[PATCH] sparc64 pt_regs fixes
[deliverable/linux.git] / arch / sparc64 / kernel / pci_sabre.c
1 /* $Id: pci_sabre.c,v 1.42 2002/01/23 11:27:32 davem Exp $
2 * pci_sabre.c: Sabre specific PCI controller support.
3 *
4 * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@caipfs.rutgers.edu)
5 * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com)
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/pci.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
15
16 #include <asm/apb.h>
17 #include <asm/pbm.h>
18 #include <asm/iommu.h>
19 #include <asm/irq.h>
20 #include <asm/smp.h>
21 #include <asm/oplib.h>
22 #include <asm/prom.h>
23
24 #include "pci_impl.h"
25 #include "iommu_common.h"
26
27 /* All SABRE registers are 64-bits. The following accessor
28 * routines are how they are accessed. The REG parameter
29 * is a physical address.
30 */
31 #define sabre_read(__reg) \
32 ({ u64 __ret; \
33 __asm__ __volatile__("ldxa [%1] %2, %0" \
34 : "=r" (__ret) \
35 : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
36 : "memory"); \
37 __ret; \
38 })
39 #define sabre_write(__reg, __val) \
40 __asm__ __volatile__("stxa %0, [%1] %2" \
41 : /* no outputs */ \
42 : "r" (__val), "r" (__reg), \
43 "i" (ASI_PHYS_BYPASS_EC_E) \
44 : "memory")
45
46 /* SABRE PCI controller register offsets and definitions. */
47 #define SABRE_UE_AFSR 0x0030UL
48 #define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
49 #define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
50 #define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
51 #define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
52 #define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */
53 #define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */
54 #define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
55 #define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */
56 #define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */
57 #define SABRE_UECE_AFAR 0x0038UL
58 #define SABRE_CE_AFSR 0x0040UL
59 #define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
60 #define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
61 #define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
62 #define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
63 #define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */
64 #define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
65 #define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */
66 #define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */
67 #define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */
68 #define SABRE_IOMMU_CONTROL 0x0200UL
69 #define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */
70 #define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */
71 #define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */
72 #define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */
73 #define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */
74 #define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000
75 #define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000
76 #define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000
77 #define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000
78 #define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000
79 #define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000
80 #define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000
81 #define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
82 #define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */
83 #define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */
84 #define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */
85 #define SABRE_IOMMU_TSBBASE 0x0208UL
86 #define SABRE_IOMMU_FLUSH 0x0210UL
87 #define SABRE_IMAP_A_SLOT0 0x0c00UL
88 #define SABRE_IMAP_B_SLOT0 0x0c20UL
89 #define SABRE_IMAP_SCSI 0x1000UL
90 #define SABRE_IMAP_ETH 0x1008UL
91 #define SABRE_IMAP_BPP 0x1010UL
92 #define SABRE_IMAP_AU_REC 0x1018UL
93 #define SABRE_IMAP_AU_PLAY 0x1020UL
94 #define SABRE_IMAP_PFAIL 0x1028UL
95 #define SABRE_IMAP_KMS 0x1030UL
96 #define SABRE_IMAP_FLPY 0x1038UL
97 #define SABRE_IMAP_SHW 0x1040UL
98 #define SABRE_IMAP_KBD 0x1048UL
99 #define SABRE_IMAP_MS 0x1050UL
100 #define SABRE_IMAP_SER 0x1058UL
101 #define SABRE_IMAP_UE 0x1070UL
102 #define SABRE_IMAP_CE 0x1078UL
103 #define SABRE_IMAP_PCIERR 0x1080UL
104 #define SABRE_IMAP_GFX 0x1098UL
105 #define SABRE_IMAP_EUPA 0x10a0UL
106 #define SABRE_ICLR_A_SLOT0 0x1400UL
107 #define SABRE_ICLR_B_SLOT0 0x1480UL
108 #define SABRE_ICLR_SCSI 0x1800UL
109 #define SABRE_ICLR_ETH 0x1808UL
110 #define SABRE_ICLR_BPP 0x1810UL
111 #define SABRE_ICLR_AU_REC 0x1818UL
112 #define SABRE_ICLR_AU_PLAY 0x1820UL
113 #define SABRE_ICLR_PFAIL 0x1828UL
114 #define SABRE_ICLR_KMS 0x1830UL
115 #define SABRE_ICLR_FLPY 0x1838UL
116 #define SABRE_ICLR_SHW 0x1840UL
117 #define SABRE_ICLR_KBD 0x1848UL
118 #define SABRE_ICLR_MS 0x1850UL
119 #define SABRE_ICLR_SER 0x1858UL
120 #define SABRE_ICLR_UE 0x1870UL
121 #define SABRE_ICLR_CE 0x1878UL
122 #define SABRE_ICLR_PCIERR 0x1880UL
123 #define SABRE_WRSYNC 0x1c20UL
124 #define SABRE_PCICTRL 0x2000UL
125 #define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */
126 #define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */
127 #define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
128 #define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */
129 #define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */
130 #define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */
131 #define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */
132 #define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */
133 #define SABRE_PIOAFSR 0x2010UL
134 #define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */
135 #define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */
136 #define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */
137 #define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */
138 #define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */
139 #define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */
140 #define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */
141 #define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */
142 #define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */
143 #define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */
144 #define SABRE_PIOAFAR 0x2018UL
145 #define SABRE_PCIDIAG 0x2020UL
146 #define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */
147 #define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */
148 #define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */
149 #define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */
150 #define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */
151 #define SABRE_PCITASR 0x2028UL
152 #define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */
153 #define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */
154 #define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */
155 #define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */
156 #define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */
157 #define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */
158 #define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */
159 #define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */
160 #define SABRE_PIOBUF_DIAG 0x5000UL
161 #define SABRE_DMABUF_DIAGLO 0x5100UL
162 #define SABRE_DMABUF_DIAGHI 0x51c0UL
163 #define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */
164 #define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */
165 #define SABRE_IOMMU_VADIAG 0xa400UL
166 #define SABRE_IOMMU_TCDIAG 0xa408UL
167 #define SABRE_IOMMU_TAG 0xa580UL
168 #define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */
169 #define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */
170 #define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */
171 #define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */
172 #define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */
173 #define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */
174 #define SABRE_IOMMU_DATA 0xa600UL
175 #define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */
176 #define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */
177 #define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */
178 #define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */
179 #define SABRE_PCI_IRQSTATE 0xa800UL
180 #define SABRE_OBIO_IRQSTATE 0xa808UL
181 #define SABRE_FFBCFG 0xf000UL
182 #define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */
183 #define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */
184 #define SABRE_MCCTRL0 0xf010UL
185 #define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */
186 #define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */
187 #define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */
188 #define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */
189 #define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */
190 #define SABRE_MCCTRL1 0xf018UL
191 #define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */
192 #define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */
193 #define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */
194 #define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */
195 #define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */
196 #define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */
197 #define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */
198 #define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */
199 #define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */
200 #define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */
201 #define SABRE_RESETCTRL 0xf020UL
202
203 #define SABRE_CONFIGSPACE 0x001000000UL
204 #define SABRE_IOSPACE 0x002000000UL
205 #define SABRE_IOSPACE_SIZE 0x000ffffffUL
206 #define SABRE_MEMSPACE 0x100000000UL
207 #define SABRE_MEMSPACE_SIZE 0x07fffffffUL
208
209 /* UltraSparc-IIi Programmer's Manual, page 325, PCI
210 * configuration space address format:
211 *
212 * 32 24 23 16 15 11 10 8 7 2 1 0
213 * ---------------------------------------------------------
214 * |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 |
215 * ---------------------------------------------------------
216 */
217 #define SABRE_CONFIG_BASE(PBM) \
218 ((PBM)->config_space | (1UL << 24))
219 #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \
220 (((unsigned long)(BUS) << 16) | \
221 ((unsigned long)(DEVFN) << 8) | \
222 ((unsigned long)(REG)))
223
224 static int hummingbird_p;
225 static struct pci_bus *sabre_root_bus;
226
227 static void *sabre_pci_config_mkaddr(struct pci_pbm_info *pbm,
228 unsigned char bus,
229 unsigned int devfn,
230 int where)
231 {
232 if (!pbm)
233 return NULL;
234 return (void *)
235 (SABRE_CONFIG_BASE(pbm) |
236 SABRE_CONFIG_ENCODE(bus, devfn, where));
237 }
238
239 static int sabre_out_of_range(unsigned char devfn)
240 {
241 if (hummingbird_p)
242 return 0;
243
244 return (((PCI_SLOT(devfn) == 0) && (PCI_FUNC(devfn) > 0)) ||
245 ((PCI_SLOT(devfn) == 1) && (PCI_FUNC(devfn) > 1)) ||
246 (PCI_SLOT(devfn) > 1));
247 }
248
249 static int __sabre_out_of_range(struct pci_pbm_info *pbm,
250 unsigned char bus,
251 unsigned char devfn)
252 {
253 if (hummingbird_p)
254 return 0;
255
256 return ((pbm->parent == 0) ||
257 ((pbm == &pbm->parent->pbm_B) &&
258 (bus == pbm->pci_first_busno) &&
259 PCI_SLOT(devfn) > 8) ||
260 ((pbm == &pbm->parent->pbm_A) &&
261 (bus == pbm->pci_first_busno) &&
262 PCI_SLOT(devfn) > 8));
263 }
264
265 static int __sabre_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
266 int where, int size, u32 *value)
267 {
268 struct pci_pbm_info *pbm = bus_dev->sysdata;
269 unsigned char bus = bus_dev->number;
270 u32 *addr;
271 u16 tmp16;
272 u8 tmp8;
273
274 switch (size) {
275 case 1:
276 *value = 0xff;
277 break;
278 case 2:
279 *value = 0xffff;
280 break;
281 case 4:
282 *value = 0xffffffff;
283 break;
284 }
285
286 addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
287 if (!addr)
288 return PCIBIOS_SUCCESSFUL;
289
290 if (__sabre_out_of_range(pbm, bus, devfn))
291 return PCIBIOS_SUCCESSFUL;
292
293 switch (size) {
294 case 1:
295 pci_config_read8((u8 *) addr, &tmp8);
296 *value = tmp8;
297 break;
298
299 case 2:
300 if (where & 0x01) {
301 printk("pci_read_config_word: misaligned reg [%x]\n",
302 where);
303 return PCIBIOS_SUCCESSFUL;
304 }
305 pci_config_read16((u16 *) addr, &tmp16);
306 *value = tmp16;
307 break;
308
309 case 4:
310 if (where & 0x03) {
311 printk("pci_read_config_dword: misaligned reg [%x]\n",
312 where);
313 return PCIBIOS_SUCCESSFUL;
314 }
315 pci_config_read32(addr, value);
316 break;
317 }
318
319 return PCIBIOS_SUCCESSFUL;
320 }
321
322 static int sabre_read_pci_cfg(struct pci_bus *bus, unsigned int devfn,
323 int where, int size, u32 *value)
324 {
325 if (!bus->number && sabre_out_of_range(devfn)) {
326 switch (size) {
327 case 1:
328 *value = 0xff;
329 break;
330 case 2:
331 *value = 0xffff;
332 break;
333 case 4:
334 *value = 0xffffffff;
335 break;
336 }
337 return PCIBIOS_SUCCESSFUL;
338 }
339
340 if (bus->number || PCI_SLOT(devfn))
341 return __sabre_read_pci_cfg(bus, devfn, where, size, value);
342
343 /* When accessing PCI config space of the PCI controller itself (bus
344 * 0, device slot 0, function 0) there are restrictions. Each
345 * register must be accessed as it's natural size. Thus, for example
346 * the Vendor ID must be accessed as a 16-bit quantity.
347 */
348
349 switch (size) {
350 case 1:
351 if (where < 8) {
352 u32 tmp32;
353 u16 tmp16;
354
355 __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
356 tmp16 = (u16) tmp32;
357 if (where & 1)
358 *value = tmp16 >> 8;
359 else
360 *value = tmp16 & 0xff;
361 } else
362 return __sabre_read_pci_cfg(bus, devfn, where, 1, value);
363 break;
364
365 case 2:
366 if (where < 8)
367 return __sabre_read_pci_cfg(bus, devfn, where, 2, value);
368 else {
369 u32 tmp32;
370 u8 tmp8;
371
372 __sabre_read_pci_cfg(bus, devfn, where, 1, &tmp32);
373 tmp8 = (u8) tmp32;
374 *value = tmp8;
375 __sabre_read_pci_cfg(bus, devfn, where + 1, 1, &tmp32);
376 tmp8 = (u8) tmp32;
377 *value |= tmp8 << 8;
378 }
379 break;
380
381 case 4: {
382 u32 tmp32;
383 u16 tmp16;
384
385 sabre_read_pci_cfg(bus, devfn, where, 2, &tmp32);
386 tmp16 = (u16) tmp32;
387 *value = tmp16;
388 sabre_read_pci_cfg(bus, devfn, where + 2, 2, &tmp32);
389 tmp16 = (u16) tmp32;
390 *value |= tmp16 << 16;
391 break;
392 }
393 }
394 return PCIBIOS_SUCCESSFUL;
395 }
396
397 static int __sabre_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
398 int where, int size, u32 value)
399 {
400 struct pci_pbm_info *pbm = bus_dev->sysdata;
401 unsigned char bus = bus_dev->number;
402 u32 *addr;
403
404 addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
405 if (!addr)
406 return PCIBIOS_SUCCESSFUL;
407
408 if (__sabre_out_of_range(pbm, bus, devfn))
409 return PCIBIOS_SUCCESSFUL;
410
411 switch (size) {
412 case 1:
413 pci_config_write8((u8 *) addr, value);
414 break;
415
416 case 2:
417 if (where & 0x01) {
418 printk("pci_write_config_word: misaligned reg [%x]\n",
419 where);
420 return PCIBIOS_SUCCESSFUL;
421 }
422 pci_config_write16((u16 *) addr, value);
423 break;
424
425 case 4:
426 if (where & 0x03) {
427 printk("pci_write_config_dword: misaligned reg [%x]\n",
428 where);
429 return PCIBIOS_SUCCESSFUL;
430 }
431 pci_config_write32(addr, value);
432 break;
433 }
434
435 return PCIBIOS_SUCCESSFUL;
436 }
437
438 static int sabre_write_pci_cfg(struct pci_bus *bus, unsigned int devfn,
439 int where, int size, u32 value)
440 {
441 if (bus->number)
442 return __sabre_write_pci_cfg(bus, devfn, where, size, value);
443
444 if (sabre_out_of_range(devfn))
445 return PCIBIOS_SUCCESSFUL;
446
447 switch (size) {
448 case 1:
449 if (where < 8) {
450 u32 tmp32;
451 u16 tmp16;
452
453 __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
454 tmp16 = (u16) tmp32;
455 if (where & 1) {
456 value &= 0x00ff;
457 value |= tmp16 << 8;
458 } else {
459 value &= 0xff00;
460 value |= tmp16;
461 }
462 tmp32 = (u32) tmp16;
463 return __sabre_write_pci_cfg(bus, devfn, where & ~1, 2, tmp32);
464 } else
465 return __sabre_write_pci_cfg(bus, devfn, where, 1, value);
466 break;
467 case 2:
468 if (where < 8)
469 return __sabre_write_pci_cfg(bus, devfn, where, 2, value);
470 else {
471 __sabre_write_pci_cfg(bus, devfn, where, 1, value & 0xff);
472 __sabre_write_pci_cfg(bus, devfn, where + 1, 1, value >> 8);
473 }
474 break;
475 case 4:
476 sabre_write_pci_cfg(bus, devfn, where, 2, value & 0xffff);
477 sabre_write_pci_cfg(bus, devfn, where + 2, 2, value >> 16);
478 break;
479 }
480 return PCIBIOS_SUCCESSFUL;
481 }
482
483 static struct pci_ops sabre_ops = {
484 .read = sabre_read_pci_cfg,
485 .write = sabre_write_pci_cfg,
486 };
487
488 /* SABRE error handling support. */
489 static void sabre_check_iommu_error(struct pci_controller_info *p,
490 unsigned long afsr,
491 unsigned long afar)
492 {
493 struct pci_iommu *iommu = p->pbm_A.iommu;
494 unsigned long iommu_tag[16];
495 unsigned long iommu_data[16];
496 unsigned long flags;
497 u64 control;
498 int i;
499
500 spin_lock_irqsave(&iommu->lock, flags);
501 control = sabre_read(iommu->iommu_control);
502 if (control & SABRE_IOMMUCTRL_ERR) {
503 char *type_string;
504
505 /* Clear the error encountered bit.
506 * NOTE: On Sabre this is write 1 to clear,
507 * which is different from Psycho.
508 */
509 sabre_write(iommu->iommu_control, control);
510 switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) {
511 case 1:
512 type_string = "Invalid Error";
513 break;
514 case 3:
515 type_string = "ECC Error";
516 break;
517 default:
518 type_string = "Unknown";
519 break;
520 };
521 printk("SABRE%d: IOMMU Error, type[%s]\n",
522 p->index, type_string);
523
524 /* Enter diagnostic mode and probe for error'd
525 * entries in the IOTLB.
526 */
527 control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR);
528 sabre_write(iommu->iommu_control,
529 (control | SABRE_IOMMUCTRL_DENAB));
530 for (i = 0; i < 16; i++) {
531 unsigned long base = p->pbm_A.controller_regs;
532
533 iommu_tag[i] =
534 sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL));
535 iommu_data[i] =
536 sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL));
537 sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0);
538 sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0);
539 }
540 sabre_write(iommu->iommu_control, control);
541
542 for (i = 0; i < 16; i++) {
543 unsigned long tag, data;
544
545 tag = iommu_tag[i];
546 if (!(tag & SABRE_IOMMUTAG_ERR))
547 continue;
548
549 data = iommu_data[i];
550 switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) {
551 case 1:
552 type_string = "Invalid Error";
553 break;
554 case 3:
555 type_string = "ECC Error";
556 break;
557 default:
558 type_string = "Unknown";
559 break;
560 };
561 printk("SABRE%d: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
562 p->index, i, tag, type_string,
563 ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0),
564 ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8),
565 ((tag & SABRE_IOMMUTAG_VPN) << IOMMU_PAGE_SHIFT));
566 printk("SABRE%d: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
567 p->index, i, data,
568 ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0),
569 ((data & SABRE_IOMMUDATA_USED) ? 1 : 0),
570 ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0),
571 ((data & SABRE_IOMMUDATA_PPN) << IOMMU_PAGE_SHIFT));
572 }
573 }
574 spin_unlock_irqrestore(&iommu->lock, flags);
575 }
576
577 static irqreturn_t sabre_ue_intr(int irq, void *dev_id)
578 {
579 struct pci_controller_info *p = dev_id;
580 unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_UE_AFSR;
581 unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
582 unsigned long afsr, afar, error_bits;
583 int reported;
584
585 /* Latch uncorrectable error status. */
586 afar = sabre_read(afar_reg);
587 afsr = sabre_read(afsr_reg);
588
589 /* Clear the primary/secondary error status bits. */
590 error_bits = afsr &
591 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
592 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
593 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
594 if (!error_bits)
595 return IRQ_NONE;
596 sabre_write(afsr_reg, error_bits);
597
598 /* Log the error. */
599 printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n",
600 p->index,
601 ((error_bits & SABRE_UEAFSR_PDRD) ?
602 "DMA Read" :
603 ((error_bits & SABRE_UEAFSR_PDWR) ?
604 "DMA Write" : "???")),
605 ((error_bits & SABRE_UEAFSR_PDTE) ?
606 ":Translation Error" : ""));
607 printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
608 p->index,
609 (afsr & SABRE_UEAFSR_BMSK) >> 32UL,
610 (afsr & SABRE_UEAFSR_OFF) >> 29UL,
611 ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
612 printk("SABRE%d: UE AFAR [%016lx]\n", p->index, afar);
613 printk("SABRE%d: UE Secondary errors [", p->index);
614 reported = 0;
615 if (afsr & SABRE_UEAFSR_SDRD) {
616 reported++;
617 printk("(DMA Read)");
618 }
619 if (afsr & SABRE_UEAFSR_SDWR) {
620 reported++;
621 printk("(DMA Write)");
622 }
623 if (afsr & SABRE_UEAFSR_SDTE) {
624 reported++;
625 printk("(Translation Error)");
626 }
627 if (!reported)
628 printk("(none)");
629 printk("]\n");
630
631 /* Interrogate IOMMU for error status. */
632 sabre_check_iommu_error(p, afsr, afar);
633
634 return IRQ_HANDLED;
635 }
636
637 static irqreturn_t sabre_ce_intr(int irq, void *dev_id)
638 {
639 struct pci_controller_info *p = dev_id;
640 unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_CE_AFSR;
641 unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
642 unsigned long afsr, afar, error_bits;
643 int reported;
644
645 /* Latch error status. */
646 afar = sabre_read(afar_reg);
647 afsr = sabre_read(afsr_reg);
648
649 /* Clear primary/secondary error status bits. */
650 error_bits = afsr &
651 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
652 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
653 if (!error_bits)
654 return IRQ_NONE;
655 sabre_write(afsr_reg, error_bits);
656
657 /* Log the error. */
658 printk("SABRE%d: Correctable Error, primary error type[%s]\n",
659 p->index,
660 ((error_bits & SABRE_CEAFSR_PDRD) ?
661 "DMA Read" :
662 ((error_bits & SABRE_CEAFSR_PDWR) ?
663 "DMA Write" : "???")));
664
665 /* XXX Use syndrome and afar to print out module string just like
666 * XXX UDB CE trap handler does... -DaveM
667 */
668 printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
669 "was_block(%d)\n",
670 p->index,
671 (afsr & SABRE_CEAFSR_ESYND) >> 48UL,
672 (afsr & SABRE_CEAFSR_BMSK) >> 32UL,
673 (afsr & SABRE_CEAFSR_OFF) >> 29UL,
674 ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
675 printk("SABRE%d: CE AFAR [%016lx]\n", p->index, afar);
676 printk("SABRE%d: CE Secondary errors [", p->index);
677 reported = 0;
678 if (afsr & SABRE_CEAFSR_SDRD) {
679 reported++;
680 printk("(DMA Read)");
681 }
682 if (afsr & SABRE_CEAFSR_SDWR) {
683 reported++;
684 printk("(DMA Write)");
685 }
686 if (!reported)
687 printk("(none)");
688 printk("]\n");
689
690 return IRQ_HANDLED;
691 }
692
693 static irqreturn_t sabre_pcierr_intr_other(struct pci_controller_info *p)
694 {
695 unsigned long csr_reg, csr, csr_error_bits;
696 irqreturn_t ret = IRQ_NONE;
697 u16 stat;
698
699 csr_reg = p->pbm_A.controller_regs + SABRE_PCICTRL;
700 csr = sabre_read(csr_reg);
701 csr_error_bits =
702 csr & SABRE_PCICTRL_SERR;
703 if (csr_error_bits) {
704 /* Clear the errors. */
705 sabre_write(csr_reg, csr);
706
707 /* Log 'em. */
708 if (csr_error_bits & SABRE_PCICTRL_SERR)
709 printk("SABRE%d: PCI SERR signal asserted.\n",
710 p->index);
711 ret = IRQ_HANDLED;
712 }
713 pci_read_config_word(sabre_root_bus->self,
714 PCI_STATUS, &stat);
715 if (stat & (PCI_STATUS_PARITY |
716 PCI_STATUS_SIG_TARGET_ABORT |
717 PCI_STATUS_REC_TARGET_ABORT |
718 PCI_STATUS_REC_MASTER_ABORT |
719 PCI_STATUS_SIG_SYSTEM_ERROR)) {
720 printk("SABRE%d: PCI bus error, PCI_STATUS[%04x]\n",
721 p->index, stat);
722 pci_write_config_word(sabre_root_bus->self,
723 PCI_STATUS, 0xffff);
724 ret = IRQ_HANDLED;
725 }
726 return ret;
727 }
728
729 static irqreturn_t sabre_pcierr_intr(int irq, void *dev_id)
730 {
731 struct pci_controller_info *p = dev_id;
732 unsigned long afsr_reg, afar_reg;
733 unsigned long afsr, afar, error_bits;
734 int reported;
735
736 afsr_reg = p->pbm_A.controller_regs + SABRE_PIOAFSR;
737 afar_reg = p->pbm_A.controller_regs + SABRE_PIOAFAR;
738
739 /* Latch error status. */
740 afar = sabre_read(afar_reg);
741 afsr = sabre_read(afsr_reg);
742
743 /* Clear primary/secondary error status bits. */
744 error_bits = afsr &
745 (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA |
746 SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR |
747 SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA |
748 SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR);
749 if (!error_bits)
750 return sabre_pcierr_intr_other(p);
751 sabre_write(afsr_reg, error_bits);
752
753 /* Log the error. */
754 printk("SABRE%d: PCI Error, primary error type[%s]\n",
755 p->index,
756 (((error_bits & SABRE_PIOAFSR_PMA) ?
757 "Master Abort" :
758 ((error_bits & SABRE_PIOAFSR_PTA) ?
759 "Target Abort" :
760 ((error_bits & SABRE_PIOAFSR_PRTRY) ?
761 "Excessive Retries" :
762 ((error_bits & SABRE_PIOAFSR_PPERR) ?
763 "Parity Error" : "???"))))));
764 printk("SABRE%d: bytemask[%04lx] was_block(%d)\n",
765 p->index,
766 (afsr & SABRE_PIOAFSR_BMSK) >> 32UL,
767 (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0);
768 printk("SABRE%d: PCI AFAR [%016lx]\n", p->index, afar);
769 printk("SABRE%d: PCI Secondary errors [", p->index);
770 reported = 0;
771 if (afsr & SABRE_PIOAFSR_SMA) {
772 reported++;
773 printk("(Master Abort)");
774 }
775 if (afsr & SABRE_PIOAFSR_STA) {
776 reported++;
777 printk("(Target Abort)");
778 }
779 if (afsr & SABRE_PIOAFSR_SRTRY) {
780 reported++;
781 printk("(Excessive Retries)");
782 }
783 if (afsr & SABRE_PIOAFSR_SPERR) {
784 reported++;
785 printk("(Parity Error)");
786 }
787 if (!reported)
788 printk("(none)");
789 printk("]\n");
790
791 /* For the error types shown, scan both PCI buses for devices
792 * which have logged that error type.
793 */
794
795 /* If we see a Target Abort, this could be the result of an
796 * IOMMU translation error of some sort. It is extremely
797 * useful to log this information as usually it indicates
798 * a bug in the IOMMU support code or a PCI device driver.
799 */
800 if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) {
801 sabre_check_iommu_error(p, afsr, afar);
802 pci_scan_for_target_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
803 pci_scan_for_target_abort(p, &p->pbm_B, p->pbm_B.pci_bus);
804 }
805 if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA)) {
806 pci_scan_for_master_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
807 pci_scan_for_master_abort(p, &p->pbm_B, p->pbm_B.pci_bus);
808 }
809 /* For excessive retries, SABRE/PBM will abort the device
810 * and there is no way to specifically check for excessive
811 * retries in the config space status registers. So what
812 * we hope is that we'll catch it via the master/target
813 * abort events.
814 */
815
816 if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR)) {
817 pci_scan_for_parity_error(p, &p->pbm_A, p->pbm_A.pci_bus);
818 pci_scan_for_parity_error(p, &p->pbm_B, p->pbm_B.pci_bus);
819 }
820
821 return IRQ_HANDLED;
822 }
823
824 static void sabre_register_error_handlers(struct pci_controller_info *p)
825 {
826 struct pci_pbm_info *pbm = &p->pbm_A; /* arbitrary */
827 struct device_node *dp = pbm->prom_node;
828 struct of_device *op;
829 unsigned long base = pbm->controller_regs;
830 u64 tmp;
831
832 if (pbm->chip_type == PBM_CHIP_TYPE_SABRE)
833 dp = dp->parent;
834
835 op = of_find_device_by_node(dp);
836 if (!op)
837 return;
838
839 /* Sabre/Hummingbird IRQ property layout is:
840 * 0: PCI ERR
841 * 1: UE ERR
842 * 2: CE ERR
843 * 3: POWER FAIL
844 */
845 if (op->num_irqs < 4)
846 return;
847
848 /* We clear the error bits in the appropriate AFSR before
849 * registering the handler so that we don't get spurious
850 * interrupts.
851 */
852 sabre_write(base + SABRE_UE_AFSR,
853 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
854 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
855 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE));
856
857 request_irq(op->irqs[1], sabre_ue_intr, IRQF_SHARED, "SABRE UE", p);
858
859 sabre_write(base + SABRE_CE_AFSR,
860 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
861 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR));
862
863 request_irq(op->irqs[2], sabre_ce_intr, IRQF_SHARED, "SABRE CE", p);
864 request_irq(op->irqs[0], sabre_pcierr_intr, IRQF_SHARED,
865 "SABRE PCIERR", p);
866
867 tmp = sabre_read(base + SABRE_PCICTRL);
868 tmp |= SABRE_PCICTRL_ERREN;
869 sabre_write(base + SABRE_PCICTRL, tmp);
870 }
871
872 static void sabre_resource_adjust(struct pci_dev *pdev,
873 struct resource *res,
874 struct resource *root)
875 {
876 struct pci_pbm_info *pbm = pdev->bus->sysdata;
877 unsigned long base;
878
879 if (res->flags & IORESOURCE_IO)
880 base = pbm->controller_regs + SABRE_IOSPACE;
881 else
882 base = pbm->controller_regs + SABRE_MEMSPACE;
883
884 res->start += base;
885 res->end += base;
886 }
887
888 static void sabre_base_address_update(struct pci_dev *pdev, int resource)
889 {
890 struct pcidev_cookie *pcp = pdev->sysdata;
891 struct pci_pbm_info *pbm = pcp->pbm;
892 struct resource *res;
893 unsigned long base;
894 u32 reg;
895 int where, size, is_64bit;
896
897 res = &pdev->resource[resource];
898 if (resource < 6) {
899 where = PCI_BASE_ADDRESS_0 + (resource * 4);
900 } else if (resource == PCI_ROM_RESOURCE) {
901 where = pdev->rom_base_reg;
902 } else {
903 /* Somebody might have asked allocation of a non-standard resource */
904 return;
905 }
906
907 is_64bit = 0;
908 if (res->flags & IORESOURCE_IO)
909 base = pbm->controller_regs + SABRE_IOSPACE;
910 else {
911 base = pbm->controller_regs + SABRE_MEMSPACE;
912 if ((res->flags & PCI_BASE_ADDRESS_MEM_TYPE_MASK)
913 == PCI_BASE_ADDRESS_MEM_TYPE_64)
914 is_64bit = 1;
915 }
916
917 size = res->end - res->start;
918 pci_read_config_dword(pdev, where, &reg);
919 reg = ((reg & size) |
920 (((u32)(res->start - base)) & ~size));
921 if (resource == PCI_ROM_RESOURCE) {
922 reg |= PCI_ROM_ADDRESS_ENABLE;
923 res->flags |= IORESOURCE_ROM_ENABLE;
924 }
925 pci_write_config_dword(pdev, where, reg);
926
927 /* This knows that the upper 32-bits of the address
928 * must be zero. Our PCI common layer enforces this.
929 */
930 if (is_64bit)
931 pci_write_config_dword(pdev, where + 4, 0);
932 }
933
934 static void apb_init(struct pci_controller_info *p, struct pci_bus *sabre_bus)
935 {
936 struct pci_dev *pdev;
937
938 list_for_each_entry(pdev, &sabre_bus->devices, bus_list) {
939
940 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
941 pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
942 u32 word32;
943 u16 word16;
944
945 sabre_read_pci_cfg(pdev->bus, pdev->devfn,
946 PCI_COMMAND, 2, &word32);
947 word16 = (u16) word32;
948 word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
949 PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
950 PCI_COMMAND_IO;
951 word32 = (u32) word16;
952 sabre_write_pci_cfg(pdev->bus, pdev->devfn,
953 PCI_COMMAND, 2, word32);
954
955 /* Status register bits are "write 1 to clear". */
956 sabre_write_pci_cfg(pdev->bus, pdev->devfn,
957 PCI_STATUS, 2, 0xffff);
958 sabre_write_pci_cfg(pdev->bus, pdev->devfn,
959 PCI_SEC_STATUS, 2, 0xffff);
960
961 /* Use a primary/seconday latency timer value
962 * of 64.
963 */
964 sabre_write_pci_cfg(pdev->bus, pdev->devfn,
965 PCI_LATENCY_TIMER, 1, 64);
966 sabre_write_pci_cfg(pdev->bus, pdev->devfn,
967 PCI_SEC_LATENCY_TIMER, 1, 64);
968
969 /* Enable reporting/forwarding of master aborts,
970 * parity, and SERR.
971 */
972 sabre_write_pci_cfg(pdev->bus, pdev->devfn,
973 PCI_BRIDGE_CONTROL, 1,
974 (PCI_BRIDGE_CTL_PARITY |
975 PCI_BRIDGE_CTL_SERR |
976 PCI_BRIDGE_CTL_MASTER_ABORT));
977 }
978 }
979 }
980
981 static struct pcidev_cookie *alloc_bridge_cookie(struct pci_pbm_info *pbm)
982 {
983 struct pcidev_cookie *cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
984
985 if (!cookie) {
986 prom_printf("SABRE: Critical allocation failure.\n");
987 prom_halt();
988 }
989
990 /* All we care about is the PBM. */
991 cookie->pbm = pbm;
992
993 return cookie;
994 }
995
996 static void sabre_scan_bus(struct pci_controller_info *p)
997 {
998 static int once;
999 struct pci_bus *sabre_bus, *pbus;
1000 struct pci_pbm_info *pbm;
1001 struct pcidev_cookie *cookie;
1002 int sabres_scanned;
1003
1004 /* The APB bridge speaks to the Sabre host PCI bridge
1005 * at 66Mhz, but the front side of APB runs at 33Mhz
1006 * for both segments.
1007 */
1008 p->pbm_A.is_66mhz_capable = 0;
1009 p->pbm_B.is_66mhz_capable = 0;
1010
1011 /* This driver has not been verified to handle
1012 * multiple SABREs yet, so trap this.
1013 *
1014 * Also note that the SABRE host bridge is hardwired
1015 * to live at bus 0.
1016 */
1017 if (once != 0) {
1018 prom_printf("SABRE: Multiple controllers unsupported.\n");
1019 prom_halt();
1020 }
1021 once++;
1022
1023 cookie = alloc_bridge_cookie(&p->pbm_A);
1024
1025 sabre_bus = pci_scan_bus(p->pci_first_busno,
1026 p->pci_ops,
1027 &p->pbm_A);
1028 pci_fixup_host_bridge_self(sabre_bus);
1029 sabre_bus->self->sysdata = cookie;
1030
1031 sabre_root_bus = sabre_bus;
1032
1033 apb_init(p, sabre_bus);
1034
1035 sabres_scanned = 0;
1036
1037 list_for_each_entry(pbus, &sabre_bus->children, node) {
1038
1039 if (pbus->number == p->pbm_A.pci_first_busno) {
1040 pbm = &p->pbm_A;
1041 } else if (pbus->number == p->pbm_B.pci_first_busno) {
1042 pbm = &p->pbm_B;
1043 } else
1044 continue;
1045
1046 cookie = alloc_bridge_cookie(pbm);
1047 pbus->self->sysdata = cookie;
1048
1049 sabres_scanned++;
1050
1051 pbus->sysdata = pbm;
1052 pbm->pci_bus = pbus;
1053 pci_fill_in_pbm_cookies(pbus, pbm, pbm->prom_node);
1054 pci_record_assignments(pbm, pbus);
1055 pci_assign_unassigned(pbm, pbus);
1056 pci_fixup_irq(pbm, pbus);
1057 pci_determine_66mhz_disposition(pbm, pbus);
1058 pci_setup_busmastering(pbm, pbus);
1059 }
1060
1061 if (!sabres_scanned) {
1062 /* Hummingbird, no APBs. */
1063 pbm = &p->pbm_A;
1064 sabre_bus->sysdata = pbm;
1065 pbm->pci_bus = sabre_bus;
1066 pci_fill_in_pbm_cookies(sabre_bus, pbm, pbm->prom_node);
1067 pci_record_assignments(pbm, sabre_bus);
1068 pci_assign_unassigned(pbm, sabre_bus);
1069 pci_fixup_irq(pbm, sabre_bus);
1070 pci_determine_66mhz_disposition(pbm, sabre_bus);
1071 pci_setup_busmastering(pbm, sabre_bus);
1072 }
1073
1074 sabre_register_error_handlers(p);
1075 }
1076
1077 static void sabre_iommu_init(struct pci_controller_info *p,
1078 int tsbsize, unsigned long dvma_offset,
1079 u32 dma_mask)
1080 {
1081 struct pci_iommu *iommu = p->pbm_A.iommu;
1082 unsigned long i;
1083 u64 control;
1084
1085 /* Register addresses. */
1086 iommu->iommu_control = p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL;
1087 iommu->iommu_tsbbase = p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE;
1088 iommu->iommu_flush = p->pbm_A.controller_regs + SABRE_IOMMU_FLUSH;
1089 iommu->write_complete_reg = p->pbm_A.controller_regs + SABRE_WRSYNC;
1090 /* Sabre's IOMMU lacks ctx flushing. */
1091 iommu->iommu_ctxflush = 0;
1092
1093 /* Invalidate TLB Entries. */
1094 control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
1095 control |= SABRE_IOMMUCTRL_DENAB;
1096 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
1097
1098 for(i = 0; i < 16; i++) {
1099 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TAG + (i * 8UL), 0);
1100 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0);
1101 }
1102
1103 /* Leave diag mode enabled for full-flushing done
1104 * in pci_iommu.c
1105 */
1106 pci_iommu_table_init(iommu, tsbsize * 1024 * 8, dvma_offset, dma_mask);
1107
1108 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE,
1109 __pa(iommu->page_table));
1110
1111 control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
1112 control &= ~(SABRE_IOMMUCTRL_TSBSZ | SABRE_IOMMUCTRL_TBWSZ);
1113 control |= SABRE_IOMMUCTRL_ENAB;
1114 switch(tsbsize) {
1115 case 64:
1116 control |= SABRE_IOMMU_TSBSZ_64K;
1117 break;
1118 case 128:
1119 control |= SABRE_IOMMU_TSBSZ_128K;
1120 break;
1121 default:
1122 prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize);
1123 prom_halt();
1124 break;
1125 }
1126 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
1127 }
1128
1129 static void pbm_register_toplevel_resources(struct pci_controller_info *p,
1130 struct pci_pbm_info *pbm)
1131 {
1132 char *name = pbm->name;
1133 unsigned long ibase = p->pbm_A.controller_regs + SABRE_IOSPACE;
1134 unsigned long mbase = p->pbm_A.controller_regs + SABRE_MEMSPACE;
1135 unsigned int devfn;
1136 unsigned long first, last, i;
1137 u8 *addr, map;
1138
1139 sprintf(name, "SABRE%d PBM%c",
1140 p->index,
1141 (pbm == &p->pbm_A ? 'A' : 'B'));
1142 pbm->io_space.name = pbm->mem_space.name = name;
1143
1144 devfn = PCI_DEVFN(1, (pbm == &p->pbm_A) ? 0 : 1);
1145 addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_IO_ADDRESS_MAP);
1146 map = 0;
1147 pci_config_read8(addr, &map);
1148
1149 first = 8;
1150 last = 0;
1151 for (i = 0; i < 8; i++) {
1152 if ((map & (1 << i)) != 0) {
1153 if (first > i)
1154 first = i;
1155 if (last < i)
1156 last = i;
1157 }
1158 }
1159 pbm->io_space.start = ibase + (first << 21UL);
1160 pbm->io_space.end = ibase + (last << 21UL) + ((1 << 21UL) - 1);
1161 pbm->io_space.flags = IORESOURCE_IO;
1162
1163 addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_MEM_ADDRESS_MAP);
1164 map = 0;
1165 pci_config_read8(addr, &map);
1166
1167 first = 8;
1168 last = 0;
1169 for (i = 0; i < 8; i++) {
1170 if ((map & (1 << i)) != 0) {
1171 if (first > i)
1172 first = i;
1173 if (last < i)
1174 last = i;
1175 }
1176 }
1177 pbm->mem_space.start = mbase + (first << 29UL);
1178 pbm->mem_space.end = mbase + (last << 29UL) + ((1 << 29UL) - 1);
1179 pbm->mem_space.flags = IORESOURCE_MEM;
1180
1181 if (request_resource(&ioport_resource, &pbm->io_space) < 0) {
1182 prom_printf("Cannot register PBM-%c's IO space.\n",
1183 (pbm == &p->pbm_A ? 'A' : 'B'));
1184 prom_halt();
1185 }
1186 if (request_resource(&iomem_resource, &pbm->mem_space) < 0) {
1187 prom_printf("Cannot register PBM-%c's MEM space.\n",
1188 (pbm == &p->pbm_A ? 'A' : 'B'));
1189 prom_halt();
1190 }
1191
1192 /* Register legacy regions if this PBM covers that area. */
1193 if (pbm->io_space.start == ibase &&
1194 pbm->mem_space.start == mbase)
1195 pci_register_legacy_regions(&pbm->io_space,
1196 &pbm->mem_space);
1197 }
1198
1199 static void sabre_pbm_init(struct pci_controller_info *p, struct device_node *dp, u32 dma_begin)
1200 {
1201 struct pci_pbm_info *pbm;
1202 struct device_node *node;
1203 struct property *prop;
1204 u32 *busrange;
1205 int len, simbas_found;
1206
1207 simbas_found = 0;
1208 node = dp->child;
1209 while (node != NULL) {
1210 if (strcmp(node->name, "pci"))
1211 goto next_pci;
1212
1213 prop = of_find_property(node, "model", NULL);
1214 if (!prop || strncmp(prop->value, "SUNW,simba", prop->length))
1215 goto next_pci;
1216
1217 simbas_found++;
1218
1219 prop = of_find_property(node, "bus-range", NULL);
1220 busrange = prop->value;
1221 if (busrange[0] == 1)
1222 pbm = &p->pbm_B;
1223 else
1224 pbm = &p->pbm_A;
1225
1226 pbm->name = node->full_name;
1227 printk("%s: SABRE PCI Bus Module\n", pbm->name);
1228
1229 pbm->chip_type = PBM_CHIP_TYPE_SABRE;
1230 pbm->parent = p;
1231 pbm->prom_node = node;
1232 pbm->pci_first_slot = 1;
1233 pbm->pci_first_busno = busrange[0];
1234 pbm->pci_last_busno = busrange[1];
1235
1236 prop = of_find_property(node, "ranges", &len);
1237 if (prop) {
1238 pbm->pbm_ranges = prop->value;
1239 pbm->num_pbm_ranges =
1240 (len / sizeof(struct linux_prom_pci_ranges));
1241 } else {
1242 pbm->num_pbm_ranges = 0;
1243 }
1244
1245 prop = of_find_property(node, "interrupt-map", &len);
1246 if (prop) {
1247 pbm->pbm_intmap = prop->value;
1248 pbm->num_pbm_intmap =
1249 (len / sizeof(struct linux_prom_pci_intmap));
1250
1251 prop = of_find_property(node, "interrupt-map-mask",
1252 NULL);
1253 pbm->pbm_intmask = prop->value;
1254 } else {
1255 pbm->num_pbm_intmap = 0;
1256 }
1257
1258 pbm_register_toplevel_resources(p, pbm);
1259
1260 next_pci:
1261 node = node->sibling;
1262 }
1263 if (simbas_found == 0) {
1264 /* No APBs underneath, probably this is a hummingbird
1265 * system.
1266 */
1267 pbm = &p->pbm_A;
1268 pbm->parent = p;
1269 pbm->prom_node = dp;
1270 pbm->pci_first_busno = p->pci_first_busno;
1271 pbm->pci_last_busno = p->pci_last_busno;
1272
1273 prop = of_find_property(dp, "ranges", &len);
1274 if (prop) {
1275 pbm->pbm_ranges = prop->value;
1276 pbm->num_pbm_ranges =
1277 (len / sizeof(struct linux_prom_pci_ranges));
1278 } else {
1279 pbm->num_pbm_ranges = 0;
1280 }
1281
1282 prop = of_find_property(dp, "interrupt-map", &len);
1283 if (prop) {
1284 pbm->pbm_intmap = prop->value;
1285 pbm->num_pbm_intmap =
1286 (len / sizeof(struct linux_prom_pci_intmap));
1287
1288 prop = of_find_property(dp, "interrupt-map-mask",
1289 NULL);
1290 pbm->pbm_intmask = prop->value;
1291 } else {
1292 pbm->num_pbm_intmap = 0;
1293 }
1294
1295 pbm->name = dp->full_name;
1296 printk("%s: SABRE PCI Bus Module\n", pbm->name);
1297
1298 pbm->io_space.name = pbm->mem_space.name = pbm->name;
1299
1300 /* Hack up top-level resources. */
1301 pbm->io_space.start = p->pbm_A.controller_regs + SABRE_IOSPACE;
1302 pbm->io_space.end = pbm->io_space.start + (1UL << 24) - 1UL;
1303 pbm->io_space.flags = IORESOURCE_IO;
1304
1305 pbm->mem_space.start = p->pbm_A.controller_regs + SABRE_MEMSPACE;
1306 pbm->mem_space.end = pbm->mem_space.start + (unsigned long)dma_begin - 1UL;
1307 pbm->mem_space.flags = IORESOURCE_MEM;
1308
1309 if (request_resource(&ioport_resource, &pbm->io_space) < 0) {
1310 prom_printf("Cannot register Hummingbird's IO space.\n");
1311 prom_halt();
1312 }
1313 if (request_resource(&iomem_resource, &pbm->mem_space) < 0) {
1314 prom_printf("Cannot register Hummingbird's MEM space.\n");
1315 prom_halt();
1316 }
1317
1318 pci_register_legacy_regions(&pbm->io_space,
1319 &pbm->mem_space);
1320 }
1321 }
1322
1323 void sabre_init(struct device_node *dp, char *model_name)
1324 {
1325 struct linux_prom64_registers *pr_regs;
1326 struct pci_controller_info *p;
1327 struct pci_iommu *iommu;
1328 struct property *prop;
1329 int tsbsize;
1330 u32 *busrange;
1331 u32 *vdma;
1332 u32 upa_portid, dma_mask;
1333 u64 clear_irq;
1334
1335 hummingbird_p = 0;
1336 if (!strcmp(model_name, "pci108e,a001"))
1337 hummingbird_p = 1;
1338 else if (!strcmp(model_name, "SUNW,sabre")) {
1339 prop = of_find_property(dp, "compatible", NULL);
1340 if (prop) {
1341 const char *compat = prop->value;
1342
1343 if (!strcmp(compat, "pci108e,a001"))
1344 hummingbird_p = 1;
1345 }
1346 if (!hummingbird_p) {
1347 struct device_node *dp;
1348
1349 /* Of course, Sun has to encode things a thousand
1350 * different ways, inconsistently.
1351 */
1352 cpu_find_by_instance(0, &dp, NULL);
1353 if (!strcmp(dp->name, "SUNW,UltraSPARC-IIe"))
1354 hummingbird_p = 1;
1355 }
1356 }
1357
1358 p = kzalloc(sizeof(*p), GFP_ATOMIC);
1359 if (!p) {
1360 prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n");
1361 prom_halt();
1362 }
1363
1364 iommu = kzalloc(sizeof(*iommu), GFP_ATOMIC);
1365 if (!iommu) {
1366 prom_printf("SABRE: Error, kmalloc(pci_iommu) failed.\n");
1367 prom_halt();
1368 }
1369 p->pbm_A.iommu = p->pbm_B.iommu = iommu;
1370
1371 upa_portid = 0xff;
1372 prop = of_find_property(dp, "upa-portid", NULL);
1373 if (prop)
1374 upa_portid = *(u32 *) prop->value;
1375
1376 p->next = pci_controller_root;
1377 pci_controller_root = p;
1378
1379 p->pbm_A.portid = upa_portid;
1380 p->pbm_B.portid = upa_portid;
1381 p->index = pci_num_controllers++;
1382 p->pbms_same_domain = 1;
1383 p->scan_bus = sabre_scan_bus;
1384 p->base_address_update = sabre_base_address_update;
1385 p->resource_adjust = sabre_resource_adjust;
1386 p->pci_ops = &sabre_ops;
1387
1388 /*
1389 * Map in SABRE register set and report the presence of this SABRE.
1390 */
1391
1392 prop = of_find_property(dp, "reg", NULL);
1393 pr_regs = prop->value;
1394
1395 /*
1396 * First REG in property is base of entire SABRE register space.
1397 */
1398 p->pbm_A.controller_regs = pr_regs[0].phys_addr;
1399 p->pbm_B.controller_regs = pr_regs[0].phys_addr;
1400
1401 /* Clear interrupts */
1402
1403 /* PCI first */
1404 for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8)
1405 sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
1406
1407 /* Then OBIO */
1408 for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8)
1409 sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
1410
1411 /* Error interrupts are enabled later after the bus scan. */
1412 sabre_write(p->pbm_A.controller_regs + SABRE_PCICTRL,
1413 (SABRE_PCICTRL_MRLEN | SABRE_PCICTRL_SERR |
1414 SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN));
1415
1416 /* Now map in PCI config space for entire SABRE. */
1417 p->pbm_A.config_space = p->pbm_B.config_space =
1418 (p->pbm_A.controller_regs + SABRE_CONFIGSPACE);
1419
1420 prop = of_find_property(dp, "virtual-dma", NULL);
1421 vdma = prop->value;
1422
1423 dma_mask = vdma[0];
1424 switch(vdma[1]) {
1425 case 0x20000000:
1426 dma_mask |= 0x1fffffff;
1427 tsbsize = 64;
1428 break;
1429 case 0x40000000:
1430 dma_mask |= 0x3fffffff;
1431 tsbsize = 128;
1432 break;
1433
1434 case 0x80000000:
1435 dma_mask |= 0x7fffffff;
1436 tsbsize = 128;
1437 break;
1438 default:
1439 prom_printf("SABRE: strange virtual-dma size.\n");
1440 prom_halt();
1441 }
1442
1443 sabre_iommu_init(p, tsbsize, vdma[0], dma_mask);
1444
1445 prop = of_find_property(dp, "bus-range", NULL);
1446 busrange = prop->value;
1447 p->pci_first_busno = busrange[0];
1448 p->pci_last_busno = busrange[1];
1449
1450 /*
1451 * Look for APB underneath.
1452 */
1453 sabre_pbm_init(p, dp, vdma[0]);
1454 }
This page took 0.126176 seconds and 5 git commands to generate.