Merge branch 'e1000-fixes' of git://198.78.49.142/~jbrandeb/linux-2.6
[deliverable/linux.git] / arch / sparc64 / kernel / irq.c
1 /* $Id: irq.c,v 1.114 2002/01/11 08:45:38 davem Exp $
2 * irq.c: UltraSparc IRQ handling/init/registry.
3 *
4 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
7 */
8
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/sched.h>
12 #include <linux/ptrace.h>
13 #include <linux/errno.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/signal.h>
16 #include <linux/mm.h>
17 #include <linux/interrupt.h>
18 #include <linux/slab.h>
19 #include <linux/random.h>
20 #include <linux/init.h>
21 #include <linux/delay.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/bootmem.h>
25
26 #include <asm/ptrace.h>
27 #include <asm/processor.h>
28 #include <asm/atomic.h>
29 #include <asm/system.h>
30 #include <asm/irq.h>
31 #include <asm/io.h>
32 #include <asm/sbus.h>
33 #include <asm/iommu.h>
34 #include <asm/upa.h>
35 #include <asm/oplib.h>
36 #include <asm/timer.h>
37 #include <asm/smp.h>
38 #include <asm/starfire.h>
39 #include <asm/uaccess.h>
40 #include <asm/cache.h>
41 #include <asm/cpudata.h>
42 #include <asm/auxio.h>
43 #include <asm/head.h>
44
45 #ifdef CONFIG_SMP
46 static void distribute_irqs(void);
47 #endif
48
49 /* UPA nodes send interrupt packet to UltraSparc with first data reg
50 * value low 5 (7 on Starfire) bits holding the IRQ identifier being
51 * delivered. We must translate this into a non-vector IRQ so we can
52 * set the softint on this cpu.
53 *
54 * To make processing these packets efficient and race free we use
55 * an array of irq buckets below. The interrupt vector handler in
56 * entry.S feeds incoming packets into per-cpu pil-indexed lists.
57 * The IVEC handler does not need to act atomically, the PIL dispatch
58 * code uses CAS to get an atomic snapshot of the list and clear it
59 * at the same time.
60 */
61
62 struct ino_bucket ivector_table[NUM_IVECS] __attribute__ ((aligned (SMP_CACHE_BYTES)));
63
64 /* This has to be in the main kernel image, it cannot be
65 * turned into per-cpu data. The reason is that the main
66 * kernel image is locked into the TLB and this structure
67 * is accessed from the vectored interrupt trap handler. If
68 * access to this structure takes a TLB miss it could cause
69 * the 5-level sparc v9 trap stack to overflow.
70 */
71 struct irq_work_struct {
72 unsigned int irq_worklists[16];
73 };
74 struct irq_work_struct __irq_work[NR_CPUS];
75 #define irq_work(__cpu, __pil) &(__irq_work[(__cpu)].irq_worklists[(__pil)])
76
77 static struct irqaction *irq_action[NR_IRQS+1];
78
79 /* This only synchronizes entities which modify IRQ handler
80 * state and some selected user-level spots that want to
81 * read things in the table. IRQ handler processing orders
82 * its' accesses such that no locking is needed.
83 */
84 static DEFINE_SPINLOCK(irq_action_lock);
85
86 static void register_irq_proc (unsigned int irq);
87
88 /*
89 * Upper 2b of irqaction->flags holds the ino.
90 * irqaction->mask holds the smp affinity information.
91 */
92 #define put_ino_in_irqaction(action, irq) \
93 action->flags &= 0xffffffffffffUL; \
94 if (__bucket(irq) == &pil0_dummy_bucket) \
95 action->flags |= 0xdeadUL << 48; \
96 else \
97 action->flags |= __irq_ino(irq) << 48;
98 #define get_ino_in_irqaction(action) (action->flags >> 48)
99
100 #define put_smpaff_in_irqaction(action, smpaff) (action)->mask = (smpaff)
101 #define get_smpaff_in_irqaction(action) ((action)->mask)
102
103 int show_interrupts(struct seq_file *p, void *v)
104 {
105 unsigned long flags;
106 int i = *(loff_t *) v;
107 struct irqaction *action;
108 #ifdef CONFIG_SMP
109 int j;
110 #endif
111
112 spin_lock_irqsave(&irq_action_lock, flags);
113 if (i <= NR_IRQS) {
114 if (!(action = *(i + irq_action)))
115 goto out_unlock;
116 seq_printf(p, "%3d: ", i);
117 #ifndef CONFIG_SMP
118 seq_printf(p, "%10u ", kstat_irqs(i));
119 #else
120 for (j = 0; j < NR_CPUS; j++) {
121 if (!cpu_online(j))
122 continue;
123 seq_printf(p, "%10u ",
124 kstat_cpu(j).irqs[i]);
125 }
126 #endif
127 seq_printf(p, " %s:%lx", action->name,
128 get_ino_in_irqaction(action));
129 for (action = action->next; action; action = action->next) {
130 seq_printf(p, ", %s:%lx", action->name,
131 get_ino_in_irqaction(action));
132 }
133 seq_putc(p, '\n');
134 }
135 out_unlock:
136 spin_unlock_irqrestore(&irq_action_lock, flags);
137
138 return 0;
139 }
140
141 extern unsigned long real_hard_smp_processor_id(void);
142
143 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
144 {
145 unsigned int tid;
146
147 if (this_is_starfire) {
148 tid = starfire_translate(imap, cpuid);
149 tid <<= IMAP_TID_SHIFT;
150 tid &= IMAP_TID_UPA;
151 } else {
152 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
153 unsigned long ver;
154
155 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
156 if ((ver >> 32UL) == __JALAPENO_ID ||
157 (ver >> 32UL) == __SERRANO_ID) {
158 tid = cpuid << IMAP_TID_SHIFT;
159 tid &= IMAP_TID_JBUS;
160 } else {
161 unsigned int a = cpuid & 0x1f;
162 unsigned int n = (cpuid >> 5) & 0x1f;
163
164 tid = ((a << IMAP_AID_SHIFT) |
165 (n << IMAP_NID_SHIFT));
166 tid &= (IMAP_AID_SAFARI |
167 IMAP_NID_SAFARI);;
168 }
169 } else {
170 tid = cpuid << IMAP_TID_SHIFT;
171 tid &= IMAP_TID_UPA;
172 }
173 }
174
175 return tid;
176 }
177
178 /* Now these are always passed a true fully specified sun4u INO. */
179 void enable_irq(unsigned int irq)
180 {
181 struct ino_bucket *bucket = __bucket(irq);
182 unsigned long imap, cpuid;
183
184 imap = bucket->imap;
185 if (imap == 0UL)
186 return;
187
188 preempt_disable();
189
190 /* This gets the physical processor ID, even on uniprocessor,
191 * so we can always program the interrupt target correctly.
192 */
193 cpuid = real_hard_smp_processor_id();
194
195 if (tlb_type == hypervisor) {
196 unsigned int ino = __irq_ino(irq);
197 int err;
198
199 err = sun4v_intr_settarget(ino, cpuid);
200 if (err != HV_EOK)
201 printk("sun4v_intr_settarget(%x,%lu): err(%d)\n",
202 ino, cpuid, err);
203 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
204 if (err != HV_EOK)
205 printk("sun4v_intr_setenabled(%x): err(%d)\n",
206 ino, err);
207 } else {
208 unsigned int tid = sun4u_compute_tid(imap, cpuid);
209
210 /* NOTE NOTE NOTE, IGN and INO are read-only, IGN is a product
211 * of this SYSIO's preconfigured IGN in the SYSIO Control
212 * Register, the hardware just mirrors that value here.
213 * However for Graphics and UPA Slave devices the full
214 * IMAP_INR field can be set by the programmer here.
215 *
216 * Things like FFB can now be handled via the new IRQ
217 * mechanism.
218 */
219 upa_writel(tid | IMAP_VALID, imap);
220 }
221
222 preempt_enable();
223 }
224
225 /* This now gets passed true ino's as well. */
226 void disable_irq(unsigned int irq)
227 {
228 struct ino_bucket *bucket = __bucket(irq);
229 unsigned long imap;
230
231 imap = bucket->imap;
232 if (imap != 0UL) {
233 if (tlb_type == hypervisor) {
234 unsigned int ino = __irq_ino(irq);
235 int err;
236
237 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
238 if (err != HV_EOK)
239 printk("sun4v_intr_setenabled(%x): "
240 "err(%d)\n", ino, err);
241 } else {
242 u32 tmp;
243
244 /* NOTE: We do not want to futz with the IRQ clear registers
245 * and move the state to IDLE, the SCSI code does call
246 * disable_irq() to assure atomicity in the queue cmd
247 * SCSI adapter driver code. Thus we'd lose interrupts.
248 */
249 tmp = upa_readl(imap);
250 tmp &= ~IMAP_VALID;
251 upa_writel(tmp, imap);
252 }
253 }
254 }
255
256 /* The timer is the one "weird" interrupt which is generated by
257 * the CPU %tick register and not by some normal vectored interrupt
258 * source. To handle this special case, we use this dummy INO bucket.
259 */
260 static struct irq_desc pil0_dummy_desc;
261 static struct ino_bucket pil0_dummy_bucket = {
262 .irq_info = &pil0_dummy_desc,
263 };
264
265 static void build_irq_error(const char *msg, unsigned int ino, int pil, int inofixup,
266 unsigned long iclr, unsigned long imap,
267 struct ino_bucket *bucket)
268 {
269 prom_printf("IRQ: INO %04x (%d:%016lx:%016lx) --> "
270 "(%d:%d:%016lx:%016lx), halting...\n",
271 ino, bucket->pil, bucket->iclr, bucket->imap,
272 pil, inofixup, iclr, imap);
273 prom_halt();
274 }
275
276 unsigned int build_irq(int pil, int inofixup, unsigned long iclr, unsigned long imap)
277 {
278 struct ino_bucket *bucket;
279 int ino;
280
281 if (pil == 0) {
282 if (iclr != 0UL || imap != 0UL) {
283 prom_printf("Invalid dummy bucket for PIL0 (%lx:%lx)\n",
284 iclr, imap);
285 prom_halt();
286 }
287 return __irq(&pil0_dummy_bucket);
288 }
289
290 BUG_ON(tlb_type == hypervisor);
291
292 /* RULE: Both must be specified in all other cases. */
293 if (iclr == 0UL || imap == 0UL) {
294 prom_printf("Invalid build_irq %d %d %016lx %016lx\n",
295 pil, inofixup, iclr, imap);
296 prom_halt();
297 }
298
299 ino = (upa_readl(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
300 if (ino > NUM_IVECS) {
301 prom_printf("Invalid INO %04x (%d:%d:%016lx:%016lx)\n",
302 ino, pil, inofixup, iclr, imap);
303 prom_halt();
304 }
305
306 bucket = &ivector_table[ino];
307 if (bucket->flags & IBF_ACTIVE)
308 build_irq_error("IRQ: Trying to build active INO bucket.\n",
309 ino, pil, inofixup, iclr, imap, bucket);
310
311 if (bucket->irq_info) {
312 if (bucket->imap != imap || bucket->iclr != iclr)
313 build_irq_error("IRQ: Trying to reinit INO bucket.\n",
314 ino, pil, inofixup, iclr, imap, bucket);
315
316 goto out;
317 }
318
319 bucket->irq_info = kzalloc(sizeof(struct irq_desc), GFP_ATOMIC);
320 if (!bucket->irq_info) {
321 prom_printf("IRQ: Error, kmalloc(irq_desc) failed.\n");
322 prom_halt();
323 }
324
325 /* Ok, looks good, set it up. Don't touch the irq_chain or
326 * the pending flag.
327 */
328 bucket->imap = imap;
329 bucket->iclr = iclr;
330 bucket->pil = pil;
331 bucket->flags = 0;
332
333 out:
334 return __irq(bucket);
335 }
336
337 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino, int pil, unsigned char flags)
338 {
339 struct ino_bucket *bucket;
340 unsigned long sysino;
341
342 sysino = sun4v_devino_to_sysino(devhandle, devino);
343
344 bucket = &ivector_table[sysino];
345
346 /* Catch accidental accesses to these things. IMAP/ICLR handling
347 * is done by hypervisor calls on sun4v platforms, not by direct
348 * register accesses.
349 *
350 * But we need to make them look unique for the disable_irq() logic
351 * in free_irq().
352 */
353 bucket->imap = ~0UL - sysino;
354 bucket->iclr = ~0UL - sysino;
355
356 bucket->pil = pil;
357 bucket->flags = flags;
358
359 bucket->irq_info = kzalloc(sizeof(struct irq_desc), GFP_ATOMIC);
360 if (!bucket->irq_info) {
361 prom_printf("IRQ: Error, kmalloc(irq_desc) failed.\n");
362 prom_halt();
363 }
364
365 return __irq(bucket);
366 }
367
368 static void atomic_bucket_insert(struct ino_bucket *bucket)
369 {
370 unsigned long pstate;
371 unsigned int *ent;
372
373 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
374 __asm__ __volatile__("wrpr %0, %1, %%pstate"
375 : : "r" (pstate), "i" (PSTATE_IE));
376 ent = irq_work(smp_processor_id(), bucket->pil);
377 bucket->irq_chain = *ent;
378 *ent = __irq(bucket);
379 __asm__ __volatile__("wrpr %0, 0x0, %%pstate" : : "r" (pstate));
380 }
381
382 static int check_irq_sharing(int pil, unsigned long irqflags)
383 {
384 struct irqaction *action, *tmp;
385
386 action = *(irq_action + pil);
387 if (action) {
388 if ((action->flags & SA_SHIRQ) && (irqflags & SA_SHIRQ)) {
389 for (tmp = action; tmp->next; tmp = tmp->next)
390 ;
391 } else {
392 return -EBUSY;
393 }
394 }
395 return 0;
396 }
397
398 static void append_irq_action(int pil, struct irqaction *action)
399 {
400 struct irqaction **pp = irq_action + pil;
401
402 while (*pp)
403 pp = &((*pp)->next);
404 *pp = action;
405 }
406
407 static struct irqaction *get_action_slot(struct ino_bucket *bucket)
408 {
409 struct irq_desc *desc = bucket->irq_info;
410 int max_irq, i;
411
412 max_irq = 1;
413 if (bucket->flags & IBF_PCI)
414 max_irq = MAX_IRQ_DESC_ACTION;
415 for (i = 0; i < max_irq; i++) {
416 struct irqaction *p = &desc->action[i];
417 u32 mask = (1 << i);
418
419 if (desc->action_active_mask & mask)
420 continue;
421
422 desc->action_active_mask |= mask;
423 return p;
424 }
425 return NULL;
426 }
427
428 int request_irq(unsigned int irq, irqreturn_t (*handler)(int, void *, struct pt_regs *),
429 unsigned long irqflags, const char *name, void *dev_id)
430 {
431 struct irqaction *action;
432 struct ino_bucket *bucket = __bucket(irq);
433 unsigned long flags;
434 int pending = 0;
435
436 if (unlikely(!handler))
437 return -EINVAL;
438
439 if (unlikely(!bucket->irq_info))
440 return -ENODEV;
441
442 if ((bucket != &pil0_dummy_bucket) && (irqflags & SA_SAMPLE_RANDOM)) {
443 /*
444 * This function might sleep, we want to call it first,
445 * outside of the atomic block. In SA_STATIC_ALLOC case,
446 * random driver's kmalloc will fail, but it is safe.
447 * If already initialized, random driver will not reinit.
448 * Yes, this might clear the entropy pool if the wrong
449 * driver is attempted to be loaded, without actually
450 * installing a new handler, but is this really a problem,
451 * only the sysadmin is able to do this.
452 */
453 rand_initialize_irq(irq);
454 }
455
456 spin_lock_irqsave(&irq_action_lock, flags);
457
458 if (check_irq_sharing(bucket->pil, irqflags)) {
459 spin_unlock_irqrestore(&irq_action_lock, flags);
460 return -EBUSY;
461 }
462
463 action = get_action_slot(bucket);
464 if (!action) {
465 spin_unlock_irqrestore(&irq_action_lock, flags);
466 return -ENOMEM;
467 }
468
469 bucket->flags |= IBF_ACTIVE;
470 pending = 0;
471 if (bucket != &pil0_dummy_bucket) {
472 pending = bucket->pending;
473 if (pending)
474 bucket->pending = 0;
475 }
476
477 action->handler = handler;
478 action->flags = irqflags;
479 action->name = name;
480 action->next = NULL;
481 action->dev_id = dev_id;
482 put_ino_in_irqaction(action, irq);
483 put_smpaff_in_irqaction(action, CPU_MASK_NONE);
484
485 append_irq_action(bucket->pil, action);
486
487 enable_irq(irq);
488
489 /* We ate the IVEC already, this makes sure it does not get lost. */
490 if (pending) {
491 atomic_bucket_insert(bucket);
492 set_softint(1 << bucket->pil);
493 }
494
495 spin_unlock_irqrestore(&irq_action_lock, flags);
496
497 if (bucket != &pil0_dummy_bucket)
498 register_irq_proc(__irq_ino(irq));
499
500 #ifdef CONFIG_SMP
501 distribute_irqs();
502 #endif
503 return 0;
504 }
505
506 EXPORT_SYMBOL(request_irq);
507
508 static struct irqaction *unlink_irq_action(unsigned int irq, void *dev_id)
509 {
510 struct ino_bucket *bucket = __bucket(irq);
511 struct irqaction *action, **pp;
512
513 pp = irq_action + bucket->pil;
514 action = *pp;
515 if (unlikely(!action))
516 return NULL;
517
518 if (unlikely(!action->handler)) {
519 printk("Freeing free IRQ %d\n", bucket->pil);
520 return NULL;
521 }
522
523 while (action && action->dev_id != dev_id) {
524 pp = &action->next;
525 action = *pp;
526 }
527
528 if (likely(action))
529 *pp = action->next;
530
531 return action;
532 }
533
534 void free_irq(unsigned int irq, void *dev_id)
535 {
536 struct irqaction *action;
537 struct ino_bucket *bucket;
538 unsigned long flags;
539
540 spin_lock_irqsave(&irq_action_lock, flags);
541
542 action = unlink_irq_action(irq, dev_id);
543
544 spin_unlock_irqrestore(&irq_action_lock, flags);
545
546 if (unlikely(!action))
547 return;
548
549 synchronize_irq(irq);
550
551 spin_lock_irqsave(&irq_action_lock, flags);
552
553 bucket = __bucket(irq);
554 if (bucket != &pil0_dummy_bucket) {
555 struct irq_desc *desc = bucket->irq_info;
556 int ent, i;
557
558 for (i = 0; i < MAX_IRQ_DESC_ACTION; i++) {
559 struct irqaction *p = &desc->action[i];
560
561 if (p == action) {
562 desc->action_active_mask &= ~(1 << i);
563 break;
564 }
565 }
566
567 if (!desc->action_active_mask) {
568 unsigned long imap = bucket->imap;
569
570 /* This unique interrupt source is now inactive. */
571 bucket->flags &= ~IBF_ACTIVE;
572
573 /* See if any other buckets share this bucket's IMAP
574 * and are still active.
575 */
576 for (ent = 0; ent < NUM_IVECS; ent++) {
577 struct ino_bucket *bp = &ivector_table[ent];
578 if (bp != bucket &&
579 bp->imap == imap &&
580 (bp->flags & IBF_ACTIVE) != 0)
581 break;
582 }
583
584 /* Only disable when no other sub-irq levels of
585 * the same IMAP are active.
586 */
587 if (ent == NUM_IVECS)
588 disable_irq(irq);
589 }
590 }
591
592 spin_unlock_irqrestore(&irq_action_lock, flags);
593 }
594
595 EXPORT_SYMBOL(free_irq);
596
597 #ifdef CONFIG_SMP
598 void synchronize_irq(unsigned int irq)
599 {
600 struct ino_bucket *bucket = __bucket(irq);
601
602 #if 0
603 /* The following is how I wish I could implement this.
604 * Unfortunately the ICLR registers are read-only, you can
605 * only write ICLR_foo values to them. To get the current
606 * IRQ status you would need to get at the IRQ diag registers
607 * in the PCI/SBUS controller and the layout of those vary
608 * from one controller to the next, sigh... -DaveM
609 */
610 unsigned long iclr = bucket->iclr;
611
612 while (1) {
613 u32 tmp = upa_readl(iclr);
614
615 if (tmp == ICLR_TRANSMIT ||
616 tmp == ICLR_PENDING) {
617 cpu_relax();
618 continue;
619 }
620 break;
621 }
622 #else
623 /* So we have to do this with a INPROGRESS bit just like x86. */
624 while (bucket->flags & IBF_INPROGRESS)
625 cpu_relax();
626 #endif
627 }
628 #endif /* CONFIG_SMP */
629
630 static void process_bucket(int irq, struct ino_bucket *bp, struct pt_regs *regs)
631 {
632 struct irq_desc *desc = bp->irq_info;
633 unsigned char flags = bp->flags;
634 u32 action_mask, i;
635 int random;
636
637 bp->flags |= IBF_INPROGRESS;
638
639 if (unlikely(!(flags & IBF_ACTIVE))) {
640 bp->pending = 1;
641 goto out;
642 }
643
644 if (desc->pre_handler)
645 desc->pre_handler(bp,
646 desc->pre_handler_arg1,
647 desc->pre_handler_arg2);
648
649 action_mask = desc->action_active_mask;
650 random = 0;
651 for (i = 0; i < MAX_IRQ_DESC_ACTION; i++) {
652 struct irqaction *p = &desc->action[i];
653 u32 mask = (1 << i);
654
655 if (!(action_mask & mask))
656 continue;
657
658 action_mask &= ~mask;
659
660 if (p->handler(__irq(bp), p->dev_id, regs) == IRQ_HANDLED)
661 random |= p->flags;
662
663 if (!action_mask)
664 break;
665 }
666 if (bp->pil != 0) {
667 if (tlb_type == hypervisor) {
668 unsigned int ino = __irq_ino(bp);
669 int err;
670
671 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
672 if (err != HV_EOK)
673 printk("sun4v_intr_setstate(%x): "
674 "err(%d)\n", ino, err);
675 } else {
676 upa_writel(ICLR_IDLE, bp->iclr);
677 }
678
679 /* Test and add entropy */
680 if (random & SA_SAMPLE_RANDOM)
681 add_interrupt_randomness(irq);
682 }
683 out:
684 bp->flags &= ~IBF_INPROGRESS;
685 }
686
687 void handler_irq(int irq, struct pt_regs *regs)
688 {
689 struct ino_bucket *bp;
690 int cpu = smp_processor_id();
691
692 #ifndef CONFIG_SMP
693 /*
694 * Check for TICK_INT on level 14 softint.
695 */
696 {
697 unsigned long clr_mask = 1 << irq;
698 unsigned long tick_mask = tick_ops->softint_mask;
699
700 if ((irq == 14) && (get_softint() & tick_mask)) {
701 irq = 0;
702 clr_mask = tick_mask;
703 }
704 clear_softint(clr_mask);
705 }
706 #else
707 clear_softint(1 << irq);
708 #endif
709
710 irq_enter();
711 kstat_this_cpu.irqs[irq]++;
712
713 /* Sliiiick... */
714 #ifndef CONFIG_SMP
715 bp = ((irq != 0) ?
716 __bucket(xchg32(irq_work(cpu, irq), 0)) :
717 &pil0_dummy_bucket);
718 #else
719 bp = __bucket(xchg32(irq_work(cpu, irq), 0));
720 #endif
721 while (bp) {
722 struct ino_bucket *nbp = __bucket(bp->irq_chain);
723
724 bp->irq_chain = 0;
725 process_bucket(irq, bp, regs);
726 bp = nbp;
727 }
728 irq_exit();
729 }
730
731 #ifdef CONFIG_BLK_DEV_FD
732 extern irqreturn_t floppy_interrupt(int, void *, struct pt_regs *);;
733
734 /* XXX No easy way to include asm/floppy.h XXX */
735 extern unsigned char *pdma_vaddr;
736 extern unsigned long pdma_size;
737 extern volatile int doing_pdma;
738 extern unsigned long fdc_status;
739
740 irqreturn_t sparc_floppy_irq(int irq, void *dev_cookie, struct pt_regs *regs)
741 {
742 if (likely(doing_pdma)) {
743 void __iomem *stat = (void __iomem *) fdc_status;
744 unsigned char *vaddr = pdma_vaddr;
745 unsigned long size = pdma_size;
746 u8 val;
747
748 while (size) {
749 val = readb(stat);
750 if (unlikely(!(val & 0x80))) {
751 pdma_vaddr = vaddr;
752 pdma_size = size;
753 return IRQ_HANDLED;
754 }
755 if (unlikely(!(val & 0x20))) {
756 pdma_vaddr = vaddr;
757 pdma_size = size;
758 doing_pdma = 0;
759 goto main_interrupt;
760 }
761 if (val & 0x40) {
762 /* read */
763 *vaddr++ = readb(stat + 1);
764 } else {
765 unsigned char data = *vaddr++;
766
767 /* write */
768 writeb(data, stat + 1);
769 }
770 size--;
771 }
772
773 pdma_vaddr = vaddr;
774 pdma_size = size;
775
776 /* Send Terminal Count pulse to floppy controller. */
777 val = readb(auxio_register);
778 val |= AUXIO_AUX1_FTCNT;
779 writeb(val, auxio_register);
780 val &= ~AUXIO_AUX1_FTCNT;
781 writeb(val, auxio_register);
782
783 doing_pdma = 0;
784 }
785
786 main_interrupt:
787 return floppy_interrupt(irq, dev_cookie, regs);
788 }
789 EXPORT_SYMBOL(sparc_floppy_irq);
790 #endif
791
792 /* We really don't need these at all on the Sparc. We only have
793 * stubs here because they are exported to modules.
794 */
795 unsigned long probe_irq_on(void)
796 {
797 return 0;
798 }
799
800 EXPORT_SYMBOL(probe_irq_on);
801
802 int probe_irq_off(unsigned long mask)
803 {
804 return 0;
805 }
806
807 EXPORT_SYMBOL(probe_irq_off);
808
809 #ifdef CONFIG_SMP
810 static int retarget_one_irq(struct irqaction *p, int goal_cpu)
811 {
812 struct ino_bucket *bucket = get_ino_in_irqaction(p) + ivector_table;
813
814 while (!cpu_online(goal_cpu)) {
815 if (++goal_cpu >= NR_CPUS)
816 goal_cpu = 0;
817 }
818
819 if (tlb_type == hypervisor) {
820 unsigned int ino = __irq_ino(bucket);
821
822 sun4v_intr_settarget(ino, goal_cpu);
823 sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
824 } else {
825 unsigned long imap = bucket->imap;
826 unsigned int tid = sun4u_compute_tid(imap, goal_cpu);
827
828 upa_writel(tid | IMAP_VALID, imap);
829 }
830
831 do {
832 if (++goal_cpu >= NR_CPUS)
833 goal_cpu = 0;
834 } while (!cpu_online(goal_cpu));
835
836 return goal_cpu;
837 }
838
839 /* Called from request_irq. */
840 static void distribute_irqs(void)
841 {
842 unsigned long flags;
843 int cpu, level;
844
845 spin_lock_irqsave(&irq_action_lock, flags);
846 cpu = 0;
847
848 /*
849 * Skip the timer at [0], and very rare error/power intrs at [15].
850 * Also level [12], it causes problems on Ex000 systems.
851 */
852 for (level = 1; level < NR_IRQS; level++) {
853 struct irqaction *p = irq_action[level];
854
855 if (level == 12)
856 continue;
857
858 while(p) {
859 cpu = retarget_one_irq(p, cpu);
860 p = p->next;
861 }
862 }
863 spin_unlock_irqrestore(&irq_action_lock, flags);
864 }
865 #endif
866
867 struct sun5_timer {
868 u64 count0;
869 u64 limit0;
870 u64 count1;
871 u64 limit1;
872 };
873
874 static struct sun5_timer *prom_timers;
875 static u64 prom_limit0, prom_limit1;
876
877 static void map_prom_timers(void)
878 {
879 unsigned int addr[3];
880 int tnode, err;
881
882 /* PROM timer node hangs out in the top level of device siblings... */
883 tnode = prom_finddevice("/counter-timer");
884
885 /* Assume if node is not present, PROM uses different tick mechanism
886 * which we should not care about.
887 */
888 if (tnode == 0 || tnode == -1) {
889 prom_timers = (struct sun5_timer *) 0;
890 return;
891 }
892
893 /* If PROM is really using this, it must be mapped by him. */
894 err = prom_getproperty(tnode, "address", (char *)addr, sizeof(addr));
895 if (err == -1) {
896 prom_printf("PROM does not have timer mapped, trying to continue.\n");
897 prom_timers = (struct sun5_timer *) 0;
898 return;
899 }
900 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
901 }
902
903 static void kill_prom_timer(void)
904 {
905 if (!prom_timers)
906 return;
907
908 /* Save them away for later. */
909 prom_limit0 = prom_timers->limit0;
910 prom_limit1 = prom_timers->limit1;
911
912 /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
913 * We turn both off here just to be paranoid.
914 */
915 prom_timers->limit0 = 0;
916 prom_timers->limit1 = 0;
917
918 /* Wheee, eat the interrupt packet too... */
919 __asm__ __volatile__(
920 " mov 0x40, %%g2\n"
921 " ldxa [%%g0] %0, %%g1\n"
922 " ldxa [%%g2] %1, %%g1\n"
923 " stxa %%g0, [%%g0] %0\n"
924 " membar #Sync\n"
925 : /* no outputs */
926 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
927 : "g1", "g2");
928 }
929
930 void init_irqwork_curcpu(void)
931 {
932 int cpu = hard_smp_processor_id();
933
934 memset(__irq_work + cpu, 0, sizeof(struct irq_work_struct));
935 }
936
937 static void __cpuinit register_one_mondo(unsigned long paddr, unsigned long type)
938 {
939 unsigned long num_entries = 128;
940 unsigned long status;
941
942 status = sun4v_cpu_qconf(type, paddr, num_entries);
943 if (status != HV_EOK) {
944 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
945 "err %lu\n", type, paddr, num_entries, status);
946 prom_halt();
947 }
948 }
949
950 static void __cpuinit sun4v_register_mondo_queues(int this_cpu)
951 {
952 struct trap_per_cpu *tb = &trap_block[this_cpu];
953
954 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO);
955 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO);
956 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR);
957 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR);
958 }
959
960 static void __cpuinit alloc_one_mondo(unsigned long *pa_ptr, int use_bootmem)
961 {
962 void *page;
963
964 if (use_bootmem)
965 page = alloc_bootmem_low_pages(PAGE_SIZE);
966 else
967 page = (void *) get_zeroed_page(GFP_ATOMIC);
968
969 if (!page) {
970 prom_printf("SUN4V: Error, cannot allocate mondo queue.\n");
971 prom_halt();
972 }
973
974 *pa_ptr = __pa(page);
975 }
976
977 static void __cpuinit alloc_one_kbuf(unsigned long *pa_ptr, int use_bootmem)
978 {
979 void *page;
980
981 if (use_bootmem)
982 page = alloc_bootmem_low_pages(PAGE_SIZE);
983 else
984 page = (void *) get_zeroed_page(GFP_ATOMIC);
985
986 if (!page) {
987 prom_printf("SUN4V: Error, cannot allocate kbuf page.\n");
988 prom_halt();
989 }
990
991 *pa_ptr = __pa(page);
992 }
993
994 static void __cpuinit init_cpu_send_mondo_info(struct trap_per_cpu *tb, int use_bootmem)
995 {
996 #ifdef CONFIG_SMP
997 void *page;
998
999 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
1000
1001 if (use_bootmem)
1002 page = alloc_bootmem_low_pages(PAGE_SIZE);
1003 else
1004 page = (void *) get_zeroed_page(GFP_ATOMIC);
1005
1006 if (!page) {
1007 prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
1008 prom_halt();
1009 }
1010
1011 tb->cpu_mondo_block_pa = __pa(page);
1012 tb->cpu_list_pa = __pa(page + 64);
1013 #endif
1014 }
1015
1016 /* Allocate and register the mondo and error queues for this cpu. */
1017 void __cpuinit sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load)
1018 {
1019 struct trap_per_cpu *tb = &trap_block[cpu];
1020
1021 if (alloc) {
1022 alloc_one_mondo(&tb->cpu_mondo_pa, use_bootmem);
1023 alloc_one_mondo(&tb->dev_mondo_pa, use_bootmem);
1024 alloc_one_mondo(&tb->resum_mondo_pa, use_bootmem);
1025 alloc_one_kbuf(&tb->resum_kernel_buf_pa, use_bootmem);
1026 alloc_one_mondo(&tb->nonresum_mondo_pa, use_bootmem);
1027 alloc_one_kbuf(&tb->nonresum_kernel_buf_pa, use_bootmem);
1028
1029 init_cpu_send_mondo_info(tb, use_bootmem);
1030 }
1031
1032 if (load) {
1033 if (cpu != hard_smp_processor_id()) {
1034 prom_printf("SUN4V: init mondo on cpu %d not %d\n",
1035 cpu, hard_smp_processor_id());
1036 prom_halt();
1037 }
1038 sun4v_register_mondo_queues(cpu);
1039 }
1040 }
1041
1042 /* Only invoked on boot processor. */
1043 void __init init_IRQ(void)
1044 {
1045 map_prom_timers();
1046 kill_prom_timer();
1047 memset(&ivector_table[0], 0, sizeof(ivector_table));
1048
1049 if (tlb_type == hypervisor)
1050 sun4v_init_mondo_queues(1, hard_smp_processor_id(), 1, 1);
1051
1052 /* We need to clear any IRQ's pending in the soft interrupt
1053 * registers, a spurious one could be left around from the
1054 * PROM timer which we just disabled.
1055 */
1056 clear_softint(get_softint());
1057
1058 /* Now that ivector table is initialized, it is safe
1059 * to receive IRQ vector traps. We will normally take
1060 * one or two right now, in case some device PROM used
1061 * to boot us wants to speak to us. We just ignore them.
1062 */
1063 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
1064 "or %%g1, %0, %%g1\n\t"
1065 "wrpr %%g1, 0x0, %%pstate"
1066 : /* No outputs */
1067 : "i" (PSTATE_IE)
1068 : "g1");
1069 }
1070
1071 static struct proc_dir_entry * root_irq_dir;
1072 static struct proc_dir_entry * irq_dir [NUM_IVECS];
1073
1074 #ifdef CONFIG_SMP
1075
1076 static int irq_affinity_read_proc (char *page, char **start, off_t off,
1077 int count, int *eof, void *data)
1078 {
1079 struct ino_bucket *bp = ivector_table + (long)data;
1080 struct irq_desc *desc = bp->irq_info;
1081 struct irqaction *ap = desc->action;
1082 cpumask_t mask;
1083 int len;
1084
1085 mask = get_smpaff_in_irqaction(ap);
1086 if (cpus_empty(mask))
1087 mask = cpu_online_map;
1088
1089 len = cpumask_scnprintf(page, count, mask);
1090 if (count - len < 2)
1091 return -EINVAL;
1092 len += sprintf(page + len, "\n");
1093 return len;
1094 }
1095
1096 static inline void set_intr_affinity(int irq, cpumask_t hw_aff)
1097 {
1098 struct ino_bucket *bp = ivector_table + irq;
1099 struct irq_desc *desc = bp->irq_info;
1100 struct irqaction *ap = desc->action;
1101
1102 /* Users specify affinity in terms of hw cpu ids.
1103 * As soon as we do this, handler_irq() might see and take action.
1104 */
1105 put_smpaff_in_irqaction(ap, hw_aff);
1106
1107 /* Migration is simply done by the next cpu to service this
1108 * interrupt.
1109 */
1110 }
1111
1112 static int irq_affinity_write_proc (struct file *file, const char __user *buffer,
1113 unsigned long count, void *data)
1114 {
1115 int irq = (long) data, full_count = count, err;
1116 cpumask_t new_value;
1117
1118 err = cpumask_parse(buffer, count, new_value);
1119
1120 /*
1121 * Do not allow disabling IRQs completely - it's a too easy
1122 * way to make the system unusable accidentally :-) At least
1123 * one online CPU still has to be targeted.
1124 */
1125 cpus_and(new_value, new_value, cpu_online_map);
1126 if (cpus_empty(new_value))
1127 return -EINVAL;
1128
1129 set_intr_affinity(irq, new_value);
1130
1131 return full_count;
1132 }
1133
1134 #endif
1135
1136 #define MAX_NAMELEN 10
1137
1138 static void register_irq_proc (unsigned int irq)
1139 {
1140 char name [MAX_NAMELEN];
1141
1142 if (!root_irq_dir || irq_dir[irq])
1143 return;
1144
1145 memset(name, 0, MAX_NAMELEN);
1146 sprintf(name, "%x", irq);
1147
1148 /* create /proc/irq/1234 */
1149 irq_dir[irq] = proc_mkdir(name, root_irq_dir);
1150
1151 #ifdef CONFIG_SMP
1152 /* XXX SMP affinity not supported on starfire yet. */
1153 if (this_is_starfire == 0) {
1154 struct proc_dir_entry *entry;
1155
1156 /* create /proc/irq/1234/smp_affinity */
1157 entry = create_proc_entry("smp_affinity", 0600, irq_dir[irq]);
1158
1159 if (entry) {
1160 entry->nlink = 1;
1161 entry->data = (void *)(long)irq;
1162 entry->read_proc = irq_affinity_read_proc;
1163 entry->write_proc = irq_affinity_write_proc;
1164 }
1165 }
1166 #endif
1167 }
1168
1169 void init_irq_proc (void)
1170 {
1171 /* create /proc/irq */
1172 root_irq_dir = proc_mkdir("irq", NULL);
1173 }
1174
This page took 0.083584 seconds and 6 git commands to generate.