[PATCH] PCI: restore BAR values after D3hot->D0 for devices that need it
[deliverable/linux.git] / arch / sparc64 / kernel / pci.c
1 /* $Id: pci.c,v 1.39 2002/01/05 01:13:43 davem Exp $
2 * pci.c: UltraSparc PCI controller support.
3 *
4 * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@redhat.com)
5 * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1999 Jakub Jelinek (jj@ultra.linux.cz)
7 */
8
9 #include <linux/config.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/sched.h>
14 #include <linux/capability.h>
15 #include <linux/errno.h>
16 #include <linux/smp_lock.h>
17 #include <linux/init.h>
18
19 #include <asm/uaccess.h>
20 #include <asm/pbm.h>
21 #include <asm/pgtable.h>
22 #include <asm/irq.h>
23 #include <asm/ebus.h>
24 #include <asm/isa.h>
25
26 unsigned long pci_memspace_mask = 0xffffffffUL;
27
28 #ifndef CONFIG_PCI
29 /* A "nop" PCI implementation. */
30 asmlinkage int sys_pciconfig_read(unsigned long bus, unsigned long dfn,
31 unsigned long off, unsigned long len,
32 unsigned char *buf)
33 {
34 return 0;
35 }
36 asmlinkage int sys_pciconfig_write(unsigned long bus, unsigned long dfn,
37 unsigned long off, unsigned long len,
38 unsigned char *buf)
39 {
40 return 0;
41 }
42 #else
43
44 /* List of all PCI controllers found in the system. */
45 struct pci_controller_info *pci_controller_root = NULL;
46
47 /* Each PCI controller found gets a unique index. */
48 int pci_num_controllers = 0;
49
50 /* At boot time the user can give the kernel a command
51 * line option which controls if and how PCI devices
52 * are reordered at PCI bus probing time.
53 */
54 int pci_device_reorder = 0;
55
56 volatile int pci_poke_in_progress;
57 volatile int pci_poke_cpu = -1;
58 volatile int pci_poke_faulted;
59
60 static DEFINE_SPINLOCK(pci_poke_lock);
61
62 void pci_config_read8(u8 *addr, u8 *ret)
63 {
64 unsigned long flags;
65 u8 byte;
66
67 spin_lock_irqsave(&pci_poke_lock, flags);
68 pci_poke_cpu = smp_processor_id();
69 pci_poke_in_progress = 1;
70 pci_poke_faulted = 0;
71 __asm__ __volatile__("membar #Sync\n\t"
72 "lduba [%1] %2, %0\n\t"
73 "membar #Sync"
74 : "=r" (byte)
75 : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
76 : "memory");
77 pci_poke_in_progress = 0;
78 pci_poke_cpu = -1;
79 if (!pci_poke_faulted)
80 *ret = byte;
81 spin_unlock_irqrestore(&pci_poke_lock, flags);
82 }
83
84 void pci_config_read16(u16 *addr, u16 *ret)
85 {
86 unsigned long flags;
87 u16 word;
88
89 spin_lock_irqsave(&pci_poke_lock, flags);
90 pci_poke_cpu = smp_processor_id();
91 pci_poke_in_progress = 1;
92 pci_poke_faulted = 0;
93 __asm__ __volatile__("membar #Sync\n\t"
94 "lduha [%1] %2, %0\n\t"
95 "membar #Sync"
96 : "=r" (word)
97 : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
98 : "memory");
99 pci_poke_in_progress = 0;
100 pci_poke_cpu = -1;
101 if (!pci_poke_faulted)
102 *ret = word;
103 spin_unlock_irqrestore(&pci_poke_lock, flags);
104 }
105
106 void pci_config_read32(u32 *addr, u32 *ret)
107 {
108 unsigned long flags;
109 u32 dword;
110
111 spin_lock_irqsave(&pci_poke_lock, flags);
112 pci_poke_cpu = smp_processor_id();
113 pci_poke_in_progress = 1;
114 pci_poke_faulted = 0;
115 __asm__ __volatile__("membar #Sync\n\t"
116 "lduwa [%1] %2, %0\n\t"
117 "membar #Sync"
118 : "=r" (dword)
119 : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
120 : "memory");
121 pci_poke_in_progress = 0;
122 pci_poke_cpu = -1;
123 if (!pci_poke_faulted)
124 *ret = dword;
125 spin_unlock_irqrestore(&pci_poke_lock, flags);
126 }
127
128 void pci_config_write8(u8 *addr, u8 val)
129 {
130 unsigned long flags;
131
132 spin_lock_irqsave(&pci_poke_lock, flags);
133 pci_poke_cpu = smp_processor_id();
134 pci_poke_in_progress = 1;
135 pci_poke_faulted = 0;
136 __asm__ __volatile__("membar #Sync\n\t"
137 "stba %0, [%1] %2\n\t"
138 "membar #Sync"
139 : /* no outputs */
140 : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
141 : "memory");
142 pci_poke_in_progress = 0;
143 pci_poke_cpu = -1;
144 spin_unlock_irqrestore(&pci_poke_lock, flags);
145 }
146
147 void pci_config_write16(u16 *addr, u16 val)
148 {
149 unsigned long flags;
150
151 spin_lock_irqsave(&pci_poke_lock, flags);
152 pci_poke_cpu = smp_processor_id();
153 pci_poke_in_progress = 1;
154 pci_poke_faulted = 0;
155 __asm__ __volatile__("membar #Sync\n\t"
156 "stha %0, [%1] %2\n\t"
157 "membar #Sync"
158 : /* no outputs */
159 : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
160 : "memory");
161 pci_poke_in_progress = 0;
162 pci_poke_cpu = -1;
163 spin_unlock_irqrestore(&pci_poke_lock, flags);
164 }
165
166 void pci_config_write32(u32 *addr, u32 val)
167 {
168 unsigned long flags;
169
170 spin_lock_irqsave(&pci_poke_lock, flags);
171 pci_poke_cpu = smp_processor_id();
172 pci_poke_in_progress = 1;
173 pci_poke_faulted = 0;
174 __asm__ __volatile__("membar #Sync\n\t"
175 "stwa %0, [%1] %2\n\t"
176 "membar #Sync"
177 : /* no outputs */
178 : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
179 : "memory");
180 pci_poke_in_progress = 0;
181 pci_poke_cpu = -1;
182 spin_unlock_irqrestore(&pci_poke_lock, flags);
183 }
184
185 /* Probe for all PCI controllers in the system. */
186 extern void sabre_init(int, char *);
187 extern void psycho_init(int, char *);
188 extern void schizo_init(int, char *);
189 extern void schizo_plus_init(int, char *);
190 extern void tomatillo_init(int, char *);
191
192 static struct {
193 char *model_name;
194 void (*init)(int, char *);
195 } pci_controller_table[] __initdata = {
196 { "SUNW,sabre", sabre_init },
197 { "pci108e,a000", sabre_init },
198 { "pci108e,a001", sabre_init },
199 { "SUNW,psycho", psycho_init },
200 { "pci108e,8000", psycho_init },
201 { "SUNW,schizo", schizo_init },
202 { "pci108e,8001", schizo_init },
203 { "SUNW,schizo+", schizo_plus_init },
204 { "pci108e,8002", schizo_plus_init },
205 { "SUNW,tomatillo", tomatillo_init },
206 { "pci108e,a801", tomatillo_init },
207 };
208 #define PCI_NUM_CONTROLLER_TYPES (sizeof(pci_controller_table) / \
209 sizeof(pci_controller_table[0]))
210
211 static int __init pci_controller_init(char *model_name, int namelen, int node)
212 {
213 int i;
214
215 for (i = 0; i < PCI_NUM_CONTROLLER_TYPES; i++) {
216 if (!strncmp(model_name,
217 pci_controller_table[i].model_name,
218 namelen)) {
219 pci_controller_table[i].init(node, model_name);
220 return 1;
221 }
222 }
223 printk("PCI: Warning unknown controller, model name [%s]\n",
224 model_name);
225 printk("PCI: Ignoring controller...\n");
226
227 return 0;
228 }
229
230 static int __init pci_is_controller(char *model_name, int namelen, int node)
231 {
232 int i;
233
234 for (i = 0; i < PCI_NUM_CONTROLLER_TYPES; i++) {
235 if (!strncmp(model_name,
236 pci_controller_table[i].model_name,
237 namelen)) {
238 return 1;
239 }
240 }
241 return 0;
242 }
243
244 static int __init pci_controller_scan(int (*handler)(char *, int, int))
245 {
246 char namebuf[64];
247 int node;
248 int count = 0;
249
250 node = prom_getchild(prom_root_node);
251 while ((node = prom_searchsiblings(node, "pci")) != 0) {
252 int len;
253
254 if ((len = prom_getproperty(node, "model", namebuf, sizeof(namebuf))) > 0 ||
255 (len = prom_getproperty(node, "compatible", namebuf, sizeof(namebuf))) > 0) {
256 int item_len = 0;
257
258 /* Our value may be a multi-valued string in the
259 * case of some compatible properties. For sanity,
260 * only try the first one. */
261
262 while (namebuf[item_len] && len) {
263 len--;
264 item_len++;
265 }
266
267 if (handler(namebuf, item_len, node))
268 count++;
269 }
270
271 node = prom_getsibling(node);
272 if (!node)
273 break;
274 }
275
276 return count;
277 }
278
279
280 /* Is there some PCI controller in the system? */
281 int __init pcic_present(void)
282 {
283 return pci_controller_scan(pci_is_controller);
284 }
285
286 /* Find each controller in the system, attach and initialize
287 * software state structure for each and link into the
288 * pci_controller_root. Setup the controller enough such
289 * that bus scanning can be done.
290 */
291 static void __init pci_controller_probe(void)
292 {
293 printk("PCI: Probing for controllers.\n");
294
295 pci_controller_scan(pci_controller_init);
296 }
297
298 static void __init pci_scan_each_controller_bus(void)
299 {
300 struct pci_controller_info *p;
301
302 for (p = pci_controller_root; p; p = p->next)
303 p->scan_bus(p);
304 }
305
306 /* Reorder the pci_dev chain, so that onboard devices come first
307 * and then come the pluggable cards.
308 */
309 static void __init pci_reorder_devs(void)
310 {
311 struct list_head *pci_onboard = &pci_devices;
312 struct list_head *walk = pci_onboard->next;
313
314 while (walk != pci_onboard) {
315 struct pci_dev *pdev = pci_dev_g(walk);
316 struct list_head *walk_next = walk->next;
317
318 if (pdev->irq && (__irq_ino(pdev->irq) & 0x20)) {
319 list_del(walk);
320 list_add(walk, pci_onboard);
321 }
322
323 walk = walk_next;
324 }
325 }
326
327 extern void clock_probe(void);
328 extern void power_init(void);
329
330 static int __init pcibios_init(void)
331 {
332 pci_controller_probe();
333 if (pci_controller_root == NULL)
334 return 0;
335
336 pci_scan_each_controller_bus();
337
338 if (pci_device_reorder)
339 pci_reorder_devs();
340
341 isa_init();
342 ebus_init();
343 clock_probe();
344 power_init();
345
346 return 0;
347 }
348
349 subsys_initcall(pcibios_init);
350
351 void pcibios_fixup_bus(struct pci_bus *pbus)
352 {
353 struct pci_pbm_info *pbm = pbus->sysdata;
354
355 /* Generic PCI bus probing sets these to point at
356 * &io{port,mem}_resouce which is wrong for us.
357 */
358 pbus->resource[0] = &pbm->io_space;
359 pbus->resource[1] = &pbm->mem_space;
360 }
361
362 int pci_claim_resource(struct pci_dev *pdev, int resource)
363 {
364 struct pci_pbm_info *pbm = pdev->bus->sysdata;
365 struct resource *res = &pdev->resource[resource];
366 struct resource *root;
367
368 if (!pbm)
369 return -EINVAL;
370
371 if (res->flags & IORESOURCE_IO)
372 root = &pbm->io_space;
373 else
374 root = &pbm->mem_space;
375
376 pbm->parent->resource_adjust(pdev, res, root);
377
378 return request_resource(root, res);
379 }
380
381 /*
382 * Given the PCI bus a device resides on, try to
383 * find an acceptable resource allocation for a
384 * specific device resource..
385 */
386 static int pci_assign_bus_resource(const struct pci_bus *bus,
387 struct pci_dev *dev,
388 struct resource *res,
389 unsigned long size,
390 unsigned long min,
391 int resno)
392 {
393 unsigned int type_mask;
394 int i;
395
396 type_mask = IORESOURCE_IO | IORESOURCE_MEM;
397 for (i = 0 ; i < 4; i++) {
398 struct resource *r = bus->resource[i];
399 if (!r)
400 continue;
401
402 /* type_mask must match */
403 if ((res->flags ^ r->flags) & type_mask)
404 continue;
405
406 /* Ok, try it out.. */
407 if (allocate_resource(r, res, size, min, -1, size, NULL, NULL) < 0)
408 continue;
409
410 /* PCI config space updated by caller. */
411 return 0;
412 }
413 return -EBUSY;
414 }
415
416 void pci_update_resource(struct pci_dev *dev, struct resource *res, int resno)
417 {
418 /* Not implemented for sparc64... */
419 BUG();
420 }
421
422 int pci_assign_resource(struct pci_dev *pdev, int resource)
423 {
424 struct pcidev_cookie *pcp = pdev->sysdata;
425 struct pci_pbm_info *pbm = pcp->pbm;
426 struct resource *res = &pdev->resource[resource];
427 unsigned long min, size;
428 int err;
429
430 if (res->flags & IORESOURCE_IO)
431 min = pbm->io_space.start + 0x400UL;
432 else
433 min = pbm->mem_space.start;
434
435 size = res->end - res->start + 1;
436
437 err = pci_assign_bus_resource(pdev->bus, pdev, res, size, min, resource);
438
439 if (err < 0) {
440 printk("PCI: Failed to allocate resource %d for %s\n",
441 resource, pci_name(pdev));
442 } else {
443 /* Update PCI config space. */
444 pbm->parent->base_address_update(pdev, resource);
445 }
446
447 return err;
448 }
449
450 /* Sort resources by alignment */
451 void pdev_sort_resources(struct pci_dev *dev, struct resource_list *head)
452 {
453 int i;
454
455 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
456 struct resource *r;
457 struct resource_list *list, *tmp;
458 unsigned long r_align;
459
460 r = &dev->resource[i];
461 r_align = r->end - r->start;
462
463 if (!(r->flags) || r->parent)
464 continue;
465 if (!r_align) {
466 printk(KERN_WARNING "PCI: Ignore bogus resource %d "
467 "[%lx:%lx] of %s\n",
468 i, r->start, r->end, pci_name(dev));
469 continue;
470 }
471 r_align = (i < PCI_BRIDGE_RESOURCES) ? r_align + 1 : r->start;
472 for (list = head; ; list = list->next) {
473 unsigned long align = 0;
474 struct resource_list *ln = list->next;
475 int idx;
476
477 if (ln) {
478 idx = ln->res - &ln->dev->resource[0];
479 align = (idx < PCI_BRIDGE_RESOURCES) ?
480 ln->res->end - ln->res->start + 1 :
481 ln->res->start;
482 }
483 if (r_align > align) {
484 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
485 if (!tmp)
486 panic("pdev_sort_resources(): "
487 "kmalloc() failed!\n");
488 tmp->next = ln;
489 tmp->res = r;
490 tmp->dev = dev;
491 list->next = tmp;
492 break;
493 }
494 }
495 }
496 }
497
498 void pcibios_update_irq(struct pci_dev *pdev, int irq)
499 {
500 }
501
502 void pcibios_align_resource(void *data, struct resource *res,
503 unsigned long size, unsigned long align)
504 {
505 }
506
507 int pcibios_enable_device(struct pci_dev *pdev, int mask)
508 {
509 return 0;
510 }
511
512 void pcibios_resource_to_bus(struct pci_dev *pdev, struct pci_bus_region *region,
513 struct resource *res)
514 {
515 struct pci_pbm_info *pbm = pdev->bus->sysdata;
516 struct resource zero_res, *root;
517
518 zero_res.start = 0;
519 zero_res.end = 0;
520 zero_res.flags = res->flags;
521
522 if (res->flags & IORESOURCE_IO)
523 root = &pbm->io_space;
524 else
525 root = &pbm->mem_space;
526
527 pbm->parent->resource_adjust(pdev, &zero_res, root);
528
529 region->start = res->start - zero_res.start;
530 region->end = res->end - zero_res.start;
531 }
532
533 void pcibios_bus_to_resource(struct pci_dev *pdev, struct resource *res,
534 struct pci_bus_region *region)
535 {
536 struct pci_pbm_info *pbm = pdev->bus->sysdata;
537 struct resource *root;
538
539 res->start = region->start;
540 res->end = region->end;
541
542 if (res->flags & IORESOURCE_IO)
543 root = &pbm->io_space;
544 else
545 root = &pbm->mem_space;
546
547 pbm->parent->resource_adjust(pdev, res, root);
548 }
549 EXPORT_SYMBOL(pcibios_bus_to_resource);
550
551 char * __init pcibios_setup(char *str)
552 {
553 if (!strcmp(str, "onboardfirst")) {
554 pci_device_reorder = 1;
555 return NULL;
556 }
557 if (!strcmp(str, "noreorder")) {
558 pci_device_reorder = 0;
559 return NULL;
560 }
561 return str;
562 }
563
564 /* Platform support for /proc/bus/pci/X/Y mmap()s. */
565
566 /* If the user uses a host-bridge as the PCI device, he may use
567 * this to perform a raw mmap() of the I/O or MEM space behind
568 * that controller.
569 *
570 * This can be useful for execution of x86 PCI bios initialization code
571 * on a PCI card, like the xfree86 int10 stuff does.
572 */
573 static int __pci_mmap_make_offset_bus(struct pci_dev *pdev, struct vm_area_struct *vma,
574 enum pci_mmap_state mmap_state)
575 {
576 struct pcidev_cookie *pcp = pdev->sysdata;
577 struct pci_pbm_info *pbm;
578 struct pci_controller_info *p;
579 unsigned long space_size, user_offset, user_size;
580
581 if (!pcp)
582 return -ENXIO;
583 pbm = pcp->pbm;
584 if (!pbm)
585 return -ENXIO;
586
587 p = pbm->parent;
588 if (p->pbms_same_domain) {
589 unsigned long lowest, highest;
590
591 lowest = ~0UL; highest = 0UL;
592 if (mmap_state == pci_mmap_io) {
593 if (p->pbm_A.io_space.flags) {
594 lowest = p->pbm_A.io_space.start;
595 highest = p->pbm_A.io_space.end + 1;
596 }
597 if (p->pbm_B.io_space.flags) {
598 if (lowest > p->pbm_B.io_space.start)
599 lowest = p->pbm_B.io_space.start;
600 if (highest < p->pbm_B.io_space.end + 1)
601 highest = p->pbm_B.io_space.end + 1;
602 }
603 space_size = highest - lowest;
604 } else {
605 if (p->pbm_A.mem_space.flags) {
606 lowest = p->pbm_A.mem_space.start;
607 highest = p->pbm_A.mem_space.end + 1;
608 }
609 if (p->pbm_B.mem_space.flags) {
610 if (lowest > p->pbm_B.mem_space.start)
611 lowest = p->pbm_B.mem_space.start;
612 if (highest < p->pbm_B.mem_space.end + 1)
613 highest = p->pbm_B.mem_space.end + 1;
614 }
615 space_size = highest - lowest;
616 }
617 } else {
618 if (mmap_state == pci_mmap_io) {
619 space_size = (pbm->io_space.end -
620 pbm->io_space.start) + 1;
621 } else {
622 space_size = (pbm->mem_space.end -
623 pbm->mem_space.start) + 1;
624 }
625 }
626
627 /* Make sure the request is in range. */
628 user_offset = vma->vm_pgoff << PAGE_SHIFT;
629 user_size = vma->vm_end - vma->vm_start;
630
631 if (user_offset >= space_size ||
632 (user_offset + user_size) > space_size)
633 return -EINVAL;
634
635 if (p->pbms_same_domain) {
636 unsigned long lowest = ~0UL;
637
638 if (mmap_state == pci_mmap_io) {
639 if (p->pbm_A.io_space.flags)
640 lowest = p->pbm_A.io_space.start;
641 if (p->pbm_B.io_space.flags &&
642 lowest > p->pbm_B.io_space.start)
643 lowest = p->pbm_B.io_space.start;
644 } else {
645 if (p->pbm_A.mem_space.flags)
646 lowest = p->pbm_A.mem_space.start;
647 if (p->pbm_B.mem_space.flags &&
648 lowest > p->pbm_B.mem_space.start)
649 lowest = p->pbm_B.mem_space.start;
650 }
651 vma->vm_pgoff = (lowest + user_offset) >> PAGE_SHIFT;
652 } else {
653 if (mmap_state == pci_mmap_io) {
654 vma->vm_pgoff = (pbm->io_space.start +
655 user_offset) >> PAGE_SHIFT;
656 } else {
657 vma->vm_pgoff = (pbm->mem_space.start +
658 user_offset) >> PAGE_SHIFT;
659 }
660 }
661
662 return 0;
663 }
664
665 /* Adjust vm_pgoff of VMA such that it is the physical page offset corresponding
666 * to the 32-bit pci bus offset for DEV requested by the user.
667 *
668 * Basically, the user finds the base address for his device which he wishes
669 * to mmap. They read the 32-bit value from the config space base register,
670 * add whatever PAGE_SIZE multiple offset they wish, and feed this into the
671 * offset parameter of mmap on /proc/bus/pci/XXX for that device.
672 *
673 * Returns negative error code on failure, zero on success.
674 */
675 static int __pci_mmap_make_offset(struct pci_dev *dev, struct vm_area_struct *vma,
676 enum pci_mmap_state mmap_state)
677 {
678 unsigned long user_offset = vma->vm_pgoff << PAGE_SHIFT;
679 unsigned long user32 = user_offset & pci_memspace_mask;
680 unsigned long largest_base, this_base, addr32;
681 int i;
682
683 if ((dev->class >> 8) == PCI_CLASS_BRIDGE_HOST)
684 return __pci_mmap_make_offset_bus(dev, vma, mmap_state);
685
686 /* Figure out which base address this is for. */
687 largest_base = 0UL;
688 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
689 struct resource *rp = &dev->resource[i];
690
691 /* Active? */
692 if (!rp->flags)
693 continue;
694
695 /* Same type? */
696 if (i == PCI_ROM_RESOURCE) {
697 if (mmap_state != pci_mmap_mem)
698 continue;
699 } else {
700 if ((mmap_state == pci_mmap_io &&
701 (rp->flags & IORESOURCE_IO) == 0) ||
702 (mmap_state == pci_mmap_mem &&
703 (rp->flags & IORESOURCE_MEM) == 0))
704 continue;
705 }
706
707 this_base = rp->start;
708
709 addr32 = (this_base & PAGE_MASK) & pci_memspace_mask;
710
711 if (mmap_state == pci_mmap_io)
712 addr32 &= 0xffffff;
713
714 if (addr32 <= user32 && this_base > largest_base)
715 largest_base = this_base;
716 }
717
718 if (largest_base == 0UL)
719 return -EINVAL;
720
721 /* Now construct the final physical address. */
722 if (mmap_state == pci_mmap_io)
723 vma->vm_pgoff = (((largest_base & ~0xffffffUL) | user32) >> PAGE_SHIFT);
724 else
725 vma->vm_pgoff = (((largest_base & ~(pci_memspace_mask)) | user32) >> PAGE_SHIFT);
726
727 return 0;
728 }
729
730 /* Set vm_flags of VMA, as appropriate for this architecture, for a pci device
731 * mapping.
732 */
733 static void __pci_mmap_set_flags(struct pci_dev *dev, struct vm_area_struct *vma,
734 enum pci_mmap_state mmap_state)
735 {
736 vma->vm_flags |= (VM_IO | VM_RESERVED);
737 }
738
739 /* Set vm_page_prot of VMA, as appropriate for this architecture, for a pci
740 * device mapping.
741 */
742 static void __pci_mmap_set_pgprot(struct pci_dev *dev, struct vm_area_struct *vma,
743 enum pci_mmap_state mmap_state)
744 {
745 /* Our io_remap_pfn_range takes care of this, do nothing. */
746 }
747
748 /* Perform the actual remap of the pages for a PCI device mapping, as appropriate
749 * for this architecture. The region in the process to map is described by vm_start
750 * and vm_end members of VMA, the base physical address is found in vm_pgoff.
751 * The pci device structure is provided so that architectures may make mapping
752 * decisions on a per-device or per-bus basis.
753 *
754 * Returns a negative error code on failure, zero on success.
755 */
756 int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma,
757 enum pci_mmap_state mmap_state,
758 int write_combine)
759 {
760 int ret;
761
762 ret = __pci_mmap_make_offset(dev, vma, mmap_state);
763 if (ret < 0)
764 return ret;
765
766 __pci_mmap_set_flags(dev, vma, mmap_state);
767 __pci_mmap_set_pgprot(dev, vma, mmap_state);
768
769 ret = io_remap_pfn_range(vma, vma->vm_start,
770 vma->vm_pgoff,
771 vma->vm_end - vma->vm_start,
772 vma->vm_page_prot);
773 if (ret)
774 return ret;
775
776 vma->vm_flags |= VM_IO;
777 return 0;
778 }
779
780 /* Return the domain nuber for this pci bus */
781
782 int pci_domain_nr(struct pci_bus *pbus)
783 {
784 struct pci_pbm_info *pbm = pbus->sysdata;
785 int ret;
786
787 if (pbm == NULL || pbm->parent == NULL) {
788 ret = -ENXIO;
789 } else {
790 struct pci_controller_info *p = pbm->parent;
791
792 ret = p->index;
793 if (p->pbms_same_domain == 0)
794 ret = ((ret << 1) +
795 ((pbm == &pbm->parent->pbm_B) ? 1 : 0));
796 }
797
798 return ret;
799 }
800 EXPORT_SYMBOL(pci_domain_nr);
801
802 int pcibios_prep_mwi(struct pci_dev *dev)
803 {
804 /* We set correct PCI_CACHE_LINE_SIZE register values for every
805 * device probed on this platform. So there is nothing to check
806 * and this always succeeds.
807 */
808 return 0;
809 }
810
811 #endif /* !(CONFIG_PCI) */
This page took 0.070704 seconds and 5 git commands to generate.