[SPARC64]: Use in-kernel OBP device tree for PCI controller probing.
[deliverable/linux.git] / arch / sparc64 / kernel / pci_sabre.c
1 /* $Id: pci_sabre.c,v 1.42 2002/01/23 11:27:32 davem Exp $
2 * pci_sabre.c: Sabre specific PCI controller support.
3 *
4 * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@caipfs.rutgers.edu)
5 * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com)
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/pci.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
15
16 #include <asm/apb.h>
17 #include <asm/pbm.h>
18 #include <asm/iommu.h>
19 #include <asm/irq.h>
20 #include <asm/smp.h>
21 #include <asm/oplib.h>
22 #include <asm/prom.h>
23
24 #include "pci_impl.h"
25 #include "iommu_common.h"
26
27 /* All SABRE registers are 64-bits. The following accessor
28 * routines are how they are accessed. The REG parameter
29 * is a physical address.
30 */
31 #define sabre_read(__reg) \
32 ({ u64 __ret; \
33 __asm__ __volatile__("ldxa [%1] %2, %0" \
34 : "=r" (__ret) \
35 : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
36 : "memory"); \
37 __ret; \
38 })
39 #define sabre_write(__reg, __val) \
40 __asm__ __volatile__("stxa %0, [%1] %2" \
41 : /* no outputs */ \
42 : "r" (__val), "r" (__reg), \
43 "i" (ASI_PHYS_BYPASS_EC_E) \
44 : "memory")
45
46 /* SABRE PCI controller register offsets and definitions. */
47 #define SABRE_UE_AFSR 0x0030UL
48 #define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
49 #define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
50 #define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
51 #define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
52 #define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */
53 #define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */
54 #define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
55 #define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */
56 #define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */
57 #define SABRE_UECE_AFAR 0x0038UL
58 #define SABRE_CE_AFSR 0x0040UL
59 #define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
60 #define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
61 #define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
62 #define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
63 #define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */
64 #define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
65 #define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */
66 #define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */
67 #define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */
68 #define SABRE_IOMMU_CONTROL 0x0200UL
69 #define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */
70 #define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */
71 #define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */
72 #define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */
73 #define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */
74 #define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000
75 #define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000
76 #define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000
77 #define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000
78 #define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000
79 #define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000
80 #define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000
81 #define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
82 #define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */
83 #define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */
84 #define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */
85 #define SABRE_IOMMU_TSBBASE 0x0208UL
86 #define SABRE_IOMMU_FLUSH 0x0210UL
87 #define SABRE_IMAP_A_SLOT0 0x0c00UL
88 #define SABRE_IMAP_B_SLOT0 0x0c20UL
89 #define SABRE_IMAP_SCSI 0x1000UL
90 #define SABRE_IMAP_ETH 0x1008UL
91 #define SABRE_IMAP_BPP 0x1010UL
92 #define SABRE_IMAP_AU_REC 0x1018UL
93 #define SABRE_IMAP_AU_PLAY 0x1020UL
94 #define SABRE_IMAP_PFAIL 0x1028UL
95 #define SABRE_IMAP_KMS 0x1030UL
96 #define SABRE_IMAP_FLPY 0x1038UL
97 #define SABRE_IMAP_SHW 0x1040UL
98 #define SABRE_IMAP_KBD 0x1048UL
99 #define SABRE_IMAP_MS 0x1050UL
100 #define SABRE_IMAP_SER 0x1058UL
101 #define SABRE_IMAP_UE 0x1070UL
102 #define SABRE_IMAP_CE 0x1078UL
103 #define SABRE_IMAP_PCIERR 0x1080UL
104 #define SABRE_IMAP_GFX 0x1098UL
105 #define SABRE_IMAP_EUPA 0x10a0UL
106 #define SABRE_ICLR_A_SLOT0 0x1400UL
107 #define SABRE_ICLR_B_SLOT0 0x1480UL
108 #define SABRE_ICLR_SCSI 0x1800UL
109 #define SABRE_ICLR_ETH 0x1808UL
110 #define SABRE_ICLR_BPP 0x1810UL
111 #define SABRE_ICLR_AU_REC 0x1818UL
112 #define SABRE_ICLR_AU_PLAY 0x1820UL
113 #define SABRE_ICLR_PFAIL 0x1828UL
114 #define SABRE_ICLR_KMS 0x1830UL
115 #define SABRE_ICLR_FLPY 0x1838UL
116 #define SABRE_ICLR_SHW 0x1840UL
117 #define SABRE_ICLR_KBD 0x1848UL
118 #define SABRE_ICLR_MS 0x1850UL
119 #define SABRE_ICLR_SER 0x1858UL
120 #define SABRE_ICLR_UE 0x1870UL
121 #define SABRE_ICLR_CE 0x1878UL
122 #define SABRE_ICLR_PCIERR 0x1880UL
123 #define SABRE_WRSYNC 0x1c20UL
124 #define SABRE_PCICTRL 0x2000UL
125 #define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */
126 #define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */
127 #define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
128 #define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */
129 #define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */
130 #define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */
131 #define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */
132 #define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */
133 #define SABRE_PIOAFSR 0x2010UL
134 #define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */
135 #define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */
136 #define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */
137 #define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */
138 #define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */
139 #define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */
140 #define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */
141 #define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */
142 #define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */
143 #define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */
144 #define SABRE_PIOAFAR 0x2018UL
145 #define SABRE_PCIDIAG 0x2020UL
146 #define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */
147 #define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */
148 #define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */
149 #define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */
150 #define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */
151 #define SABRE_PCITASR 0x2028UL
152 #define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */
153 #define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */
154 #define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */
155 #define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */
156 #define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */
157 #define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */
158 #define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */
159 #define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */
160 #define SABRE_PIOBUF_DIAG 0x5000UL
161 #define SABRE_DMABUF_DIAGLO 0x5100UL
162 #define SABRE_DMABUF_DIAGHI 0x51c0UL
163 #define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */
164 #define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */
165 #define SABRE_IOMMU_VADIAG 0xa400UL
166 #define SABRE_IOMMU_TCDIAG 0xa408UL
167 #define SABRE_IOMMU_TAG 0xa580UL
168 #define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */
169 #define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */
170 #define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */
171 #define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */
172 #define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */
173 #define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */
174 #define SABRE_IOMMU_DATA 0xa600UL
175 #define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */
176 #define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */
177 #define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */
178 #define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */
179 #define SABRE_PCI_IRQSTATE 0xa800UL
180 #define SABRE_OBIO_IRQSTATE 0xa808UL
181 #define SABRE_FFBCFG 0xf000UL
182 #define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */
183 #define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */
184 #define SABRE_MCCTRL0 0xf010UL
185 #define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */
186 #define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */
187 #define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */
188 #define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */
189 #define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */
190 #define SABRE_MCCTRL1 0xf018UL
191 #define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */
192 #define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */
193 #define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */
194 #define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */
195 #define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */
196 #define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */
197 #define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */
198 #define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */
199 #define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */
200 #define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */
201 #define SABRE_RESETCTRL 0xf020UL
202
203 #define SABRE_CONFIGSPACE 0x001000000UL
204 #define SABRE_IOSPACE 0x002000000UL
205 #define SABRE_IOSPACE_SIZE 0x000ffffffUL
206 #define SABRE_MEMSPACE 0x100000000UL
207 #define SABRE_MEMSPACE_SIZE 0x07fffffffUL
208
209 /* UltraSparc-IIi Programmer's Manual, page 325, PCI
210 * configuration space address format:
211 *
212 * 32 24 23 16 15 11 10 8 7 2 1 0
213 * ---------------------------------------------------------
214 * |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 |
215 * ---------------------------------------------------------
216 */
217 #define SABRE_CONFIG_BASE(PBM) \
218 ((PBM)->config_space | (1UL << 24))
219 #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \
220 (((unsigned long)(BUS) << 16) | \
221 ((unsigned long)(DEVFN) << 8) | \
222 ((unsigned long)(REG)))
223
224 static int hummingbird_p;
225 static struct pci_bus *sabre_root_bus;
226
227 static void *sabre_pci_config_mkaddr(struct pci_pbm_info *pbm,
228 unsigned char bus,
229 unsigned int devfn,
230 int where)
231 {
232 if (!pbm)
233 return NULL;
234 return (void *)
235 (SABRE_CONFIG_BASE(pbm) |
236 SABRE_CONFIG_ENCODE(bus, devfn, where));
237 }
238
239 static int sabre_out_of_range(unsigned char devfn)
240 {
241 if (hummingbird_p)
242 return 0;
243
244 return (((PCI_SLOT(devfn) == 0) && (PCI_FUNC(devfn) > 0)) ||
245 ((PCI_SLOT(devfn) == 1) && (PCI_FUNC(devfn) > 1)) ||
246 (PCI_SLOT(devfn) > 1));
247 }
248
249 static int __sabre_out_of_range(struct pci_pbm_info *pbm,
250 unsigned char bus,
251 unsigned char devfn)
252 {
253 if (hummingbird_p)
254 return 0;
255
256 return ((pbm->parent == 0) ||
257 ((pbm == &pbm->parent->pbm_B) &&
258 (bus == pbm->pci_first_busno) &&
259 PCI_SLOT(devfn) > 8) ||
260 ((pbm == &pbm->parent->pbm_A) &&
261 (bus == pbm->pci_first_busno) &&
262 PCI_SLOT(devfn) > 8));
263 }
264
265 static int __sabre_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
266 int where, int size, u32 *value)
267 {
268 struct pci_pbm_info *pbm = bus_dev->sysdata;
269 unsigned char bus = bus_dev->number;
270 u32 *addr;
271 u16 tmp16;
272 u8 tmp8;
273
274 switch (size) {
275 case 1:
276 *value = 0xff;
277 break;
278 case 2:
279 *value = 0xffff;
280 break;
281 case 4:
282 *value = 0xffffffff;
283 break;
284 }
285
286 addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
287 if (!addr)
288 return PCIBIOS_SUCCESSFUL;
289
290 if (__sabre_out_of_range(pbm, bus, devfn))
291 return PCIBIOS_SUCCESSFUL;
292
293 switch (size) {
294 case 1:
295 pci_config_read8((u8 *) addr, &tmp8);
296 *value = tmp8;
297 break;
298
299 case 2:
300 if (where & 0x01) {
301 printk("pci_read_config_word: misaligned reg [%x]\n",
302 where);
303 return PCIBIOS_SUCCESSFUL;
304 }
305 pci_config_read16((u16 *) addr, &tmp16);
306 *value = tmp16;
307 break;
308
309 case 4:
310 if (where & 0x03) {
311 printk("pci_read_config_dword: misaligned reg [%x]\n",
312 where);
313 return PCIBIOS_SUCCESSFUL;
314 }
315 pci_config_read32(addr, value);
316 break;
317 }
318
319 return PCIBIOS_SUCCESSFUL;
320 }
321
322 static int sabre_read_pci_cfg(struct pci_bus *bus, unsigned int devfn,
323 int where, int size, u32 *value)
324 {
325 if (!bus->number && sabre_out_of_range(devfn)) {
326 switch (size) {
327 case 1:
328 *value = 0xff;
329 break;
330 case 2:
331 *value = 0xffff;
332 break;
333 case 4:
334 *value = 0xffffffff;
335 break;
336 }
337 return PCIBIOS_SUCCESSFUL;
338 }
339
340 if (bus->number || PCI_SLOT(devfn))
341 return __sabre_read_pci_cfg(bus, devfn, where, size, value);
342
343 /* When accessing PCI config space of the PCI controller itself (bus
344 * 0, device slot 0, function 0) there are restrictions. Each
345 * register must be accessed as it's natural size. Thus, for example
346 * the Vendor ID must be accessed as a 16-bit quantity.
347 */
348
349 switch (size) {
350 case 1:
351 if (where < 8) {
352 u32 tmp32;
353 u16 tmp16;
354
355 __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
356 tmp16 = (u16) tmp32;
357 if (where & 1)
358 *value = tmp16 >> 8;
359 else
360 *value = tmp16 & 0xff;
361 } else
362 return __sabre_read_pci_cfg(bus, devfn, where, 1, value);
363 break;
364
365 case 2:
366 if (where < 8)
367 return __sabre_read_pci_cfg(bus, devfn, where, 2, value);
368 else {
369 u32 tmp32;
370 u8 tmp8;
371
372 __sabre_read_pci_cfg(bus, devfn, where, 1, &tmp32);
373 tmp8 = (u8) tmp32;
374 *value = tmp8;
375 __sabre_read_pci_cfg(bus, devfn, where + 1, 1, &tmp32);
376 tmp8 = (u8) tmp32;
377 *value |= tmp8 << 8;
378 }
379 break;
380
381 case 4: {
382 u32 tmp32;
383 u16 tmp16;
384
385 sabre_read_pci_cfg(bus, devfn, where, 2, &tmp32);
386 tmp16 = (u16) tmp32;
387 *value = tmp16;
388 sabre_read_pci_cfg(bus, devfn, where + 2, 2, &tmp32);
389 tmp16 = (u16) tmp32;
390 *value |= tmp16 << 16;
391 break;
392 }
393 }
394 return PCIBIOS_SUCCESSFUL;
395 }
396
397 static int __sabre_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
398 int where, int size, u32 value)
399 {
400 struct pci_pbm_info *pbm = bus_dev->sysdata;
401 unsigned char bus = bus_dev->number;
402 u32 *addr;
403
404 addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
405 if (!addr)
406 return PCIBIOS_SUCCESSFUL;
407
408 if (__sabre_out_of_range(pbm, bus, devfn))
409 return PCIBIOS_SUCCESSFUL;
410
411 switch (size) {
412 case 1:
413 pci_config_write8((u8 *) addr, value);
414 break;
415
416 case 2:
417 if (where & 0x01) {
418 printk("pci_write_config_word: misaligned reg [%x]\n",
419 where);
420 return PCIBIOS_SUCCESSFUL;
421 }
422 pci_config_write16((u16 *) addr, value);
423 break;
424
425 case 4:
426 if (where & 0x03) {
427 printk("pci_write_config_dword: misaligned reg [%x]\n",
428 where);
429 return PCIBIOS_SUCCESSFUL;
430 }
431 pci_config_write32(addr, value);
432 break;
433 }
434
435 return PCIBIOS_SUCCESSFUL;
436 }
437
438 static int sabre_write_pci_cfg(struct pci_bus *bus, unsigned int devfn,
439 int where, int size, u32 value)
440 {
441 if (bus->number)
442 return __sabre_write_pci_cfg(bus, devfn, where, size, value);
443
444 if (sabre_out_of_range(devfn))
445 return PCIBIOS_SUCCESSFUL;
446
447 switch (size) {
448 case 1:
449 if (where < 8) {
450 u32 tmp32;
451 u16 tmp16;
452
453 __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
454 tmp16 = (u16) tmp32;
455 if (where & 1) {
456 value &= 0x00ff;
457 value |= tmp16 << 8;
458 } else {
459 value &= 0xff00;
460 value |= tmp16;
461 }
462 tmp32 = (u32) tmp16;
463 return __sabre_write_pci_cfg(bus, devfn, where & ~1, 2, tmp32);
464 } else
465 return __sabre_write_pci_cfg(bus, devfn, where, 1, value);
466 break;
467 case 2:
468 if (where < 8)
469 return __sabre_write_pci_cfg(bus, devfn, where, 2, value);
470 else {
471 __sabre_write_pci_cfg(bus, devfn, where, 1, value & 0xff);
472 __sabre_write_pci_cfg(bus, devfn, where + 1, 1, value >> 8);
473 }
474 break;
475 case 4:
476 sabre_write_pci_cfg(bus, devfn, where, 2, value & 0xffff);
477 sabre_write_pci_cfg(bus, devfn, where + 2, 2, value >> 16);
478 break;
479 }
480 return PCIBIOS_SUCCESSFUL;
481 }
482
483 static struct pci_ops sabre_ops = {
484 .read = sabre_read_pci_cfg,
485 .write = sabre_write_pci_cfg,
486 };
487
488 static unsigned long sabre_pcislot_imap_offset(unsigned long ino)
489 {
490 unsigned int bus = (ino & 0x10) >> 4;
491 unsigned int slot = (ino & 0x0c) >> 2;
492
493 if (bus == 0)
494 return SABRE_IMAP_A_SLOT0 + (slot * 8);
495 else
496 return SABRE_IMAP_B_SLOT0 + (slot * 8);
497 }
498
499 static unsigned long __onboard_imap_off[] = {
500 /*0x20*/ SABRE_IMAP_SCSI,
501 /*0x21*/ SABRE_IMAP_ETH,
502 /*0x22*/ SABRE_IMAP_BPP,
503 /*0x23*/ SABRE_IMAP_AU_REC,
504 /*0x24*/ SABRE_IMAP_AU_PLAY,
505 /*0x25*/ SABRE_IMAP_PFAIL,
506 /*0x26*/ SABRE_IMAP_KMS,
507 /*0x27*/ SABRE_IMAP_FLPY,
508 /*0x28*/ SABRE_IMAP_SHW,
509 /*0x29*/ SABRE_IMAP_KBD,
510 /*0x2a*/ SABRE_IMAP_MS,
511 /*0x2b*/ SABRE_IMAP_SER,
512 /*0x2c*/ 0 /* reserved */,
513 /*0x2d*/ 0 /* reserved */,
514 /*0x2e*/ SABRE_IMAP_UE,
515 /*0x2f*/ SABRE_IMAP_CE,
516 /*0x30*/ SABRE_IMAP_PCIERR,
517 };
518 #define SABRE_ONBOARD_IRQ_BASE 0x20
519 #define SABRE_ONBOARD_IRQ_LAST 0x30
520 #define sabre_onboard_imap_offset(__ino) \
521 __onboard_imap_off[(__ino) - SABRE_ONBOARD_IRQ_BASE]
522
523 #define sabre_iclr_offset(ino) \
524 ((ino & 0x20) ? (SABRE_ICLR_SCSI + (((ino) & 0x1f) << 3)) : \
525 (SABRE_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3)))
526
527 /* When a device lives behind a bridge deeper in the PCI bus topology
528 * than APB, a special sequence must run to make sure all pending DMA
529 * transfers at the time of IRQ delivery are visible in the coherency
530 * domain by the cpu. This sequence is to perform a read on the far
531 * side of the non-APB bridge, then perform a read of Sabre's DMA
532 * write-sync register.
533 */
534 static void sabre_wsync_handler(unsigned int ino, void *_arg1, void *_arg2)
535 {
536 struct pci_dev *pdev = _arg1;
537 unsigned long sync_reg = (unsigned long) _arg2;
538 u16 _unused;
539
540 pci_read_config_word(pdev, PCI_VENDOR_ID, &_unused);
541 sabre_read(sync_reg);
542 }
543
544 static unsigned int sabre_irq_build(struct pci_pbm_info *pbm,
545 struct pci_dev *pdev,
546 unsigned int ino)
547 {
548 unsigned long imap, iclr;
549 unsigned long imap_off, iclr_off;
550 int inofixup = 0;
551 int virt_irq;
552
553 ino &= PCI_IRQ_INO;
554 if (ino < SABRE_ONBOARD_IRQ_BASE) {
555 /* PCI slot */
556 imap_off = sabre_pcislot_imap_offset(ino);
557 } else {
558 /* onboard device */
559 if (ino > SABRE_ONBOARD_IRQ_LAST) {
560 prom_printf("sabre_irq_build: Wacky INO [%x]\n", ino);
561 prom_halt();
562 }
563 imap_off = sabre_onboard_imap_offset(ino);
564 }
565
566 /* Now build the IRQ bucket. */
567 imap = pbm->controller_regs + imap_off;
568 imap += 4;
569
570 iclr_off = sabre_iclr_offset(ino);
571 iclr = pbm->controller_regs + iclr_off;
572 iclr += 4;
573
574 if ((ino & 0x20) == 0)
575 inofixup = ino & 0x03;
576
577 virt_irq = build_irq(inofixup, iclr, imap);
578
579 if (pdev) {
580 struct pcidev_cookie *pcp = pdev->sysdata;
581
582 if (pdev->bus->number != pcp->pbm->pci_first_busno) {
583 struct pci_controller_info *p = pcp->pbm->parent;
584
585 irq_install_pre_handler(virt_irq,
586 sabre_wsync_handler,
587 pdev,
588 (void *)
589 p->pbm_A.controller_regs +
590 SABRE_WRSYNC);
591 }
592 }
593 return virt_irq;
594 }
595
596 /* SABRE error handling support. */
597 static void sabre_check_iommu_error(struct pci_controller_info *p,
598 unsigned long afsr,
599 unsigned long afar)
600 {
601 struct pci_iommu *iommu = p->pbm_A.iommu;
602 unsigned long iommu_tag[16];
603 unsigned long iommu_data[16];
604 unsigned long flags;
605 u64 control;
606 int i;
607
608 spin_lock_irqsave(&iommu->lock, flags);
609 control = sabre_read(iommu->iommu_control);
610 if (control & SABRE_IOMMUCTRL_ERR) {
611 char *type_string;
612
613 /* Clear the error encountered bit.
614 * NOTE: On Sabre this is write 1 to clear,
615 * which is different from Psycho.
616 */
617 sabre_write(iommu->iommu_control, control);
618 switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) {
619 case 1:
620 type_string = "Invalid Error";
621 break;
622 case 3:
623 type_string = "ECC Error";
624 break;
625 default:
626 type_string = "Unknown";
627 break;
628 };
629 printk("SABRE%d: IOMMU Error, type[%s]\n",
630 p->index, type_string);
631
632 /* Enter diagnostic mode and probe for error'd
633 * entries in the IOTLB.
634 */
635 control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR);
636 sabre_write(iommu->iommu_control,
637 (control | SABRE_IOMMUCTRL_DENAB));
638 for (i = 0; i < 16; i++) {
639 unsigned long base = p->pbm_A.controller_regs;
640
641 iommu_tag[i] =
642 sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL));
643 iommu_data[i] =
644 sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL));
645 sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0);
646 sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0);
647 }
648 sabre_write(iommu->iommu_control, control);
649
650 for (i = 0; i < 16; i++) {
651 unsigned long tag, data;
652
653 tag = iommu_tag[i];
654 if (!(tag & SABRE_IOMMUTAG_ERR))
655 continue;
656
657 data = iommu_data[i];
658 switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) {
659 case 1:
660 type_string = "Invalid Error";
661 break;
662 case 3:
663 type_string = "ECC Error";
664 break;
665 default:
666 type_string = "Unknown";
667 break;
668 };
669 printk("SABRE%d: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
670 p->index, i, tag, type_string,
671 ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0),
672 ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8),
673 ((tag & SABRE_IOMMUTAG_VPN) << IOMMU_PAGE_SHIFT));
674 printk("SABRE%d: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
675 p->index, i, data,
676 ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0),
677 ((data & SABRE_IOMMUDATA_USED) ? 1 : 0),
678 ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0),
679 ((data & SABRE_IOMMUDATA_PPN) << IOMMU_PAGE_SHIFT));
680 }
681 }
682 spin_unlock_irqrestore(&iommu->lock, flags);
683 }
684
685 static irqreturn_t sabre_ue_intr(int irq, void *dev_id, struct pt_regs *regs)
686 {
687 struct pci_controller_info *p = dev_id;
688 unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_UE_AFSR;
689 unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
690 unsigned long afsr, afar, error_bits;
691 int reported;
692
693 /* Latch uncorrectable error status. */
694 afar = sabre_read(afar_reg);
695 afsr = sabre_read(afsr_reg);
696
697 /* Clear the primary/secondary error status bits. */
698 error_bits = afsr &
699 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
700 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
701 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
702 if (!error_bits)
703 return IRQ_NONE;
704 sabre_write(afsr_reg, error_bits);
705
706 /* Log the error. */
707 printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n",
708 p->index,
709 ((error_bits & SABRE_UEAFSR_PDRD) ?
710 "DMA Read" :
711 ((error_bits & SABRE_UEAFSR_PDWR) ?
712 "DMA Write" : "???")),
713 ((error_bits & SABRE_UEAFSR_PDTE) ?
714 ":Translation Error" : ""));
715 printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
716 p->index,
717 (afsr & SABRE_UEAFSR_BMSK) >> 32UL,
718 (afsr & SABRE_UEAFSR_OFF) >> 29UL,
719 ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
720 printk("SABRE%d: UE AFAR [%016lx]\n", p->index, afar);
721 printk("SABRE%d: UE Secondary errors [", p->index);
722 reported = 0;
723 if (afsr & SABRE_UEAFSR_SDRD) {
724 reported++;
725 printk("(DMA Read)");
726 }
727 if (afsr & SABRE_UEAFSR_SDWR) {
728 reported++;
729 printk("(DMA Write)");
730 }
731 if (afsr & SABRE_UEAFSR_SDTE) {
732 reported++;
733 printk("(Translation Error)");
734 }
735 if (!reported)
736 printk("(none)");
737 printk("]\n");
738
739 /* Interrogate IOMMU for error status. */
740 sabre_check_iommu_error(p, afsr, afar);
741
742 return IRQ_HANDLED;
743 }
744
745 static irqreturn_t sabre_ce_intr(int irq, void *dev_id, struct pt_regs *regs)
746 {
747 struct pci_controller_info *p = dev_id;
748 unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_CE_AFSR;
749 unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
750 unsigned long afsr, afar, error_bits;
751 int reported;
752
753 /* Latch error status. */
754 afar = sabre_read(afar_reg);
755 afsr = sabre_read(afsr_reg);
756
757 /* Clear primary/secondary error status bits. */
758 error_bits = afsr &
759 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
760 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
761 if (!error_bits)
762 return IRQ_NONE;
763 sabre_write(afsr_reg, error_bits);
764
765 /* Log the error. */
766 printk("SABRE%d: Correctable Error, primary error type[%s]\n",
767 p->index,
768 ((error_bits & SABRE_CEAFSR_PDRD) ?
769 "DMA Read" :
770 ((error_bits & SABRE_CEAFSR_PDWR) ?
771 "DMA Write" : "???")));
772
773 /* XXX Use syndrome and afar to print out module string just like
774 * XXX UDB CE trap handler does... -DaveM
775 */
776 printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
777 "was_block(%d)\n",
778 p->index,
779 (afsr & SABRE_CEAFSR_ESYND) >> 48UL,
780 (afsr & SABRE_CEAFSR_BMSK) >> 32UL,
781 (afsr & SABRE_CEAFSR_OFF) >> 29UL,
782 ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
783 printk("SABRE%d: CE AFAR [%016lx]\n", p->index, afar);
784 printk("SABRE%d: CE Secondary errors [", p->index);
785 reported = 0;
786 if (afsr & SABRE_CEAFSR_SDRD) {
787 reported++;
788 printk("(DMA Read)");
789 }
790 if (afsr & SABRE_CEAFSR_SDWR) {
791 reported++;
792 printk("(DMA Write)");
793 }
794 if (!reported)
795 printk("(none)");
796 printk("]\n");
797
798 return IRQ_HANDLED;
799 }
800
801 static irqreturn_t sabre_pcierr_intr_other(struct pci_controller_info *p)
802 {
803 unsigned long csr_reg, csr, csr_error_bits;
804 irqreturn_t ret = IRQ_NONE;
805 u16 stat;
806
807 csr_reg = p->pbm_A.controller_regs + SABRE_PCICTRL;
808 csr = sabre_read(csr_reg);
809 csr_error_bits =
810 csr & SABRE_PCICTRL_SERR;
811 if (csr_error_bits) {
812 /* Clear the errors. */
813 sabre_write(csr_reg, csr);
814
815 /* Log 'em. */
816 if (csr_error_bits & SABRE_PCICTRL_SERR)
817 printk("SABRE%d: PCI SERR signal asserted.\n",
818 p->index);
819 ret = IRQ_HANDLED;
820 }
821 pci_read_config_word(sabre_root_bus->self,
822 PCI_STATUS, &stat);
823 if (stat & (PCI_STATUS_PARITY |
824 PCI_STATUS_SIG_TARGET_ABORT |
825 PCI_STATUS_REC_TARGET_ABORT |
826 PCI_STATUS_REC_MASTER_ABORT |
827 PCI_STATUS_SIG_SYSTEM_ERROR)) {
828 printk("SABRE%d: PCI bus error, PCI_STATUS[%04x]\n",
829 p->index, stat);
830 pci_write_config_word(sabre_root_bus->self,
831 PCI_STATUS, 0xffff);
832 ret = IRQ_HANDLED;
833 }
834 return ret;
835 }
836
837 static irqreturn_t sabre_pcierr_intr(int irq, void *dev_id, struct pt_regs *regs)
838 {
839 struct pci_controller_info *p = dev_id;
840 unsigned long afsr_reg, afar_reg;
841 unsigned long afsr, afar, error_bits;
842 int reported;
843
844 afsr_reg = p->pbm_A.controller_regs + SABRE_PIOAFSR;
845 afar_reg = p->pbm_A.controller_regs + SABRE_PIOAFAR;
846
847 /* Latch error status. */
848 afar = sabre_read(afar_reg);
849 afsr = sabre_read(afsr_reg);
850
851 /* Clear primary/secondary error status bits. */
852 error_bits = afsr &
853 (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA |
854 SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR |
855 SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA |
856 SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR);
857 if (!error_bits)
858 return sabre_pcierr_intr_other(p);
859 sabre_write(afsr_reg, error_bits);
860
861 /* Log the error. */
862 printk("SABRE%d: PCI Error, primary error type[%s]\n",
863 p->index,
864 (((error_bits & SABRE_PIOAFSR_PMA) ?
865 "Master Abort" :
866 ((error_bits & SABRE_PIOAFSR_PTA) ?
867 "Target Abort" :
868 ((error_bits & SABRE_PIOAFSR_PRTRY) ?
869 "Excessive Retries" :
870 ((error_bits & SABRE_PIOAFSR_PPERR) ?
871 "Parity Error" : "???"))))));
872 printk("SABRE%d: bytemask[%04lx] was_block(%d)\n",
873 p->index,
874 (afsr & SABRE_PIOAFSR_BMSK) >> 32UL,
875 (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0);
876 printk("SABRE%d: PCI AFAR [%016lx]\n", p->index, afar);
877 printk("SABRE%d: PCI Secondary errors [", p->index);
878 reported = 0;
879 if (afsr & SABRE_PIOAFSR_SMA) {
880 reported++;
881 printk("(Master Abort)");
882 }
883 if (afsr & SABRE_PIOAFSR_STA) {
884 reported++;
885 printk("(Target Abort)");
886 }
887 if (afsr & SABRE_PIOAFSR_SRTRY) {
888 reported++;
889 printk("(Excessive Retries)");
890 }
891 if (afsr & SABRE_PIOAFSR_SPERR) {
892 reported++;
893 printk("(Parity Error)");
894 }
895 if (!reported)
896 printk("(none)");
897 printk("]\n");
898
899 /* For the error types shown, scan both PCI buses for devices
900 * which have logged that error type.
901 */
902
903 /* If we see a Target Abort, this could be the result of an
904 * IOMMU translation error of some sort. It is extremely
905 * useful to log this information as usually it indicates
906 * a bug in the IOMMU support code or a PCI device driver.
907 */
908 if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) {
909 sabre_check_iommu_error(p, afsr, afar);
910 pci_scan_for_target_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
911 pci_scan_for_target_abort(p, &p->pbm_B, p->pbm_B.pci_bus);
912 }
913 if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA)) {
914 pci_scan_for_master_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
915 pci_scan_for_master_abort(p, &p->pbm_B, p->pbm_B.pci_bus);
916 }
917 /* For excessive retries, SABRE/PBM will abort the device
918 * and there is no way to specifically check for excessive
919 * retries in the config space status registers. So what
920 * we hope is that we'll catch it via the master/target
921 * abort events.
922 */
923
924 if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR)) {
925 pci_scan_for_parity_error(p, &p->pbm_A, p->pbm_A.pci_bus);
926 pci_scan_for_parity_error(p, &p->pbm_B, p->pbm_B.pci_bus);
927 }
928
929 return IRQ_HANDLED;
930 }
931
932 /* XXX What about PowerFail/PowerManagement??? -DaveM */
933 #define SABRE_UE_INO 0x2e
934 #define SABRE_CE_INO 0x2f
935 #define SABRE_PCIERR_INO 0x30
936 static void sabre_register_error_handlers(struct pci_controller_info *p)
937 {
938 struct pci_pbm_info *pbm = &p->pbm_A; /* arbitrary */
939 unsigned long base = pbm->controller_regs;
940 unsigned long irq, portid = pbm->portid;
941 u64 tmp;
942
943 /* We clear the error bits in the appropriate AFSR before
944 * registering the handler so that we don't get spurious
945 * interrupts.
946 */
947 sabre_write(base + SABRE_UE_AFSR,
948 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
949 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
950 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE));
951 irq = sabre_irq_build(pbm, NULL, (portid << 6) | SABRE_UE_INO);
952 if (request_irq(irq, sabre_ue_intr,
953 SA_SHIRQ, "SABRE UE", p) < 0) {
954 prom_printf("SABRE%d: Cannot register UE interrupt.\n",
955 p->index);
956 prom_halt();
957 }
958
959 sabre_write(base + SABRE_CE_AFSR,
960 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
961 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR));
962 irq = sabre_irq_build(pbm, NULL, (portid << 6) | SABRE_CE_INO);
963 if (request_irq(irq, sabre_ce_intr,
964 SA_SHIRQ, "SABRE CE", p) < 0) {
965 prom_printf("SABRE%d: Cannot register CE interrupt.\n",
966 p->index);
967 prom_halt();
968 }
969
970 irq = sabre_irq_build(pbm, NULL, (portid << 6) | SABRE_PCIERR_INO);
971 if (request_irq(irq, sabre_pcierr_intr,
972 SA_SHIRQ, "SABRE PCIERR", p) < 0) {
973 prom_printf("SABRE%d: Cannot register PciERR interrupt.\n",
974 p->index);
975 prom_halt();
976 }
977
978 tmp = sabre_read(base + SABRE_PCICTRL);
979 tmp |= SABRE_PCICTRL_ERREN;
980 sabre_write(base + SABRE_PCICTRL, tmp);
981 }
982
983 static void sabre_resource_adjust(struct pci_dev *pdev,
984 struct resource *res,
985 struct resource *root)
986 {
987 struct pci_pbm_info *pbm = pdev->bus->sysdata;
988 unsigned long base;
989
990 if (res->flags & IORESOURCE_IO)
991 base = pbm->controller_regs + SABRE_IOSPACE;
992 else
993 base = pbm->controller_regs + SABRE_MEMSPACE;
994
995 res->start += base;
996 res->end += base;
997 }
998
999 static void sabre_base_address_update(struct pci_dev *pdev, int resource)
1000 {
1001 struct pcidev_cookie *pcp = pdev->sysdata;
1002 struct pci_pbm_info *pbm = pcp->pbm;
1003 struct resource *res;
1004 unsigned long base;
1005 u32 reg;
1006 int where, size, is_64bit;
1007
1008 res = &pdev->resource[resource];
1009 if (resource < 6) {
1010 where = PCI_BASE_ADDRESS_0 + (resource * 4);
1011 } else if (resource == PCI_ROM_RESOURCE) {
1012 where = pdev->rom_base_reg;
1013 } else {
1014 /* Somebody might have asked allocation of a non-standard resource */
1015 return;
1016 }
1017
1018 is_64bit = 0;
1019 if (res->flags & IORESOURCE_IO)
1020 base = pbm->controller_regs + SABRE_IOSPACE;
1021 else {
1022 base = pbm->controller_regs + SABRE_MEMSPACE;
1023 if ((res->flags & PCI_BASE_ADDRESS_MEM_TYPE_MASK)
1024 == PCI_BASE_ADDRESS_MEM_TYPE_64)
1025 is_64bit = 1;
1026 }
1027
1028 size = res->end - res->start;
1029 pci_read_config_dword(pdev, where, &reg);
1030 reg = ((reg & size) |
1031 (((u32)(res->start - base)) & ~size));
1032 if (resource == PCI_ROM_RESOURCE) {
1033 reg |= PCI_ROM_ADDRESS_ENABLE;
1034 res->flags |= IORESOURCE_ROM_ENABLE;
1035 }
1036 pci_write_config_dword(pdev, where, reg);
1037
1038 /* This knows that the upper 32-bits of the address
1039 * must be zero. Our PCI common layer enforces this.
1040 */
1041 if (is_64bit)
1042 pci_write_config_dword(pdev, where + 4, 0);
1043 }
1044
1045 static void apb_init(struct pci_controller_info *p, struct pci_bus *sabre_bus)
1046 {
1047 struct pci_dev *pdev;
1048
1049 list_for_each_entry(pdev, &sabre_bus->devices, bus_list) {
1050
1051 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1052 pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
1053 u32 word32;
1054 u16 word16;
1055
1056 sabre_read_pci_cfg(pdev->bus, pdev->devfn,
1057 PCI_COMMAND, 2, &word32);
1058 word16 = (u16) word32;
1059 word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
1060 PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
1061 PCI_COMMAND_IO;
1062 word32 = (u32) word16;
1063 sabre_write_pci_cfg(pdev->bus, pdev->devfn,
1064 PCI_COMMAND, 2, word32);
1065
1066 /* Status register bits are "write 1 to clear". */
1067 sabre_write_pci_cfg(pdev->bus, pdev->devfn,
1068 PCI_STATUS, 2, 0xffff);
1069 sabre_write_pci_cfg(pdev->bus, pdev->devfn,
1070 PCI_SEC_STATUS, 2, 0xffff);
1071
1072 /* Use a primary/seconday latency timer value
1073 * of 64.
1074 */
1075 sabre_write_pci_cfg(pdev->bus, pdev->devfn,
1076 PCI_LATENCY_TIMER, 1, 64);
1077 sabre_write_pci_cfg(pdev->bus, pdev->devfn,
1078 PCI_SEC_LATENCY_TIMER, 1, 64);
1079
1080 /* Enable reporting/forwarding of master aborts,
1081 * parity, and SERR.
1082 */
1083 sabre_write_pci_cfg(pdev->bus, pdev->devfn,
1084 PCI_BRIDGE_CONTROL, 1,
1085 (PCI_BRIDGE_CTL_PARITY |
1086 PCI_BRIDGE_CTL_SERR |
1087 PCI_BRIDGE_CTL_MASTER_ABORT));
1088 }
1089 }
1090 }
1091
1092 static struct pcidev_cookie *alloc_bridge_cookie(struct pci_pbm_info *pbm)
1093 {
1094 struct pcidev_cookie *cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
1095
1096 if (!cookie) {
1097 prom_printf("SABRE: Critical allocation failure.\n");
1098 prom_halt();
1099 }
1100
1101 /* All we care about is the PBM. */
1102 cookie->pbm = pbm;
1103
1104 return cookie;
1105 }
1106
1107 static void sabre_scan_bus(struct pci_controller_info *p)
1108 {
1109 static int once;
1110 struct pci_bus *sabre_bus, *pbus;
1111 struct pci_pbm_info *pbm;
1112 struct pcidev_cookie *cookie;
1113 int sabres_scanned;
1114
1115 /* The APB bridge speaks to the Sabre host PCI bridge
1116 * at 66Mhz, but the front side of APB runs at 33Mhz
1117 * for both segments.
1118 */
1119 p->pbm_A.is_66mhz_capable = 0;
1120 p->pbm_B.is_66mhz_capable = 0;
1121
1122 /* This driver has not been verified to handle
1123 * multiple SABREs yet, so trap this.
1124 *
1125 * Also note that the SABRE host bridge is hardwired
1126 * to live at bus 0.
1127 */
1128 if (once != 0) {
1129 prom_printf("SABRE: Multiple controllers unsupported.\n");
1130 prom_halt();
1131 }
1132 once++;
1133
1134 cookie = alloc_bridge_cookie(&p->pbm_A);
1135
1136 sabre_bus = pci_scan_bus(p->pci_first_busno,
1137 p->pci_ops,
1138 &p->pbm_A);
1139 pci_fixup_host_bridge_self(sabre_bus);
1140 sabre_bus->self->sysdata = cookie;
1141
1142 sabre_root_bus = sabre_bus;
1143
1144 apb_init(p, sabre_bus);
1145
1146 sabres_scanned = 0;
1147
1148 list_for_each_entry(pbus, &sabre_bus->children, node) {
1149
1150 if (pbus->number == p->pbm_A.pci_first_busno) {
1151 pbm = &p->pbm_A;
1152 } else if (pbus->number == p->pbm_B.pci_first_busno) {
1153 pbm = &p->pbm_B;
1154 } else
1155 continue;
1156
1157 cookie = alloc_bridge_cookie(pbm);
1158 pbus->self->sysdata = cookie;
1159
1160 sabres_scanned++;
1161
1162 pbus->sysdata = pbm;
1163 pbm->pci_bus = pbus;
1164 pci_fill_in_pbm_cookies(pbus, pbm, pbm->prom_node->node);
1165 pci_record_assignments(pbm, pbus);
1166 pci_assign_unassigned(pbm, pbus);
1167 pci_fixup_irq(pbm, pbus);
1168 pci_determine_66mhz_disposition(pbm, pbus);
1169 pci_setup_busmastering(pbm, pbus);
1170 }
1171
1172 if (!sabres_scanned) {
1173 /* Hummingbird, no APBs. */
1174 pbm = &p->pbm_A;
1175 sabre_bus->sysdata = pbm;
1176 pbm->pci_bus = sabre_bus;
1177 pci_fill_in_pbm_cookies(sabre_bus, pbm, pbm->prom_node->node);
1178 pci_record_assignments(pbm, sabre_bus);
1179 pci_assign_unassigned(pbm, sabre_bus);
1180 pci_fixup_irq(pbm, sabre_bus);
1181 pci_determine_66mhz_disposition(pbm, sabre_bus);
1182 pci_setup_busmastering(pbm, sabre_bus);
1183 }
1184
1185 sabre_register_error_handlers(p);
1186 }
1187
1188 static void sabre_iommu_init(struct pci_controller_info *p,
1189 int tsbsize, unsigned long dvma_offset,
1190 u32 dma_mask)
1191 {
1192 struct pci_iommu *iommu = p->pbm_A.iommu;
1193 unsigned long i;
1194 u64 control;
1195
1196 /* Register addresses. */
1197 iommu->iommu_control = p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL;
1198 iommu->iommu_tsbbase = p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE;
1199 iommu->iommu_flush = p->pbm_A.controller_regs + SABRE_IOMMU_FLUSH;
1200 iommu->write_complete_reg = p->pbm_A.controller_regs + SABRE_WRSYNC;
1201 /* Sabre's IOMMU lacks ctx flushing. */
1202 iommu->iommu_ctxflush = 0;
1203
1204 /* Invalidate TLB Entries. */
1205 control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
1206 control |= SABRE_IOMMUCTRL_DENAB;
1207 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
1208
1209 for(i = 0; i < 16; i++) {
1210 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TAG + (i * 8UL), 0);
1211 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0);
1212 }
1213
1214 /* Leave diag mode enabled for full-flushing done
1215 * in pci_iommu.c
1216 */
1217 pci_iommu_table_init(iommu, tsbsize * 1024 * 8, dvma_offset, dma_mask);
1218
1219 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE,
1220 __pa(iommu->page_table));
1221
1222 control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
1223 control &= ~(SABRE_IOMMUCTRL_TSBSZ | SABRE_IOMMUCTRL_TBWSZ);
1224 control |= SABRE_IOMMUCTRL_ENAB;
1225 switch(tsbsize) {
1226 case 64:
1227 control |= SABRE_IOMMU_TSBSZ_64K;
1228 break;
1229 case 128:
1230 control |= SABRE_IOMMU_TSBSZ_128K;
1231 break;
1232 default:
1233 prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize);
1234 prom_halt();
1235 break;
1236 }
1237 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
1238 }
1239
1240 static void pbm_register_toplevel_resources(struct pci_controller_info *p,
1241 struct pci_pbm_info *pbm)
1242 {
1243 char *name = pbm->name;
1244 unsigned long ibase = p->pbm_A.controller_regs + SABRE_IOSPACE;
1245 unsigned long mbase = p->pbm_A.controller_regs + SABRE_MEMSPACE;
1246 unsigned int devfn;
1247 unsigned long first, last, i;
1248 u8 *addr, map;
1249
1250 sprintf(name, "SABRE%d PBM%c",
1251 p->index,
1252 (pbm == &p->pbm_A ? 'A' : 'B'));
1253 pbm->io_space.name = pbm->mem_space.name = name;
1254
1255 devfn = PCI_DEVFN(1, (pbm == &p->pbm_A) ? 0 : 1);
1256 addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_IO_ADDRESS_MAP);
1257 map = 0;
1258 pci_config_read8(addr, &map);
1259
1260 first = 8;
1261 last = 0;
1262 for (i = 0; i < 8; i++) {
1263 if ((map & (1 << i)) != 0) {
1264 if (first > i)
1265 first = i;
1266 if (last < i)
1267 last = i;
1268 }
1269 }
1270 pbm->io_space.start = ibase + (first << 21UL);
1271 pbm->io_space.end = ibase + (last << 21UL) + ((1 << 21UL) - 1);
1272 pbm->io_space.flags = IORESOURCE_IO;
1273
1274 addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_MEM_ADDRESS_MAP);
1275 map = 0;
1276 pci_config_read8(addr, &map);
1277
1278 first = 8;
1279 last = 0;
1280 for (i = 0; i < 8; i++) {
1281 if ((map & (1 << i)) != 0) {
1282 if (first > i)
1283 first = i;
1284 if (last < i)
1285 last = i;
1286 }
1287 }
1288 pbm->mem_space.start = mbase + (first << 29UL);
1289 pbm->mem_space.end = mbase + (last << 29UL) + ((1 << 29UL) - 1);
1290 pbm->mem_space.flags = IORESOURCE_MEM;
1291
1292 if (request_resource(&ioport_resource, &pbm->io_space) < 0) {
1293 prom_printf("Cannot register PBM-%c's IO space.\n",
1294 (pbm == &p->pbm_A ? 'A' : 'B'));
1295 prom_halt();
1296 }
1297 if (request_resource(&iomem_resource, &pbm->mem_space) < 0) {
1298 prom_printf("Cannot register PBM-%c's MEM space.\n",
1299 (pbm == &p->pbm_A ? 'A' : 'B'));
1300 prom_halt();
1301 }
1302
1303 /* Register legacy regions if this PBM covers that area. */
1304 if (pbm->io_space.start == ibase &&
1305 pbm->mem_space.start == mbase)
1306 pci_register_legacy_regions(&pbm->io_space,
1307 &pbm->mem_space);
1308 }
1309
1310 static void sabre_pbm_init(struct pci_controller_info *p, struct device_node *dp, u32 dma_begin)
1311 {
1312 struct pci_pbm_info *pbm;
1313 struct device_node *node;
1314 struct property *prop;
1315 u32 *busrange;
1316 int len, simbas_found;
1317
1318 simbas_found = 0;
1319 node = dp->child;
1320 while (node != NULL) {
1321 if (strcmp(node->name, "pci"))
1322 goto next_pci;
1323
1324 prop = of_find_property(node, "model", NULL);
1325 if (!prop || strncmp(prop->value, "SUNW,simba", prop->length))
1326 goto next_pci;
1327
1328 simbas_found++;
1329
1330 prop = of_find_property(node, "bus-range", NULL);
1331 busrange = prop->value;
1332 if (busrange[0] == 1)
1333 pbm = &p->pbm_B;
1334 else
1335 pbm = &p->pbm_A;
1336
1337 pbm->name = node->full_name;
1338 printk("%s: SABRE PCI Bus Module\n", pbm->name);
1339
1340 pbm->chip_type = PBM_CHIP_TYPE_SABRE;
1341 pbm->parent = p;
1342 pbm->prom_node = node;
1343 pbm->pci_first_slot = 1;
1344 pbm->pci_first_busno = busrange[0];
1345 pbm->pci_last_busno = busrange[1];
1346
1347 prop = of_find_property(node, "ranges", &len);
1348 if (prop) {
1349 pbm->pbm_ranges = prop->value;
1350 pbm->num_pbm_ranges =
1351 (len / sizeof(struct linux_prom_pci_ranges));
1352 } else {
1353 pbm->num_pbm_ranges = 0;
1354 }
1355
1356 prop = of_find_property(node, "interrupt-map", &len);
1357 if (prop) {
1358 pbm->pbm_intmap = prop->value;
1359 pbm->num_pbm_intmap =
1360 (len / sizeof(struct linux_prom_pci_intmap));
1361
1362 prop = of_find_property(node, "interrupt-map-mask",
1363 NULL);
1364 pbm->pbm_intmask = prop->value;
1365 } else {
1366 pbm->num_pbm_intmap = 0;
1367 }
1368
1369 pbm_register_toplevel_resources(p, pbm);
1370
1371 next_pci:
1372 node = node->sibling;
1373 }
1374 if (simbas_found == 0) {
1375 /* No APBs underneath, probably this is a hummingbird
1376 * system.
1377 */
1378 pbm = &p->pbm_A;
1379 pbm->parent = p;
1380 pbm->prom_node = dp;
1381 pbm->pci_first_busno = p->pci_first_busno;
1382 pbm->pci_last_busno = p->pci_last_busno;
1383
1384 prop = of_find_property(dp, "ranges", &len);
1385 if (prop) {
1386 pbm->pbm_ranges = prop->value;
1387 pbm->num_pbm_ranges =
1388 (len / sizeof(struct linux_prom_pci_ranges));
1389 } else {
1390 pbm->num_pbm_ranges = 0;
1391 }
1392
1393 prop = of_find_property(dp, "interrupt-map", &len);
1394 if (prop) {
1395 pbm->pbm_intmap = prop->value;
1396 pbm->num_pbm_intmap =
1397 (len / sizeof(struct linux_prom_pci_intmap));
1398
1399 prop = of_find_property(dp, "interrupt-map-mask",
1400 NULL);
1401 pbm->pbm_intmask = prop->value;
1402 } else {
1403 pbm->num_pbm_intmap = 0;
1404 }
1405
1406 pbm->name = dp->full_name;
1407 printk("%s: SABRE PCI Bus Module\n", pbm->name);
1408
1409 pbm->io_space.name = pbm->mem_space.name = pbm->name;
1410
1411 /* Hack up top-level resources. */
1412 pbm->io_space.start = p->pbm_A.controller_regs + SABRE_IOSPACE;
1413 pbm->io_space.end = pbm->io_space.start + (1UL << 24) - 1UL;
1414 pbm->io_space.flags = IORESOURCE_IO;
1415
1416 pbm->mem_space.start = p->pbm_A.controller_regs + SABRE_MEMSPACE;
1417 pbm->mem_space.end = pbm->mem_space.start + (unsigned long)dma_begin - 1UL;
1418 pbm->mem_space.flags = IORESOURCE_MEM;
1419
1420 if (request_resource(&ioport_resource, &pbm->io_space) < 0) {
1421 prom_printf("Cannot register Hummingbird's IO space.\n");
1422 prom_halt();
1423 }
1424 if (request_resource(&iomem_resource, &pbm->mem_space) < 0) {
1425 prom_printf("Cannot register Hummingbird's MEM space.\n");
1426 prom_halt();
1427 }
1428
1429 pci_register_legacy_regions(&pbm->io_space,
1430 &pbm->mem_space);
1431 }
1432 }
1433
1434 void sabre_init(struct device_node *dp, char *model_name)
1435 {
1436 struct linux_prom64_registers *pr_regs;
1437 struct pci_controller_info *p;
1438 struct pci_iommu *iommu;
1439 struct property *prop;
1440 int tsbsize;
1441 u32 *busrange;
1442 u32 *vdma;
1443 u32 upa_portid, dma_mask;
1444 u64 clear_irq;
1445
1446 hummingbird_p = 0;
1447 if (!strcmp(model_name, "pci108e,a001"))
1448 hummingbird_p = 1;
1449 else if (!strcmp(model_name, "SUNW,sabre")) {
1450 prop = of_find_property(dp, "compatible", NULL);
1451 if (prop) {
1452 const char *compat = prop->value;
1453
1454 if (!strcmp(compat, "pci108e,a001"))
1455 hummingbird_p = 1;
1456 }
1457 if (!hummingbird_p) {
1458 char compat[64];
1459 int cpu_node;
1460
1461 /* Of course, Sun has to encode things a thousand
1462 * different ways, inconsistently.
1463 */
1464 cpu_find_by_instance(0, &cpu_node, NULL);
1465 if (prom_getproperty(cpu_node, "name",
1466 compat, sizeof(compat)) > 0 &&
1467 !strcmp(compat, "SUNW,UltraSPARC-IIe"))
1468 hummingbird_p = 1;
1469 }
1470 }
1471
1472 p = kzalloc(sizeof(*p), GFP_ATOMIC);
1473 if (!p) {
1474 prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n");
1475 prom_halt();
1476 }
1477
1478 iommu = kzalloc(sizeof(*iommu), GFP_ATOMIC);
1479 if (!iommu) {
1480 prom_printf("SABRE: Error, kmalloc(pci_iommu) failed.\n");
1481 prom_halt();
1482 }
1483 p->pbm_A.iommu = p->pbm_B.iommu = iommu;
1484
1485 upa_portid = 0xff;
1486 prop = of_find_property(dp, "upa-portid", NULL);
1487 if (prop)
1488 upa_portid = *(u32 *) prop->value;
1489
1490 p->next = pci_controller_root;
1491 pci_controller_root = p;
1492
1493 p->pbm_A.portid = upa_portid;
1494 p->pbm_B.portid = upa_portid;
1495 p->index = pci_num_controllers++;
1496 p->pbms_same_domain = 1;
1497 p->scan_bus = sabre_scan_bus;
1498 p->irq_build = sabre_irq_build;
1499 p->base_address_update = sabre_base_address_update;
1500 p->resource_adjust = sabre_resource_adjust;
1501 p->pci_ops = &sabre_ops;
1502
1503 /*
1504 * Map in SABRE register set and report the presence of this SABRE.
1505 */
1506
1507 prop = of_find_property(dp, "reg", NULL);
1508 pr_regs = prop->value;
1509
1510 /*
1511 * First REG in property is base of entire SABRE register space.
1512 */
1513 p->pbm_A.controller_regs = pr_regs[0].phys_addr;
1514 p->pbm_B.controller_regs = pr_regs[0].phys_addr;
1515
1516 /* Clear interrupts */
1517
1518 /* PCI first */
1519 for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8)
1520 sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
1521
1522 /* Then OBIO */
1523 for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8)
1524 sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
1525
1526 /* Error interrupts are enabled later after the bus scan. */
1527 sabre_write(p->pbm_A.controller_regs + SABRE_PCICTRL,
1528 (SABRE_PCICTRL_MRLEN | SABRE_PCICTRL_SERR |
1529 SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN));
1530
1531 /* Now map in PCI config space for entire SABRE. */
1532 p->pbm_A.config_space = p->pbm_B.config_space =
1533 (p->pbm_A.controller_regs + SABRE_CONFIGSPACE);
1534
1535 prop = of_find_property(dp, "virtual-dma", NULL);
1536 vdma = prop->value;
1537
1538 dma_mask = vdma[0];
1539 switch(vdma[1]) {
1540 case 0x20000000:
1541 dma_mask |= 0x1fffffff;
1542 tsbsize = 64;
1543 break;
1544 case 0x40000000:
1545 dma_mask |= 0x3fffffff;
1546 tsbsize = 128;
1547 break;
1548
1549 case 0x80000000:
1550 dma_mask |= 0x7fffffff;
1551 tsbsize = 128;
1552 break;
1553 default:
1554 prom_printf("SABRE: strange virtual-dma size.\n");
1555 prom_halt();
1556 }
1557
1558 sabre_iommu_init(p, tsbsize, vdma[0], dma_mask);
1559
1560 prop = of_find_property(dp, "bus-range", NULL);
1561 busrange = prop->value;
1562 p->pci_first_busno = busrange[0];
1563 p->pci_last_busno = busrange[1];
1564
1565 /*
1566 * Look for APB underneath.
1567 */
1568 sabre_pbm_init(p, dp, vdma[0]);
1569 }
This page took 0.063714 seconds and 5 git commands to generate.