irq_exit();
648 }
649
650 #ifdef CONFIG_BLK_DEV_FD
651 extern irqreturn_t floppy_interrupt(int, void *, struct pt_regs *);;
652
653 /* XXX No easy way to include asm/floppy.h XXX */
654 extern unsigned char *pdma_vaddr;
655 extern unsigned long pdma_size;
656 extern volatile int doing_pdma;
657 extern unsigned long fdc_status;
658
659 irqreturn_t sparc_floppy_irq(int irq, void *dev_cookie, struct pt_regs *regs)
660 {
661 if (likely(doing_pdma)) {
662 void __iomem *stat = (void __iomem *) fdc_status;
663 unsigned char *vaddr = pdma_vaddr;
664 unsigned long size = pdma_size;
665 u8 val;
666
667 while (size) {
668 val = readb(stat);
669 if (unlikely(!(val & 0x80))) {
670 pdma_vaddr = vaddr;
671 pdma_size = size;
672 return IRQ_HANDLED;
673 }
674 if (unlikely(!(val & 0x20))) {
675 pdma_vaddr = vaddr;
676 pdma_size = size;
677 doing_pdma = 0;
678 goto main_interrupt;
679 }
680 if (val & 0x40) {
681 /* read */
682 *vaddr++ = readb(stat + 1);
683 } else {
684 unsigned char data = *vaddr++;
685
686 /* write */
687 writeb(data, stat + 1);
688 }
689 size--;
690 }
691
692 pdma_vaddr = vaddr;
693 pdma_size = size;
694
695 /* Send Terminal Count pulse to floppy controller. */
696 val = readb(auxio_register);
697 val |= AUXIO_AUX1_FTCNT;
698 writeb(val, auxio_register);
699 val &= ~AUXIO_AUX1_FTCNT;
700 writeb(val, auxio_register);
701
702 doing_pdma = 0;
703 }
704
705 main_interrupt:
706 return floppy_interrupt(irq, dev_cookie, regs);
707 }
708 EXPORT_SYMBOL(sparc_floppy_irq);
709 #endif
710
711 /* We really don't need these at all on the Sparc. We only have
712 * stubs here because they are exported to modules.
713 */
714 unsigned long probe_irq_on(void)
715 {
716 return 0;
717 }
718
719 EXPORT_SYMBOL(probe_irq_on);
720
721 int probe_irq_off(unsigned long mask)
722 {
723 return 0;
724 }
725
726 EXPORT_SYMBOL(probe_irq_off);
727
728 #ifdef CONFIG_SMP
729 static int retarget_one_irq(struct irqaction *p, int goal_cpu)
730 {
731 struct ino_bucket *bucket = get_ino_in_irqaction(p) + ivector_table;
732 unsigned long imap = bucket->imap;
733 unsigned int tid;
734
735 while (!cpu_online(goal_cpu)) {
736 if (++goal_cpu >= NR_CPUS)
737 goal_cpu = 0;
738 }
739
740 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
741 tid = goal_cpu << 26;
742 tid &= IMAP_AID_SAFARI;
743 } else if (this_is_starfire == 0) {
744 tid = goal_cpu << 26;
745 tid &= IMAP_TID_UPA;
746 } else {
747 tid = (starfire_translate(imap, goal_cpu) << 26);
748 tid &= IMAP_TID_UPA;
749 }
750 upa_writel(tid | IMAP_VALID, imap);
751
752 do {
753 if (++goal_cpu >= NR_CPUS)
754 goal_cpu = 0;
755 } while (!cpu_online(goal_cpu));
756
757 return goal_cpu;
758 }
759
760 /* Called from request_irq. */
761 static void distribute_irqs(void)
762 {
763 unsigned long flags;
764 int cpu, level;
765
766 spin_lock_irqsave(&irq_action_lock, flags);
767 cpu = 0;
768
769 /*
770 * Skip the timer at [0], and very rare error/power intrs at [15].
771 * Also level [12], it causes problems on Ex000 systems.
772 */
773 for (level = 1; level < NR_IRQS; level++) {
774 struct irqaction *p = irq_action[level];
775
776 if (level == 12)
777 continue;
778
779 while(p) {
780 cpu = retarget_one_irq(p, cpu);
781 p = p->next;
782 }
783 }
784 spin_unlock_irqrestore(&irq_action_lock, flags);
785 }
786 #endif
787
788 struct sun5_timer {
789 u64 count0;
790 u64 limit0;
791 u64 count1;
792 u64 limit1;
793 };
794
795 static struct sun5_timer *prom_timers;
796 static u64 prom_limit0, prom_limit1;
797
798 static void map_prom_timers(void)
799 {
800 unsigned int addr[3];
801 int tnode, err;
802
803 /* PROM timer node hangs out in the top level of device siblings... */
804 tnode = prom_finddevice("/counter-timer");
805
806 /* Assume if node is not present, PROM uses different tick mechanism
807 * which we should not care about.
808 */
809 if (tnode == 0 || tnode == -1) {
810 prom_timers = (struct sun5_timer *) 0;
811 return;
812 }
813
814 /* If PROM is really using this, it must be mapped by him. */
815 err = prom_getproperty(tnode, "address", (char *)addr, sizeof(addr));
816 if (err == -1) {
817 prom_printf("PROM does not have timer mapped, trying to continue.\n");
818 prom_timers = (struct sun5_timer *) 0;
819 return;
820 }
821 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
822 }
823
824 static void kill_prom_timer(void)
825 {
826 if (!prom_timers)
827 return;
828
829 /* Save them away for later. */
830 prom_limit0 = prom_timers->limit0;
831 prom_limit1 = prom_timers->limit1;
832
833 /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
834 * We turn both off here just to be paranoid.
835 */
836 prom_timers->limit0 = 0;
837 prom_timers->limit1 = 0;
838
839 /* Wheee, eat the interrupt packet too... */
840 __asm__ __volatile__(
841 " mov 0x40, %%g2\n"
842 " ldxa [%%g0] %0, %%g1\n"
843 " ldxa [%%g2] %1, %%g1\n"
844 " stxa %%g0, [%%g0] %0\n"
845 " membar #Sync\n"
846 : /* no outputs */
847 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
848 : "g1", "g2");
849 }
850
851 void init_irqwork_curcpu(void)
852 {
853 int cpu = hard_smp_processor_id();
854
855 memset(__irq_work + cpu, 0, sizeof(struct irq_work_struct));
856 }
857
858 static void __cpuinit init_one_mondo(unsigned long *pa_ptr, unsigned long type)
859 {
860 register unsigned long func __asm__("%o0");
861 register unsigned long arg0 __asm__("%o1");
862 register unsigned long arg1 __asm__("%o2");
863 register unsigned long arg2 __asm__("%o3");
864 unsigned long page = get_zeroed_page(GFP_ATOMIC);
865
866 if (!page) {
867 prom_printf("SUN4V: Error, cannot allocate mondo queue.\n");
868 prom_halt();
869 }
870
871 *pa_ptr = __pa(page);
872
873 func = HV_FAST_CPU_QCONF;
874 arg0 = type;
875 arg1 = *pa_ptr;
876 arg2 = 128; /* XXX Implied by Niagara queue offsets. XXX */
877 __asm__ __volatile__("ta %8"
878 : "=&r" (func), "=&r" (arg0),
879 "=&r" (arg1), "=&r" (arg2)
880 : "0" (func), "1" (arg0),
881 "2" (arg1), "3" (arg2),
882 "i" (HV_FAST_TRAP));
883
884 if (func != HV_EOK) {
885 prom_printf("SUN4V: cpu_qconf(%lu) failed with error %lu\n",
886 type, func);
887 prom_halt();
888 }
889 }
890
891 static void __cpuinit init_one_kbuf(unsigned long *pa_ptr)
892 {
893 unsigned long page = get_zeroed_page(GFP_ATOMIC);
894
895 if (!page) {
896 prom_printf("SUN4V: Error, cannot allocate kbuf page.\n");
897 prom_halt();
898 }
899
900 *pa_ptr = __pa(page);
901 }
902
903 /* Allocate and init the mondo and error queues for this cpu. */
904 void __cpuinit sun4v_init_mondo_queues(void)
905 {
906 int cpu = hard_smp_processor_id();
907 struct trap_per_cpu *tb = &trap_block[cpu];
908
909 init_one_mondo(&tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO);
910 init_one_mondo(&tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO);
911 init_one_mondo(&tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR);
912 init_one_kbuf(&tb->resum_kernel_buf_pa);
913 init_one_mondo(&tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR);
914 init_one_kbuf(&tb->nonresum_kernel_buf_pa);
915 }
916
917 /* Only invoked on boot processor. */
918 void __init init_IRQ(void)
919 {
920 map_prom_timers();
921 kill_prom_timer();
922 memset(&ivector_table[0], 0, sizeof(ivector_table));
923
924 if (tlb_type == hypervisor)
925 sun4v_init_mondo_queues();
926
927 /* We need to clear any IRQ's pending in the soft interrupt
928 * registers, a spurious one could be left around from the
929 * PROM timer which we just disabled.
930 */
931 clear_softint(get_softint());
932
933 /* Now that ivector table is initialized, it is safe
934 * to receive IRQ vector traps. We will normally take
935 * one or two right now, in case some device PROM used
936 * to boot us wants to speak to us. We just ignore them.
937 */
938 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
939 "or %%g1, %0, %%g1\n\t"
940 "wrpr %%g1, 0x0, %%pstate"
941 : /* No outputs */
942 : "i" (PSTATE_IE)
943 : "g1");
944 }
945
946 static struct proc_dir_entry * root_irq_dir;
947 static struct proc_dir_entry * irq_dir [NUM_IVECS];
948
949 #ifdef CONFIG_SMP
950
951 static int irq_affinity_read_proc (char *page, char **start, off_t off,
952 int count, int *eof, void *data)
953 {
954 struct ino_bucket *bp = ivector_table + (long)data;
955 struct irq_desc *desc = bp->irq_info;
956 struct irqaction *ap = desc->action;
957 cpumask_t mask;
958 int len;
959
960 mask = get_smpaff_in_irqaction(ap);
961 if (cpus_empty(mask))
962 mask = cpu_online_map;
963
964 len = cpumask_scnprintf(page, count, mask);
965 if (count - len < 2)
966 return -EINVAL;
967 len += sprintf(page + len, "\n");
968 return len;
969 }
970
971 static inline void set_intr_affinity(int irq, cpumask_t hw_aff)
972 {
973 struct ino_bucket *bp = ivector_table + irq;
974 struct irq_desc *desc = bp->irq_info;
975 struct irqaction *ap = desc->action;
976
977 /* Users specify affinity in terms of hw cpu ids.
978 * As soon as we do this, handler_irq() might see and take action.
979 */
980 put_smpaff_in_irqaction(ap, hw_aff);
981
982 /* Migration is simply done by the next cpu to service this
983 * interrupt.
984 */
985 }
986
987 static int irq_affinity_write_proc (struct file *file, const char __user *buffer,
988 unsigned long count, void *data)
989 {
990 int irq = (long) data, full_count = count, err;
991 cpumask_t new_value;
992
993 err = cpumask_parse(buffer, count, new_value);
994
995 /*
996 * Do not allow disabling IRQs completely - it's a too easy
997 * way to make the system unusable accidentally :-) At least
998 * one online CPU still has to be targeted.
999 */
1000 cpus_and(new_value, new_value, cpu_online_map);
1001 if (cpus_empty(new_value))
1002 return -EINVAL;
1003
1004 set_intr_affinity(irq, new_value);
1005
1006 return full_count;
1007 }
1008
1009 #endif
1010
1011 #define MAX_NAMELEN 10
1012
1013 static void register_irq_proc (unsigned int irq)
1014 {
1015 char name [MAX_NAMELEN];
1016
1017 if (!root_irq_dir || irq_dir[irq])
1018 return;
1019
1020 memset(name, 0, MAX_NAMELEN);
1021 sprintf(name, "%x", irq);
1022
1023 /* create /proc/irq/1234 */
1024 irq_dir[irq] = proc_mkdir(name, root_irq_dir);
1025
1026 #ifdef CONFIG_SMP
1027 /* XXX SMP affinity not supported on starfire yet. */
1028 if (this_is_starfire == 0) {
1029 struct proc_dir_entry *entry;
1030
1031 /* create /proc/irq/1234/smp_affinity */
1032 entry = create_proc_entry("smp_affinity", 0600, irq_dir[irq]);
1033
1034 if (entry) {
1035 entry->nlink = 1;
1036 entry->data = (void *)(long)irq;
1037 entry->read_proc = irq_affinity_read_proc;
1038 entry->write_proc = irq_affinity_write_proc;
1039 }
1040 }
1041 #endif
1042 }
1043
1044 void init_irq_proc (void)
1045 {
1046 /* create /proc/irq */
1047 root_irq_dir = proc_mkdir("irq", NULL);
1048 }
1049
This page took 0.231231 seconds and 6 git commands to generate.