[PATCH] sparc64 pt_regs fixes
[deliverable/linux.git] / arch / sparc64 / kernel / smp.c
1 /* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
4 */
5
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/smp_lock.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/jiffies.h>
23 #include <linux/profile.h>
24 #include <linux/bootmem.h>
25
26 #include <asm/head.h>
27 #include <asm/ptrace.h>
28 #include <asm/atomic.h>
29 #include <asm/tlbflush.h>
30 #include <asm/mmu_context.h>
31 #include <asm/cpudata.h>
32
33 #include <asm/irq.h>
34 #include <asm/irq_regs.h>
35 #include <asm/page.h>
36 #include <asm/pgtable.h>
37 #include <asm/oplib.h>
38 #include <asm/uaccess.h>
39 #include <asm/timer.h>
40 #include <asm/starfire.h>
41 #include <asm/tlb.h>
42 #include <asm/sections.h>
43 #include <asm/prom.h>
44
45 extern void calibrate_delay(void);
46
47 /* Please don't make this stuff initdata!!! --DaveM */
48 static unsigned char boot_cpu_id;
49
50 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
51 cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
52 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly =
53 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
54 static cpumask_t smp_commenced_mask;
55 static cpumask_t cpu_callout_map;
56
57 void smp_info(struct seq_file *m)
58 {
59 int i;
60
61 seq_printf(m, "State:\n");
62 for_each_online_cpu(i)
63 seq_printf(m, "CPU%d:\t\tonline\n", i);
64 }
65
66 void smp_bogo(struct seq_file *m)
67 {
68 int i;
69
70 for_each_online_cpu(i)
71 seq_printf(m,
72 "Cpu%dBogo\t: %lu.%02lu\n"
73 "Cpu%dClkTck\t: %016lx\n",
74 i, cpu_data(i).udelay_val / (500000/HZ),
75 (cpu_data(i).udelay_val / (5000/HZ)) % 100,
76 i, cpu_data(i).clock_tick);
77 }
78
79 void __init smp_store_cpu_info(int id)
80 {
81 struct device_node *dp;
82 int def;
83
84 /* multiplier and counter set by
85 smp_setup_percpu_timer() */
86 cpu_data(id).udelay_val = loops_per_jiffy;
87
88 cpu_find_by_mid(id, &dp);
89 cpu_data(id).clock_tick =
90 of_getintprop_default(dp, "clock-frequency", 0);
91
92 def = ((tlb_type == hypervisor) ? (8 * 1024) : (16 * 1024));
93 cpu_data(id).dcache_size =
94 of_getintprop_default(dp, "dcache-size", def);
95
96 def = 32;
97 cpu_data(id).dcache_line_size =
98 of_getintprop_default(dp, "dcache-line-size", def);
99
100 def = 16 * 1024;
101 cpu_data(id).icache_size =
102 of_getintprop_default(dp, "icache-size", def);
103
104 def = 32;
105 cpu_data(id).icache_line_size =
106 of_getintprop_default(dp, "icache-line-size", def);
107
108 def = ((tlb_type == hypervisor) ?
109 (3 * 1024 * 1024) :
110 (4 * 1024 * 1024));
111 cpu_data(id).ecache_size =
112 of_getintprop_default(dp, "ecache-size", def);
113
114 def = 64;
115 cpu_data(id).ecache_line_size =
116 of_getintprop_default(dp, "ecache-line-size", def);
117
118 printk("CPU[%d]: Caches "
119 "D[sz(%d):line_sz(%d)] "
120 "I[sz(%d):line_sz(%d)] "
121 "E[sz(%d):line_sz(%d)]\n",
122 id,
123 cpu_data(id).dcache_size, cpu_data(id).dcache_line_size,
124 cpu_data(id).icache_size, cpu_data(id).icache_line_size,
125 cpu_data(id).ecache_size, cpu_data(id).ecache_line_size);
126 }
127
128 static void smp_setup_percpu_timer(void);
129
130 static volatile unsigned long callin_flag = 0;
131
132 void __init smp_callin(void)
133 {
134 int cpuid = hard_smp_processor_id();
135
136 __local_per_cpu_offset = __per_cpu_offset(cpuid);
137
138 if (tlb_type == hypervisor)
139 sun4v_ktsb_register();
140
141 __flush_tlb_all();
142
143 smp_setup_percpu_timer();
144
145 if (cheetah_pcache_forced_on)
146 cheetah_enable_pcache();
147
148 local_irq_enable();
149
150 calibrate_delay();
151 smp_store_cpu_info(cpuid);
152 callin_flag = 1;
153 __asm__ __volatile__("membar #Sync\n\t"
154 "flush %%g6" : : : "memory");
155
156 /* Clear this or we will die instantly when we
157 * schedule back to this idler...
158 */
159 current_thread_info()->new_child = 0;
160
161 /* Attach to the address space of init_task. */
162 atomic_inc(&init_mm.mm_count);
163 current->active_mm = &init_mm;
164
165 while (!cpu_isset(cpuid, smp_commenced_mask))
166 rmb();
167
168 cpu_set(cpuid, cpu_online_map);
169
170 /* idle thread is expected to have preempt disabled */
171 preempt_disable();
172 }
173
174 void cpu_panic(void)
175 {
176 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
177 panic("SMP bolixed\n");
178 }
179
180 static unsigned long current_tick_offset __read_mostly;
181
182 /* This tick register synchronization scheme is taken entirely from
183 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
184 *
185 * The only change I've made is to rework it so that the master
186 * initiates the synchonization instead of the slave. -DaveM
187 */
188
189 #define MASTER 0
190 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
191
192 #define NUM_ROUNDS 64 /* magic value */
193 #define NUM_ITERS 5 /* likewise */
194
195 static DEFINE_SPINLOCK(itc_sync_lock);
196 static unsigned long go[SLAVE + 1];
197
198 #define DEBUG_TICK_SYNC 0
199
200 static inline long get_delta (long *rt, long *master)
201 {
202 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
203 unsigned long tcenter, t0, t1, tm;
204 unsigned long i;
205
206 for (i = 0; i < NUM_ITERS; i++) {
207 t0 = tick_ops->get_tick();
208 go[MASTER] = 1;
209 membar_storeload();
210 while (!(tm = go[SLAVE]))
211 rmb();
212 go[SLAVE] = 0;
213 wmb();
214 t1 = tick_ops->get_tick();
215
216 if (t1 - t0 < best_t1 - best_t0)
217 best_t0 = t0, best_t1 = t1, best_tm = tm;
218 }
219
220 *rt = best_t1 - best_t0;
221 *master = best_tm - best_t0;
222
223 /* average best_t0 and best_t1 without overflow: */
224 tcenter = (best_t0/2 + best_t1/2);
225 if (best_t0 % 2 + best_t1 % 2 == 2)
226 tcenter++;
227 return tcenter - best_tm;
228 }
229
230 void smp_synchronize_tick_client(void)
231 {
232 long i, delta, adj, adjust_latency = 0, done = 0;
233 unsigned long flags, rt, master_time_stamp, bound;
234 #if DEBUG_TICK_SYNC
235 struct {
236 long rt; /* roundtrip time */
237 long master; /* master's timestamp */
238 long diff; /* difference between midpoint and master's timestamp */
239 long lat; /* estimate of itc adjustment latency */
240 } t[NUM_ROUNDS];
241 #endif
242
243 go[MASTER] = 1;
244
245 while (go[MASTER])
246 rmb();
247
248 local_irq_save(flags);
249 {
250 for (i = 0; i < NUM_ROUNDS; i++) {
251 delta = get_delta(&rt, &master_time_stamp);
252 if (delta == 0) {
253 done = 1; /* let's lock on to this... */
254 bound = rt;
255 }
256
257 if (!done) {
258 if (i > 0) {
259 adjust_latency += -delta;
260 adj = -delta + adjust_latency/4;
261 } else
262 adj = -delta;
263
264 tick_ops->add_tick(adj, current_tick_offset);
265 }
266 #if DEBUG_TICK_SYNC
267 t[i].rt = rt;
268 t[i].master = master_time_stamp;
269 t[i].diff = delta;
270 t[i].lat = adjust_latency/4;
271 #endif
272 }
273 }
274 local_irq_restore(flags);
275
276 #if DEBUG_TICK_SYNC
277 for (i = 0; i < NUM_ROUNDS; i++)
278 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
279 t[i].rt, t[i].master, t[i].diff, t[i].lat);
280 #endif
281
282 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
283 "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
284 }
285
286 static void smp_start_sync_tick_client(int cpu);
287
288 static void smp_synchronize_one_tick(int cpu)
289 {
290 unsigned long flags, i;
291
292 go[MASTER] = 0;
293
294 smp_start_sync_tick_client(cpu);
295
296 /* wait for client to be ready */
297 while (!go[MASTER])
298 rmb();
299
300 /* now let the client proceed into his loop */
301 go[MASTER] = 0;
302 membar_storeload();
303
304 spin_lock_irqsave(&itc_sync_lock, flags);
305 {
306 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
307 while (!go[MASTER])
308 rmb();
309 go[MASTER] = 0;
310 wmb();
311 go[SLAVE] = tick_ops->get_tick();
312 membar_storeload();
313 }
314 }
315 spin_unlock_irqrestore(&itc_sync_lock, flags);
316 }
317
318 extern void sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load);
319
320 extern unsigned long sparc64_cpu_startup;
321
322 /* The OBP cpu startup callback truncates the 3rd arg cookie to
323 * 32-bits (I think) so to be safe we have it read the pointer
324 * contained here so we work on >4GB machines. -DaveM
325 */
326 static struct thread_info *cpu_new_thread = NULL;
327
328 static int __devinit smp_boot_one_cpu(unsigned int cpu)
329 {
330 unsigned long entry =
331 (unsigned long)(&sparc64_cpu_startup);
332 unsigned long cookie =
333 (unsigned long)(&cpu_new_thread);
334 struct task_struct *p;
335 int timeout, ret;
336
337 p = fork_idle(cpu);
338 callin_flag = 0;
339 cpu_new_thread = task_thread_info(p);
340 cpu_set(cpu, cpu_callout_map);
341
342 if (tlb_type == hypervisor) {
343 /* Alloc the mondo queues, cpu will load them. */
344 sun4v_init_mondo_queues(0, cpu, 1, 0);
345
346 prom_startcpu_cpuid(cpu, entry, cookie);
347 } else {
348 struct device_node *dp;
349
350 cpu_find_by_mid(cpu, &dp);
351 prom_startcpu(dp->node, entry, cookie);
352 }
353
354 for (timeout = 0; timeout < 5000000; timeout++) {
355 if (callin_flag)
356 break;
357 udelay(100);
358 }
359
360 if (callin_flag) {
361 ret = 0;
362 } else {
363 printk("Processor %d is stuck.\n", cpu);
364 cpu_clear(cpu, cpu_callout_map);
365 ret = -ENODEV;
366 }
367 cpu_new_thread = NULL;
368
369 return ret;
370 }
371
372 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
373 {
374 u64 result, target;
375 int stuck, tmp;
376
377 if (this_is_starfire) {
378 /* map to real upaid */
379 cpu = (((cpu & 0x3c) << 1) |
380 ((cpu & 0x40) >> 4) |
381 (cpu & 0x3));
382 }
383
384 target = (cpu << 14) | 0x70;
385 again:
386 /* Ok, this is the real Spitfire Errata #54.
387 * One must read back from a UDB internal register
388 * after writes to the UDB interrupt dispatch, but
389 * before the membar Sync for that write.
390 * So we use the high UDB control register (ASI 0x7f,
391 * ADDR 0x20) for the dummy read. -DaveM
392 */
393 tmp = 0x40;
394 __asm__ __volatile__(
395 "wrpr %1, %2, %%pstate\n\t"
396 "stxa %4, [%0] %3\n\t"
397 "stxa %5, [%0+%8] %3\n\t"
398 "add %0, %8, %0\n\t"
399 "stxa %6, [%0+%8] %3\n\t"
400 "membar #Sync\n\t"
401 "stxa %%g0, [%7] %3\n\t"
402 "membar #Sync\n\t"
403 "mov 0x20, %%g1\n\t"
404 "ldxa [%%g1] 0x7f, %%g0\n\t"
405 "membar #Sync"
406 : "=r" (tmp)
407 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
408 "r" (data0), "r" (data1), "r" (data2), "r" (target),
409 "r" (0x10), "0" (tmp)
410 : "g1");
411
412 /* NOTE: PSTATE_IE is still clear. */
413 stuck = 100000;
414 do {
415 __asm__ __volatile__("ldxa [%%g0] %1, %0"
416 : "=r" (result)
417 : "i" (ASI_INTR_DISPATCH_STAT));
418 if (result == 0) {
419 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
420 : : "r" (pstate));
421 return;
422 }
423 stuck -= 1;
424 if (stuck == 0)
425 break;
426 } while (result & 0x1);
427 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
428 : : "r" (pstate));
429 if (stuck == 0) {
430 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
431 smp_processor_id(), result);
432 } else {
433 udelay(2);
434 goto again;
435 }
436 }
437
438 static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
439 {
440 u64 pstate;
441 int i;
442
443 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
444 for_each_cpu_mask(i, mask)
445 spitfire_xcall_helper(data0, data1, data2, pstate, i);
446 }
447
448 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
449 * packet, but we have no use for that. However we do take advantage of
450 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
451 */
452 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
453 {
454 u64 pstate, ver;
455 int nack_busy_id, is_jbus;
456
457 if (cpus_empty(mask))
458 return;
459
460 /* Unfortunately, someone at Sun had the brilliant idea to make the
461 * busy/nack fields hard-coded by ITID number for this Ultra-III
462 * derivative processor.
463 */
464 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
465 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
466 (ver >> 32) == __SERRANO_ID);
467
468 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
469
470 retry:
471 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
472 : : "r" (pstate), "i" (PSTATE_IE));
473
474 /* Setup the dispatch data registers. */
475 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
476 "stxa %1, [%4] %6\n\t"
477 "stxa %2, [%5] %6\n\t"
478 "membar #Sync\n\t"
479 : /* no outputs */
480 : "r" (data0), "r" (data1), "r" (data2),
481 "r" (0x40), "r" (0x50), "r" (0x60),
482 "i" (ASI_INTR_W));
483
484 nack_busy_id = 0;
485 {
486 int i;
487
488 for_each_cpu_mask(i, mask) {
489 u64 target = (i << 14) | 0x70;
490
491 if (!is_jbus)
492 target |= (nack_busy_id << 24);
493 __asm__ __volatile__(
494 "stxa %%g0, [%0] %1\n\t"
495 "membar #Sync\n\t"
496 : /* no outputs */
497 : "r" (target), "i" (ASI_INTR_W));
498 nack_busy_id++;
499 }
500 }
501
502 /* Now, poll for completion. */
503 {
504 u64 dispatch_stat;
505 long stuck;
506
507 stuck = 100000 * nack_busy_id;
508 do {
509 __asm__ __volatile__("ldxa [%%g0] %1, %0"
510 : "=r" (dispatch_stat)
511 : "i" (ASI_INTR_DISPATCH_STAT));
512 if (dispatch_stat == 0UL) {
513 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
514 : : "r" (pstate));
515 return;
516 }
517 if (!--stuck)
518 break;
519 } while (dispatch_stat & 0x5555555555555555UL);
520
521 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
522 : : "r" (pstate));
523
524 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
525 /* Busy bits will not clear, continue instead
526 * of freezing up on this cpu.
527 */
528 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
529 smp_processor_id(), dispatch_stat);
530 } else {
531 int i, this_busy_nack = 0;
532
533 /* Delay some random time with interrupts enabled
534 * to prevent deadlock.
535 */
536 udelay(2 * nack_busy_id);
537
538 /* Clear out the mask bits for cpus which did not
539 * NACK us.
540 */
541 for_each_cpu_mask(i, mask) {
542 u64 check_mask;
543
544 if (is_jbus)
545 check_mask = (0x2UL << (2*i));
546 else
547 check_mask = (0x2UL <<
548 this_busy_nack);
549 if ((dispatch_stat & check_mask) == 0)
550 cpu_clear(i, mask);
551 this_busy_nack += 2;
552 }
553
554 goto retry;
555 }
556 }
557 }
558
559 /* Multi-cpu list version. */
560 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
561 {
562 struct trap_per_cpu *tb;
563 u16 *cpu_list;
564 u64 *mondo;
565 cpumask_t error_mask;
566 unsigned long flags, status;
567 int cnt, retries, this_cpu, prev_sent, i;
568
569 /* We have to do this whole thing with interrupts fully disabled.
570 * Otherwise if we send an xcall from interrupt context it will
571 * corrupt both our mondo block and cpu list state.
572 *
573 * One consequence of this is that we cannot use timeout mechanisms
574 * that depend upon interrupts being delivered locally. So, for
575 * example, we cannot sample jiffies and expect it to advance.
576 *
577 * Fortunately, udelay() uses %stick/%tick so we can use that.
578 */
579 local_irq_save(flags);
580
581 this_cpu = smp_processor_id();
582 tb = &trap_block[this_cpu];
583
584 mondo = __va(tb->cpu_mondo_block_pa);
585 mondo[0] = data0;
586 mondo[1] = data1;
587 mondo[2] = data2;
588 wmb();
589
590 cpu_list = __va(tb->cpu_list_pa);
591
592 /* Setup the initial cpu list. */
593 cnt = 0;
594 for_each_cpu_mask(i, mask)
595 cpu_list[cnt++] = i;
596
597 cpus_clear(error_mask);
598 retries = 0;
599 prev_sent = 0;
600 do {
601 int forward_progress, n_sent;
602
603 status = sun4v_cpu_mondo_send(cnt,
604 tb->cpu_list_pa,
605 tb->cpu_mondo_block_pa);
606
607 /* HV_EOK means all cpus received the xcall, we're done. */
608 if (likely(status == HV_EOK))
609 break;
610
611 /* First, see if we made any forward progress.
612 *
613 * The hypervisor indicates successful sends by setting
614 * cpu list entries to the value 0xffff.
615 */
616 n_sent = 0;
617 for (i = 0; i < cnt; i++) {
618 if (likely(cpu_list[i] == 0xffff))
619 n_sent++;
620 }
621
622 forward_progress = 0;
623 if (n_sent > prev_sent)
624 forward_progress = 1;
625
626 prev_sent = n_sent;
627
628 /* If we get a HV_ECPUERROR, then one or more of the cpus
629 * in the list are in error state. Use the cpu_state()
630 * hypervisor call to find out which cpus are in error state.
631 */
632 if (unlikely(status == HV_ECPUERROR)) {
633 for (i = 0; i < cnt; i++) {
634 long err;
635 u16 cpu;
636
637 cpu = cpu_list[i];
638 if (cpu == 0xffff)
639 continue;
640
641 err = sun4v_cpu_state(cpu);
642 if (err >= 0 &&
643 err == HV_CPU_STATE_ERROR) {
644 cpu_list[i] = 0xffff;
645 cpu_set(cpu, error_mask);
646 }
647 }
648 } else if (unlikely(status != HV_EWOULDBLOCK))
649 goto fatal_mondo_error;
650
651 /* Don't bother rewriting the CPU list, just leave the
652 * 0xffff and non-0xffff entries in there and the
653 * hypervisor will do the right thing.
654 *
655 * Only advance timeout state if we didn't make any
656 * forward progress.
657 */
658 if (unlikely(!forward_progress)) {
659 if (unlikely(++retries > 10000))
660 goto fatal_mondo_timeout;
661
662 /* Delay a little bit to let other cpus catch up
663 * on their cpu mondo queue work.
664 */
665 udelay(2 * cnt);
666 }
667 } while (1);
668
669 local_irq_restore(flags);
670
671 if (unlikely(!cpus_empty(error_mask)))
672 goto fatal_mondo_cpu_error;
673
674 return;
675
676 fatal_mondo_cpu_error:
677 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
678 "were in error state\n",
679 this_cpu);
680 printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
681 for_each_cpu_mask(i, error_mask)
682 printk("%d ", i);
683 printk("]\n");
684 return;
685
686 fatal_mondo_timeout:
687 local_irq_restore(flags);
688 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
689 " progress after %d retries.\n",
690 this_cpu, retries);
691 goto dump_cpu_list_and_out;
692
693 fatal_mondo_error:
694 local_irq_restore(flags);
695 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
696 this_cpu, status);
697 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
698 "mondo_block_pa(%lx)\n",
699 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
700
701 dump_cpu_list_and_out:
702 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
703 for (i = 0; i < cnt; i++)
704 printk("%u ", cpu_list[i]);
705 printk("]\n");
706 }
707
708 /* Send cross call to all processors mentioned in MASK
709 * except self.
710 */
711 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
712 {
713 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
714 int this_cpu = get_cpu();
715
716 cpus_and(mask, mask, cpu_online_map);
717 cpu_clear(this_cpu, mask);
718
719 if (tlb_type == spitfire)
720 spitfire_xcall_deliver(data0, data1, data2, mask);
721 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
722 cheetah_xcall_deliver(data0, data1, data2, mask);
723 else
724 hypervisor_xcall_deliver(data0, data1, data2, mask);
725 /* NOTE: Caller runs local copy on master. */
726
727 put_cpu();
728 }
729
730 extern unsigned long xcall_sync_tick;
731
732 static void smp_start_sync_tick_client(int cpu)
733 {
734 cpumask_t mask = cpumask_of_cpu(cpu);
735
736 smp_cross_call_masked(&xcall_sync_tick,
737 0, 0, 0, mask);
738 }
739
740 /* Send cross call to all processors except self. */
741 #define smp_cross_call(func, ctx, data1, data2) \
742 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
743
744 struct call_data_struct {
745 void (*func) (void *info);
746 void *info;
747 atomic_t finished;
748 int wait;
749 };
750
751 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
752 static struct call_data_struct *call_data;
753
754 extern unsigned long xcall_call_function;
755
756 /**
757 * smp_call_function(): Run a function on all other CPUs.
758 * @func: The function to run. This must be fast and non-blocking.
759 * @info: An arbitrary pointer to pass to the function.
760 * @nonatomic: currently unused.
761 * @wait: If true, wait (atomically) until function has completed on other CPUs.
762 *
763 * Returns 0 on success, else a negative status code. Does not return until
764 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
765 *
766 * You must not call this function with disabled interrupts or from a
767 * hardware interrupt handler or from a bottom half handler.
768 */
769 static int smp_call_function_mask(void (*func)(void *info), void *info,
770 int nonatomic, int wait, cpumask_t mask)
771 {
772 struct call_data_struct data;
773 int cpus;
774
775 /* Can deadlock when called with interrupts disabled */
776 WARN_ON(irqs_disabled());
777
778 data.func = func;
779 data.info = info;
780 atomic_set(&data.finished, 0);
781 data.wait = wait;
782
783 spin_lock(&call_lock);
784
785 cpu_clear(smp_processor_id(), mask);
786 cpus = cpus_weight(mask);
787 if (!cpus)
788 goto out_unlock;
789
790 call_data = &data;
791 mb();
792
793 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
794
795 /* Wait for response */
796 while (atomic_read(&data.finished) != cpus)
797 cpu_relax();
798
799 out_unlock:
800 spin_unlock(&call_lock);
801
802 return 0;
803 }
804
805 int smp_call_function(void (*func)(void *info), void *info,
806 int nonatomic, int wait)
807 {
808 return smp_call_function_mask(func, info, nonatomic, wait,
809 cpu_online_map);
810 }
811
812 void smp_call_function_client(int irq, struct pt_regs *regs)
813 {
814 void (*func) (void *info) = call_data->func;
815 void *info = call_data->info;
816
817 clear_softint(1 << irq);
818 if (call_data->wait) {
819 /* let initiator proceed only after completion */
820 func(info);
821 atomic_inc(&call_data->finished);
822 } else {
823 /* let initiator proceed after getting data */
824 atomic_inc(&call_data->finished);
825 func(info);
826 }
827 }
828
829 static void tsb_sync(void *info)
830 {
831 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
832 struct mm_struct *mm = info;
833
834 /* It is not valid to test "currrent->active_mm == mm" here.
835 *
836 * The value of "current" is not changed atomically with
837 * switch_mm(). But that's OK, we just need to check the
838 * current cpu's trap block PGD physical address.
839 */
840 if (tp->pgd_paddr == __pa(mm->pgd))
841 tsb_context_switch(mm);
842 }
843
844 void smp_tsb_sync(struct mm_struct *mm)
845 {
846 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
847 }
848
849 extern unsigned long xcall_flush_tlb_mm;
850 extern unsigned long xcall_flush_tlb_pending;
851 extern unsigned long xcall_flush_tlb_kernel_range;
852 extern unsigned long xcall_report_regs;
853 extern unsigned long xcall_receive_signal;
854 extern unsigned long xcall_new_mmu_context_version;
855
856 #ifdef DCACHE_ALIASING_POSSIBLE
857 extern unsigned long xcall_flush_dcache_page_cheetah;
858 #endif
859 extern unsigned long xcall_flush_dcache_page_spitfire;
860
861 #ifdef CONFIG_DEBUG_DCFLUSH
862 extern atomic_t dcpage_flushes;
863 extern atomic_t dcpage_flushes_xcall;
864 #endif
865
866 static __inline__ void __local_flush_dcache_page(struct page *page)
867 {
868 #ifdef DCACHE_ALIASING_POSSIBLE
869 __flush_dcache_page(page_address(page),
870 ((tlb_type == spitfire) &&
871 page_mapping(page) != NULL));
872 #else
873 if (page_mapping(page) != NULL &&
874 tlb_type == spitfire)
875 __flush_icache_page(__pa(page_address(page)));
876 #endif
877 }
878
879 void smp_flush_dcache_page_impl(struct page *page, int cpu)
880 {
881 cpumask_t mask = cpumask_of_cpu(cpu);
882 int this_cpu;
883
884 if (tlb_type == hypervisor)
885 return;
886
887 #ifdef CONFIG_DEBUG_DCFLUSH
888 atomic_inc(&dcpage_flushes);
889 #endif
890
891 this_cpu = get_cpu();
892
893 if (cpu == this_cpu) {
894 __local_flush_dcache_page(page);
895 } else if (cpu_online(cpu)) {
896 void *pg_addr = page_address(page);
897 u64 data0;
898
899 if (tlb_type == spitfire) {
900 data0 =
901 ((u64)&xcall_flush_dcache_page_spitfire);
902 if (page_mapping(page) != NULL)
903 data0 |= ((u64)1 << 32);
904 spitfire_xcall_deliver(data0,
905 __pa(pg_addr),
906 (u64) pg_addr,
907 mask);
908 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
909 #ifdef DCACHE_ALIASING_POSSIBLE
910 data0 =
911 ((u64)&xcall_flush_dcache_page_cheetah);
912 cheetah_xcall_deliver(data0,
913 __pa(pg_addr),
914 0, mask);
915 #endif
916 }
917 #ifdef CONFIG_DEBUG_DCFLUSH
918 atomic_inc(&dcpage_flushes_xcall);
919 #endif
920 }
921
922 put_cpu();
923 }
924
925 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
926 {
927 void *pg_addr = page_address(page);
928 cpumask_t mask = cpu_online_map;
929 u64 data0;
930 int this_cpu;
931
932 if (tlb_type == hypervisor)
933 return;
934
935 this_cpu = get_cpu();
936
937 cpu_clear(this_cpu, mask);
938
939 #ifdef CONFIG_DEBUG_DCFLUSH
940 atomic_inc(&dcpage_flushes);
941 #endif
942 if (cpus_empty(mask))
943 goto flush_self;
944 if (tlb_type == spitfire) {
945 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
946 if (page_mapping(page) != NULL)
947 data0 |= ((u64)1 << 32);
948 spitfire_xcall_deliver(data0,
949 __pa(pg_addr),
950 (u64) pg_addr,
951 mask);
952 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
953 #ifdef DCACHE_ALIASING_POSSIBLE
954 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
955 cheetah_xcall_deliver(data0,
956 __pa(pg_addr),
957 0, mask);
958 #endif
959 }
960 #ifdef CONFIG_DEBUG_DCFLUSH
961 atomic_inc(&dcpage_flushes_xcall);
962 #endif
963 flush_self:
964 __local_flush_dcache_page(page);
965
966 put_cpu();
967 }
968
969 static void __smp_receive_signal_mask(cpumask_t mask)
970 {
971 smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
972 }
973
974 void smp_receive_signal(int cpu)
975 {
976 cpumask_t mask = cpumask_of_cpu(cpu);
977
978 if (cpu_online(cpu))
979 __smp_receive_signal_mask(mask);
980 }
981
982 void smp_receive_signal_client(int irq, struct pt_regs *regs)
983 {
984 clear_softint(1 << irq);
985 }
986
987 void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
988 {
989 struct mm_struct *mm;
990 unsigned long flags;
991
992 clear_softint(1 << irq);
993
994 /* See if we need to allocate a new TLB context because
995 * the version of the one we are using is now out of date.
996 */
997 mm = current->active_mm;
998 if (unlikely(!mm || (mm == &init_mm)))
999 return;
1000
1001 spin_lock_irqsave(&mm->context.lock, flags);
1002
1003 if (unlikely(!CTX_VALID(mm->context)))
1004 get_new_mmu_context(mm);
1005
1006 spin_unlock_irqrestore(&mm->context.lock, flags);
1007
1008 load_secondary_context(mm);
1009 __flush_tlb_mm(CTX_HWBITS(mm->context),
1010 SECONDARY_CONTEXT);
1011 }
1012
1013 void smp_new_mmu_context_version(void)
1014 {
1015 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1016 }
1017
1018 void smp_report_regs(void)
1019 {
1020 smp_cross_call(&xcall_report_regs, 0, 0, 0);
1021 }
1022
1023 /* We know that the window frames of the user have been flushed
1024 * to the stack before we get here because all callers of us
1025 * are flush_tlb_*() routines, and these run after flush_cache_*()
1026 * which performs the flushw.
1027 *
1028 * The SMP TLB coherency scheme we use works as follows:
1029 *
1030 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1031 * space has (potentially) executed on, this is the heuristic
1032 * we use to avoid doing cross calls.
1033 *
1034 * Also, for flushing from kswapd and also for clones, we
1035 * use cpu_vm_mask as the list of cpus to make run the TLB.
1036 *
1037 * 2) TLB context numbers are shared globally across all processors
1038 * in the system, this allows us to play several games to avoid
1039 * cross calls.
1040 *
1041 * One invariant is that when a cpu switches to a process, and
1042 * that processes tsk->active_mm->cpu_vm_mask does not have the
1043 * current cpu's bit set, that tlb context is flushed locally.
1044 *
1045 * If the address space is non-shared (ie. mm->count == 1) we avoid
1046 * cross calls when we want to flush the currently running process's
1047 * tlb state. This is done by clearing all cpu bits except the current
1048 * processor's in current->active_mm->cpu_vm_mask and performing the
1049 * flush locally only. This will force any subsequent cpus which run
1050 * this task to flush the context from the local tlb if the process
1051 * migrates to another cpu (again).
1052 *
1053 * 3) For shared address spaces (threads) and swapping we bite the
1054 * bullet for most cases and perform the cross call (but only to
1055 * the cpus listed in cpu_vm_mask).
1056 *
1057 * The performance gain from "optimizing" away the cross call for threads is
1058 * questionable (in theory the big win for threads is the massive sharing of
1059 * address space state across processors).
1060 */
1061
1062 /* This currently is only used by the hugetlb arch pre-fault
1063 * hook on UltraSPARC-III+ and later when changing the pagesize
1064 * bits of the context register for an address space.
1065 */
1066 void smp_flush_tlb_mm(struct mm_struct *mm)
1067 {
1068 u32 ctx = CTX_HWBITS(mm->context);
1069 int cpu = get_cpu();
1070
1071 if (atomic_read(&mm->mm_users) == 1) {
1072 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1073 goto local_flush_and_out;
1074 }
1075
1076 smp_cross_call_masked(&xcall_flush_tlb_mm,
1077 ctx, 0, 0,
1078 mm->cpu_vm_mask);
1079
1080 local_flush_and_out:
1081 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1082
1083 put_cpu();
1084 }
1085
1086 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1087 {
1088 u32 ctx = CTX_HWBITS(mm->context);
1089 int cpu = get_cpu();
1090
1091 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1092 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1093 else
1094 smp_cross_call_masked(&xcall_flush_tlb_pending,
1095 ctx, nr, (unsigned long) vaddrs,
1096 mm->cpu_vm_mask);
1097
1098 __flush_tlb_pending(ctx, nr, vaddrs);
1099
1100 put_cpu();
1101 }
1102
1103 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1104 {
1105 start &= PAGE_MASK;
1106 end = PAGE_ALIGN(end);
1107 if (start != end) {
1108 smp_cross_call(&xcall_flush_tlb_kernel_range,
1109 0, start, end);
1110
1111 __flush_tlb_kernel_range(start, end);
1112 }
1113 }
1114
1115 /* CPU capture. */
1116 /* #define CAPTURE_DEBUG */
1117 extern unsigned long xcall_capture;
1118
1119 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1120 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1121 static unsigned long penguins_are_doing_time;
1122
1123 void smp_capture(void)
1124 {
1125 int result = atomic_add_ret(1, &smp_capture_depth);
1126
1127 if (result == 1) {
1128 int ncpus = num_online_cpus();
1129
1130 #ifdef CAPTURE_DEBUG
1131 printk("CPU[%d]: Sending penguins to jail...",
1132 smp_processor_id());
1133 #endif
1134 penguins_are_doing_time = 1;
1135 membar_storestore_loadstore();
1136 atomic_inc(&smp_capture_registry);
1137 smp_cross_call(&xcall_capture, 0, 0, 0);
1138 while (atomic_read(&smp_capture_registry) != ncpus)
1139 rmb();
1140 #ifdef CAPTURE_DEBUG
1141 printk("done\n");
1142 #endif
1143 }
1144 }
1145
1146 void smp_release(void)
1147 {
1148 if (atomic_dec_and_test(&smp_capture_depth)) {
1149 #ifdef CAPTURE_DEBUG
1150 printk("CPU[%d]: Giving pardon to "
1151 "imprisoned penguins\n",
1152 smp_processor_id());
1153 #endif
1154 penguins_are_doing_time = 0;
1155 membar_storeload_storestore();
1156 atomic_dec(&smp_capture_registry);
1157 }
1158 }
1159
1160 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1161 * can service tlb flush xcalls...
1162 */
1163 extern void prom_world(int);
1164
1165 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1166 {
1167 clear_softint(1 << irq);
1168
1169 preempt_disable();
1170
1171 __asm__ __volatile__("flushw");
1172 prom_world(1);
1173 atomic_inc(&smp_capture_registry);
1174 membar_storeload_storestore();
1175 while (penguins_are_doing_time)
1176 rmb();
1177 atomic_dec(&smp_capture_registry);
1178 prom_world(0);
1179
1180 preempt_enable();
1181 }
1182
1183 #define prof_multiplier(__cpu) cpu_data(__cpu).multiplier
1184 #define prof_counter(__cpu) cpu_data(__cpu).counter
1185
1186 void smp_percpu_timer_interrupt(struct pt_regs *regs)
1187 {
1188 unsigned long compare, tick, pstate;
1189 int cpu = smp_processor_id();
1190 int user = user_mode(regs);
1191 struct pt_regs *old_regs;
1192
1193 /*
1194 * Check for level 14 softint.
1195 */
1196 {
1197 unsigned long tick_mask = tick_ops->softint_mask;
1198
1199 if (!(get_softint() & tick_mask)) {
1200 extern void handler_irq(int, struct pt_regs *);
1201
1202 handler_irq(14, regs);
1203 return;
1204 }
1205 clear_softint(tick_mask);
1206 }
1207
1208 old_regs = set_irq_regs(regs);
1209 do {
1210 profile_tick(CPU_PROFILING);
1211 if (!--prof_counter(cpu)) {
1212 irq_enter();
1213
1214 if (cpu == boot_cpu_id) {
1215 kstat_this_cpu.irqs[0]++;
1216 timer_tick_interrupt(regs);
1217 }
1218
1219 update_process_times(user);
1220
1221 irq_exit();
1222
1223 prof_counter(cpu) = prof_multiplier(cpu);
1224 }
1225
1226 /* Guarantee that the following sequences execute
1227 * uninterrupted.
1228 */
1229 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1230 "wrpr %0, %1, %%pstate"
1231 : "=r" (pstate)
1232 : "i" (PSTATE_IE));
1233
1234 compare = tick_ops->add_compare(current_tick_offset);
1235 tick = tick_ops->get_tick();
1236
1237 /* Restore PSTATE_IE. */
1238 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1239 : /* no outputs */
1240 : "r" (pstate));
1241 } while (time_after_eq(tick, compare));
1242 set_irq_regs(old_regs);
1243 }
1244
1245 static void __init smp_setup_percpu_timer(void)
1246 {
1247 int cpu = smp_processor_id();
1248 unsigned long pstate;
1249
1250 prof_counter(cpu) = prof_multiplier(cpu) = 1;
1251
1252 /* Guarantee that the following sequences execute
1253 * uninterrupted.
1254 */
1255 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1256 "wrpr %0, %1, %%pstate"
1257 : "=r" (pstate)
1258 : "i" (PSTATE_IE));
1259
1260 tick_ops->init_tick(current_tick_offset);
1261
1262 /* Restore PSTATE_IE. */
1263 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1264 : /* no outputs */
1265 : "r" (pstate));
1266 }
1267
1268 void __init smp_tick_init(void)
1269 {
1270 boot_cpu_id = hard_smp_processor_id();
1271 current_tick_offset = timer_tick_offset;
1272
1273 prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
1274 }
1275
1276 /* /proc/profile writes can call this, don't __init it please. */
1277 static DEFINE_SPINLOCK(prof_setup_lock);
1278
1279 int setup_profiling_timer(unsigned int multiplier)
1280 {
1281 unsigned long flags;
1282 int i;
1283
1284 if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
1285 return -EINVAL;
1286
1287 spin_lock_irqsave(&prof_setup_lock, flags);
1288 for_each_possible_cpu(i)
1289 prof_multiplier(i) = multiplier;
1290 current_tick_offset = (timer_tick_offset / multiplier);
1291 spin_unlock_irqrestore(&prof_setup_lock, flags);
1292
1293 return 0;
1294 }
1295
1296 static void __init smp_tune_scheduling(void)
1297 {
1298 struct device_node *dp;
1299 int instance;
1300 unsigned int def, smallest = ~0U;
1301
1302 def = ((tlb_type == hypervisor) ?
1303 (3 * 1024 * 1024) :
1304 (4 * 1024 * 1024));
1305
1306 instance = 0;
1307 while (!cpu_find_by_instance(instance, &dp, NULL)) {
1308 unsigned int val;
1309
1310 val = of_getintprop_default(dp, "ecache-size", def);
1311 if (val < smallest)
1312 smallest = val;
1313
1314 instance++;
1315 }
1316
1317 /* Any value less than 256K is nonsense. */
1318 if (smallest < (256U * 1024U))
1319 smallest = 256 * 1024;
1320
1321 max_cache_size = smallest;
1322
1323 if (smallest < 1U * 1024U * 1024U)
1324 printk(KERN_INFO "Using max_cache_size of %uKB\n",
1325 smallest / 1024U);
1326 else
1327 printk(KERN_INFO "Using max_cache_size of %uMB\n",
1328 smallest / 1024U / 1024U);
1329 }
1330
1331 /* Constrain the number of cpus to max_cpus. */
1332 void __init smp_prepare_cpus(unsigned int max_cpus)
1333 {
1334 int i;
1335
1336 if (num_possible_cpus() > max_cpus) {
1337 int instance, mid;
1338
1339 instance = 0;
1340 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1341 if (mid != boot_cpu_id) {
1342 cpu_clear(mid, phys_cpu_present_map);
1343 cpu_clear(mid, cpu_present_map);
1344 if (num_possible_cpus() <= max_cpus)
1345 break;
1346 }
1347 instance++;
1348 }
1349 }
1350
1351 for_each_possible_cpu(i) {
1352 if (tlb_type == hypervisor) {
1353 int j;
1354
1355 /* XXX get this mapping from machine description */
1356 for_each_possible_cpu(j) {
1357 if ((j >> 2) == (i >> 2))
1358 cpu_set(j, cpu_sibling_map[i]);
1359 }
1360 } else {
1361 cpu_set(i, cpu_sibling_map[i]);
1362 }
1363 }
1364
1365 smp_store_cpu_info(boot_cpu_id);
1366 smp_tune_scheduling();
1367 }
1368
1369 /* Set this up early so that things like the scheduler can init
1370 * properly. We use the same cpu mask for both the present and
1371 * possible cpu map.
1372 */
1373 void __init smp_setup_cpu_possible_map(void)
1374 {
1375 int instance, mid;
1376
1377 instance = 0;
1378 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1379 if (mid < NR_CPUS) {
1380 cpu_set(mid, phys_cpu_present_map);
1381 cpu_set(mid, cpu_present_map);
1382 }
1383 instance++;
1384 }
1385 }
1386
1387 void __devinit smp_prepare_boot_cpu(void)
1388 {
1389 }
1390
1391 int __devinit __cpu_up(unsigned int cpu)
1392 {
1393 int ret = smp_boot_one_cpu(cpu);
1394
1395 if (!ret) {
1396 cpu_set(cpu, smp_commenced_mask);
1397 while (!cpu_isset(cpu, cpu_online_map))
1398 mb();
1399 if (!cpu_isset(cpu, cpu_online_map)) {
1400 ret = -ENODEV;
1401 } else {
1402 /* On SUN4V, writes to %tick and %stick are
1403 * not allowed.
1404 */
1405 if (tlb_type != hypervisor)
1406 smp_synchronize_one_tick(cpu);
1407 }
1408 }
1409 return ret;
1410 }
1411
1412 void __init smp_cpus_done(unsigned int max_cpus)
1413 {
1414 unsigned long bogosum = 0;
1415 int i;
1416
1417 for_each_online_cpu(i)
1418 bogosum += cpu_data(i).udelay_val;
1419 printk("Total of %ld processors activated "
1420 "(%lu.%02lu BogoMIPS).\n",
1421 (long) num_online_cpus(),
1422 bogosum/(500000/HZ),
1423 (bogosum/(5000/HZ))%100);
1424 }
1425
1426 void smp_send_reschedule(int cpu)
1427 {
1428 smp_receive_signal(cpu);
1429 }
1430
1431 /* This is a nop because we capture all other cpus
1432 * anyways when making the PROM active.
1433 */
1434 void smp_send_stop(void)
1435 {
1436 }
1437
1438 unsigned long __per_cpu_base __read_mostly;
1439 unsigned long __per_cpu_shift __read_mostly;
1440
1441 EXPORT_SYMBOL(__per_cpu_base);
1442 EXPORT_SYMBOL(__per_cpu_shift);
1443
1444 void __init setup_per_cpu_areas(void)
1445 {
1446 unsigned long goal, size, i;
1447 char *ptr;
1448
1449 /* Copy section for each CPU (we discard the original) */
1450 goal = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES);
1451 #ifdef CONFIG_MODULES
1452 if (goal < PERCPU_ENOUGH_ROOM)
1453 goal = PERCPU_ENOUGH_ROOM;
1454 #endif
1455 __per_cpu_shift = 0;
1456 for (size = 1UL; size < goal; size <<= 1UL)
1457 __per_cpu_shift++;
1458
1459 ptr = alloc_bootmem(size * NR_CPUS);
1460
1461 __per_cpu_base = ptr - __per_cpu_start;
1462
1463 for (i = 0; i < NR_CPUS; i++, ptr += size)
1464 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1465
1466 /* Setup %g5 for the boot cpu. */
1467 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1468 }
This page took 0.124435 seconds and 5 git commands to generate.