Merge rsync://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[deliverable/linux.git] / arch / sparc64 / kernel / smp.c
1 /* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
4 */
5
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/smp_lock.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/jiffies.h>
23 #include <linux/profile.h>
24 #include <linux/bootmem.h>
25
26 #include <asm/head.h>
27 #include <asm/ptrace.h>
28 #include <asm/atomic.h>
29 #include <asm/tlbflush.h>
30 #include <asm/mmu_context.h>
31 #include <asm/cpudata.h>
32
33 #include <asm/irq.h>
34 #include <asm/page.h>
35 #include <asm/pgtable.h>
36 #include <asm/oplib.h>
37 #include <asm/uaccess.h>
38 #include <asm/timer.h>
39 #include <asm/starfire.h>
40 #include <asm/tlb.h>
41 #include <asm/sections.h>
42 #include <asm/prom.h>
43
44 extern void calibrate_delay(void);
45
46 /* Please don't make this stuff initdata!!! --DaveM */
47 static unsigned char boot_cpu_id;
48
49 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
50 cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
51 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly =
52 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
53 static cpumask_t smp_commenced_mask;
54 static cpumask_t cpu_callout_map;
55
56 void smp_info(struct seq_file *m)
57 {
58 int i;
59
60 seq_printf(m, "State:\n");
61 for_each_online_cpu(i)
62 seq_printf(m, "CPU%d:\t\tonline\n", i);
63 }
64
65 void smp_bogo(struct seq_file *m)
66 {
67 int i;
68
69 for_each_online_cpu(i)
70 seq_printf(m,
71 "Cpu%dBogo\t: %lu.%02lu\n"
72 "Cpu%dClkTck\t: %016lx\n",
73 i, cpu_data(i).udelay_val / (500000/HZ),
74 (cpu_data(i).udelay_val / (5000/HZ)) % 100,
75 i, cpu_data(i).clock_tick);
76 }
77
78 void __init smp_store_cpu_info(int id)
79 {
80 struct device_node *dp;
81 int def;
82
83 /* multiplier and counter set by
84 smp_setup_percpu_timer() */
85 cpu_data(id).udelay_val = loops_per_jiffy;
86
87 cpu_find_by_mid(id, &dp);
88 cpu_data(id).clock_tick =
89 of_getintprop_default(dp, "clock-frequency", 0);
90
91 def = ((tlb_type == hypervisor) ? (8 * 1024) : (16 * 1024));
92 cpu_data(id).dcache_size =
93 of_getintprop_default(dp, "dcache-size", def);
94
95 def = 32;
96 cpu_data(id).dcache_line_size =
97 of_getintprop_default(dp, "dcache-line-size", def);
98
99 def = 16 * 1024;
100 cpu_data(id).icache_size =
101 of_getintprop_default(dp, "icache-size", def);
102
103 def = 32;
104 cpu_data(id).icache_line_size =
105 of_getintprop_default(dp, "icache-line-size", def);
106
107 def = ((tlb_type == hypervisor) ?
108 (3 * 1024 * 1024) :
109 (4 * 1024 * 1024));
110 cpu_data(id).ecache_size =
111 of_getintprop_default(dp, "ecache-size", def);
112
113 def = 64;
114 cpu_data(id).ecache_line_size =
115 of_getintprop_default(dp, "ecache-line-size", def);
116
117 printk("CPU[%d]: Caches "
118 "D[sz(%d):line_sz(%d)] "
119 "I[sz(%d):line_sz(%d)] "
120 "E[sz(%d):line_sz(%d)]\n",
121 id,
122 cpu_data(id).dcache_size, cpu_data(id).dcache_line_size,
123 cpu_data(id).icache_size, cpu_data(id).icache_line_size,
124 cpu_data(id).ecache_size, cpu_data(id).ecache_line_size);
125 }
126
127 static void smp_setup_percpu_timer(void);
128
129 static volatile unsigned long callin_flag = 0;
130
131 void __init smp_callin(void)
132 {
133 int cpuid = hard_smp_processor_id();
134
135 __local_per_cpu_offset = __per_cpu_offset(cpuid);
136
137 if (tlb_type == hypervisor)
138 sun4v_ktsb_register();
139
140 __flush_tlb_all();
141
142 smp_setup_percpu_timer();
143
144 if (cheetah_pcache_forced_on)
145 cheetah_enable_pcache();
146
147 local_irq_enable();
148
149 calibrate_delay();
150 smp_store_cpu_info(cpuid);
151 callin_flag = 1;
152 __asm__ __volatile__("membar #Sync\n\t"
153 "flush %%g6" : : : "memory");
154
155 /* Clear this or we will die instantly when we
156 * schedule back to this idler...
157 */
158 current_thread_info()->new_child = 0;
159
160 /* Attach to the address space of init_task. */
161 atomic_inc(&init_mm.mm_count);
162 current->active_mm = &init_mm;
163
164 while (!cpu_isset(cpuid, smp_commenced_mask))
165 rmb();
166
167 cpu_set(cpuid, cpu_online_map);
168
169 /* idle thread is expected to have preempt disabled */
170 preempt_disable();
171 }
172
173 void cpu_panic(void)
174 {
175 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
176 panic("SMP bolixed\n");
177 }
178
179 static unsigned long current_tick_offset __read_mostly;
180
181 /* This tick register synchronization scheme is taken entirely from
182 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
183 *
184 * The only change I've made is to rework it so that the master
185 * initiates the synchonization instead of the slave. -DaveM
186 */
187
188 #define MASTER 0
189 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
190
191 #define NUM_ROUNDS 64 /* magic value */
192 #define NUM_ITERS 5 /* likewise */
193
194 static DEFINE_SPINLOCK(itc_sync_lock);
195 static unsigned long go[SLAVE + 1];
196
197 #define DEBUG_TICK_SYNC 0
198
199 static inline long get_delta (long *rt, long *master)
200 {
201 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
202 unsigned long tcenter, t0, t1, tm;
203 unsigned long i;
204
205 for (i = 0; i < NUM_ITERS; i++) {
206 t0 = tick_ops->get_tick();
207 go[MASTER] = 1;
208 membar_storeload();
209 while (!(tm = go[SLAVE]))
210 rmb();
211 go[SLAVE] = 0;
212 wmb();
213 t1 = tick_ops->get_tick();
214
215 if (t1 - t0 < best_t1 - best_t0)
216 best_t0 = t0, best_t1 = t1, best_tm = tm;
217 }
218
219 *rt = best_t1 - best_t0;
220 *master = best_tm - best_t0;
221
222 /* average best_t0 and best_t1 without overflow: */
223 tcenter = (best_t0/2 + best_t1/2);
224 if (best_t0 % 2 + best_t1 % 2 == 2)
225 tcenter++;
226 return tcenter - best_tm;
227 }
228
229 void smp_synchronize_tick_client(void)
230 {
231 long i, delta, adj, adjust_latency = 0, done = 0;
232 unsigned long flags, rt, master_time_stamp, bound;
233 #if DEBUG_TICK_SYNC
234 struct {
235 long rt; /* roundtrip time */
236 long master; /* master's timestamp */
237 long diff; /* difference between midpoint and master's timestamp */
238 long lat; /* estimate of itc adjustment latency */
239 } t[NUM_ROUNDS];
240 #endif
241
242 go[MASTER] = 1;
243
244 while (go[MASTER])
245 rmb();
246
247 local_irq_save(flags);
248 {
249 for (i = 0; i < NUM_ROUNDS; i++) {
250 delta = get_delta(&rt, &master_time_stamp);
251 if (delta == 0) {
252 done = 1; /* let's lock on to this... */
253 bound = rt;
254 }
255
256 if (!done) {
257 if (i > 0) {
258 adjust_latency += -delta;
259 adj = -delta + adjust_latency/4;
260 } else
261 adj = -delta;
262
263 tick_ops->add_tick(adj, current_tick_offset);
264 }
265 #if DEBUG_TICK_SYNC
266 t[i].rt = rt;
267 t[i].master = master_time_stamp;
268 t[i].diff = delta;
269 t[i].lat = adjust_latency/4;
270 #endif
271 }
272 }
273 local_irq_restore(flags);
274
275 #if DEBUG_TICK_SYNC
276 for (i = 0; i < NUM_ROUNDS; i++)
277 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
278 t[i].rt, t[i].master, t[i].diff, t[i].lat);
279 #endif
280
281 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
282 "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
283 }
284
285 static void smp_start_sync_tick_client(int cpu);
286
287 static void smp_synchronize_one_tick(int cpu)
288 {
289 unsigned long flags, i;
290
291 go[MASTER] = 0;
292
293 smp_start_sync_tick_client(cpu);
294
295 /* wait for client to be ready */
296 while (!go[MASTER])
297 rmb();
298
299 /* now let the client proceed into his loop */
300 go[MASTER] = 0;
301 membar_storeload();
302
303 spin_lock_irqsave(&itc_sync_lock, flags);
304 {
305 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
306 while (!go[MASTER])
307 rmb();
308 go[MASTER] = 0;
309 wmb();
310 go[SLAVE] = tick_ops->get_tick();
311 membar_storeload();
312 }
313 }
314 spin_unlock_irqrestore(&itc_sync_lock, flags);
315 }
316
317 extern void sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load);
318
319 extern unsigned long sparc64_cpu_startup;
320
321 /* The OBP cpu startup callback truncates the 3rd arg cookie to
322 * 32-bits (I think) so to be safe we have it read the pointer
323 * contained here so we work on >4GB machines. -DaveM
324 */
325 static struct thread_info *cpu_new_thread = NULL;
326
327 static int __devinit smp_boot_one_cpu(unsigned int cpu)
328 {
329 unsigned long entry =
330 (unsigned long)(&sparc64_cpu_startup);
331 unsigned long cookie =
332 (unsigned long)(&cpu_new_thread);
333 struct task_struct *p;
334 int timeout, ret;
335
336 p = fork_idle(cpu);
337 callin_flag = 0;
338 cpu_new_thread = task_thread_info(p);
339 cpu_set(cpu, cpu_callout_map);
340
341 if (tlb_type == hypervisor) {
342 /* Alloc the mondo queues, cpu will load them. */
343 sun4v_init_mondo_queues(0, cpu, 1, 0);
344
345 prom_startcpu_cpuid(cpu, entry, cookie);
346 } else {
347 struct device_node *dp;
348
349 cpu_find_by_mid(cpu, &dp);
350 prom_startcpu(dp->node, entry, cookie);
351 }
352
353 for (timeout = 0; timeout < 5000000; timeout++) {
354 if (callin_flag)
355 break;
356 udelay(100);
357 }
358
359 if (callin_flag) {
360 ret = 0;
361 } else {
362 printk("Processor %d is stuck.\n", cpu);
363 cpu_clear(cpu, cpu_callout_map);
364 ret = -ENODEV;
365 }
366 cpu_new_thread = NULL;
367
368 return ret;
369 }
370
371 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
372 {
373 u64 result, target;
374 int stuck, tmp;
375
376 if (this_is_starfire) {
377 /* map to real upaid */
378 cpu = (((cpu & 0x3c) << 1) |
379 ((cpu & 0x40) >> 4) |
380 (cpu & 0x3));
381 }
382
383 target = (cpu << 14) | 0x70;
384 again:
385 /* Ok, this is the real Spitfire Errata #54.
386 * One must read back from a UDB internal register
387 * after writes to the UDB interrupt dispatch, but
388 * before the membar Sync for that write.
389 * So we use the high UDB control register (ASI 0x7f,
390 * ADDR 0x20) for the dummy read. -DaveM
391 */
392 tmp = 0x40;
393 __asm__ __volatile__(
394 "wrpr %1, %2, %%pstate\n\t"
395 "stxa %4, [%0] %3\n\t"
396 "stxa %5, [%0+%8] %3\n\t"
397 "add %0, %8, %0\n\t"
398 "stxa %6, [%0+%8] %3\n\t"
399 "membar #Sync\n\t"
400 "stxa %%g0, [%7] %3\n\t"
401 "membar #Sync\n\t"
402 "mov 0x20, %%g1\n\t"
403 "ldxa [%%g1] 0x7f, %%g0\n\t"
404 "membar #Sync"
405 : "=r" (tmp)
406 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
407 "r" (data0), "r" (data1), "r" (data2), "r" (target),
408 "r" (0x10), "0" (tmp)
409 : "g1");
410
411 /* NOTE: PSTATE_IE is still clear. */
412 stuck = 100000;
413 do {
414 __asm__ __volatile__("ldxa [%%g0] %1, %0"
415 : "=r" (result)
416 : "i" (ASI_INTR_DISPATCH_STAT));
417 if (result == 0) {
418 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
419 : : "r" (pstate));
420 return;
421 }
422 stuck -= 1;
423 if (stuck == 0)
424 break;
425 } while (result & 0x1);
426 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
427 : : "r" (pstate));
428 if (stuck == 0) {
429 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
430 smp_processor_id(), result);
431 } else {
432 udelay(2);
433 goto again;
434 }
435 }
436
437 static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
438 {
439 u64 pstate;
440 int i;
441
442 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
443 for_each_cpu_mask(i, mask)
444 spitfire_xcall_helper(data0, data1, data2, pstate, i);
445 }
446
447 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
448 * packet, but we have no use for that. However we do take advantage of
449 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
450 */
451 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
452 {
453 u64 pstate, ver;
454 int nack_busy_id, is_jbus;
455
456 if (cpus_empty(mask))
457 return;
458
459 /* Unfortunately, someone at Sun had the brilliant idea to make the
460 * busy/nack fields hard-coded by ITID number for this Ultra-III
461 * derivative processor.
462 */
463 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
464 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
465 (ver >> 32) == __SERRANO_ID);
466
467 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
468
469 retry:
470 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
471 : : "r" (pstate), "i" (PSTATE_IE));
472
473 /* Setup the dispatch data registers. */
474 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
475 "stxa %1, [%4] %6\n\t"
476 "stxa %2, [%5] %6\n\t"
477 "membar #Sync\n\t"
478 : /* no outputs */
479 : "r" (data0), "r" (data1), "r" (data2),
480 "r" (0x40), "r" (0x50), "r" (0x60),
481 "i" (ASI_INTR_W));
482
483 nack_busy_id = 0;
484 {
485 int i;
486
487 for_each_cpu_mask(i, mask) {
488 u64 target = (i << 14) | 0x70;
489
490 if (!is_jbus)
491 target |= (nack_busy_id << 24);
492 __asm__ __volatile__(
493 "stxa %%g0, [%0] %1\n\t"
494 "membar #Sync\n\t"
495 : /* no outputs */
496 : "r" (target), "i" (ASI_INTR_W));
497 nack_busy_id++;
498 }
499 }
500
501 /* Now, poll for completion. */
502 {
503 u64 dispatch_stat;
504 long stuck;
505
506 stuck = 100000 * nack_busy_id;
507 do {
508 __asm__ __volatile__("ldxa [%%g0] %1, %0"
509 : "=r" (dispatch_stat)
510 : "i" (ASI_INTR_DISPATCH_STAT));
511 if (dispatch_stat == 0UL) {
512 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
513 : : "r" (pstate));
514 return;
515 }
516 if (!--stuck)
517 break;
518 } while (dispatch_stat & 0x5555555555555555UL);
519
520 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
521 : : "r" (pstate));
522
523 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
524 /* Busy bits will not clear, continue instead
525 * of freezing up on this cpu.
526 */
527 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
528 smp_processor_id(), dispatch_stat);
529 } else {
530 int i, this_busy_nack = 0;
531
532 /* Delay some random time with interrupts enabled
533 * to prevent deadlock.
534 */
535 udelay(2 * nack_busy_id);
536
537 /* Clear out the mask bits for cpus which did not
538 * NACK us.
539 */
540 for_each_cpu_mask(i, mask) {
541 u64 check_mask;
542
543 if (is_jbus)
544 check_mask = (0x2UL << (2*i));
545 else
546 check_mask = (0x2UL <<
547 this_busy_nack);
548 if ((dispatch_stat & check_mask) == 0)
549 cpu_clear(i, mask);
550 this_busy_nack += 2;
551 }
552
553 goto retry;
554 }
555 }
556 }
557
558 /* Multi-cpu list version. */
559 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
560 {
561 struct trap_per_cpu *tb;
562 u16 *cpu_list;
563 u64 *mondo;
564 cpumask_t error_mask;
565 unsigned long flags, status;
566 int cnt, retries, this_cpu, prev_sent, i;
567
568 /* We have to do this whole thing with interrupts fully disabled.
569 * Otherwise if we send an xcall from interrupt context it will
570 * corrupt both our mondo block and cpu list state.
571 *
572 * One consequence of this is that we cannot use timeout mechanisms
573 * that depend upon interrupts being delivered locally. So, for
574 * example, we cannot sample jiffies and expect it to advance.
575 *
576 * Fortunately, udelay() uses %stick/%tick so we can use that.
577 */
578 local_irq_save(flags);
579
580 this_cpu = smp_processor_id();
581 tb = &trap_block[this_cpu];
582
583 mondo = __va(tb->cpu_mondo_block_pa);
584 mondo[0] = data0;
585 mondo[1] = data1;
586 mondo[2] = data2;
587 wmb();
588
589 cpu_list = __va(tb->cpu_list_pa);
590
591 /* Setup the initial cpu list. */
592 cnt = 0;
593 for_each_cpu_mask(i, mask)
594 cpu_list[cnt++] = i;
595
596 cpus_clear(error_mask);
597 retries = 0;
598 prev_sent = 0;
599 do {
600 int forward_progress, n_sent;
601
602 status = sun4v_cpu_mondo_send(cnt,
603 tb->cpu_list_pa,
604 tb->cpu_mondo_block_pa);
605
606 /* HV_EOK means all cpus received the xcall, we're done. */
607 if (likely(status == HV_EOK))
608 break;
609
610 /* First, see if we made any forward progress.
611 *
612 * The hypervisor indicates successful sends by setting
613 * cpu list entries to the value 0xffff.
614 */
615 n_sent = 0;
616 for (i = 0; i < cnt; i++) {
617 if (likely(cpu_list[i] == 0xffff))
618 n_sent++;
619 }
620
621 forward_progress = 0;
622 if (n_sent > prev_sent)
623 forward_progress = 1;
624
625 prev_sent = n_sent;
626
627 /* If we get a HV_ECPUERROR, then one or more of the cpus
628 * in the list are in error state. Use the cpu_state()
629 * hypervisor call to find out which cpus are in error state.
630 */
631 if (unlikely(status == HV_ECPUERROR)) {
632 for (i = 0; i < cnt; i++) {
633 long err;
634 u16 cpu;
635
636 cpu = cpu_list[i];
637 if (cpu == 0xffff)
638 continue;
639
640 err = sun4v_cpu_state(cpu);
641 if (err >= 0 &&
642 err == HV_CPU_STATE_ERROR) {
643 cpu_list[i] = 0xffff;
644 cpu_set(cpu, error_mask);
645 }
646 }
647 } else if (unlikely(status != HV_EWOULDBLOCK))
648 goto fatal_mondo_error;
649
650 /* Don't bother rewriting the CPU list, just leave the
651 * 0xffff and non-0xffff entries in there and the
652 * hypervisor will do the right thing.
653 *
654 * Only advance timeout state if we didn't make any
655 * forward progress.
656 */
657 if (unlikely(!forward_progress)) {
658 if (unlikely(++retries > 10000))
659 goto fatal_mondo_timeout;
660
661 /* Delay a little bit to let other cpus catch up
662 * on their cpu mondo queue work.
663 */
664 udelay(2 * cnt);
665 }
666 } while (1);
667
668 local_irq_restore(flags);
669
670 if (unlikely(!cpus_empty(error_mask)))
671 goto fatal_mondo_cpu_error;
672
673 return;
674
675 fatal_mondo_cpu_error:
676 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
677 "were in error state\n",
678 this_cpu);
679 printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
680 for_each_cpu_mask(i, error_mask)
681 printk("%d ", i);
682 printk("]\n");
683 return;
684
685 fatal_mondo_timeout:
686 local_irq_restore(flags);
687 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
688 " progress after %d retries.\n",
689 this_cpu, retries);
690 goto dump_cpu_list_and_out;
691
692 fatal_mondo_error:
693 local_irq_restore(flags);
694 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
695 this_cpu, status);
696 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
697 "mondo_block_pa(%lx)\n",
698 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
699
700 dump_cpu_list_and_out:
701 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
702 for (i = 0; i < cnt; i++)
703 printk("%u ", cpu_list[i]);
704 printk("]\n");
705 }
706
707 /* Send cross call to all processors mentioned in MASK
708 * except self.
709 */
710 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
711 {
712 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
713 int this_cpu = get_cpu();
714
715 cpus_and(mask, mask, cpu_online_map);
716 cpu_clear(this_cpu, mask);
717
718 if (tlb_type == spitfire)
719 spitfire_xcall_deliver(data0, data1, data2, mask);
720 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
721 cheetah_xcall_deliver(data0, data1, data2, mask);
722 else
723 hypervisor_xcall_deliver(data0, data1, data2, mask);
724 /* NOTE: Caller runs local copy on master. */
725
726 put_cpu();
727 }
728
729 extern unsigned long xcall_sync_tick;
730
731 static void smp_start_sync_tick_client(int cpu)
732 {
733 cpumask_t mask = cpumask_of_cpu(cpu);
734
735 smp_cross_call_masked(&xcall_sync_tick,
736 0, 0, 0, mask);
737 }
738
739 /* Send cross call to all processors except self. */
740 #define smp_cross_call(func, ctx, data1, data2) \
741 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
742
743 struct call_data_struct {
744 void (*func) (void *info);
745 void *info;
746 atomic_t finished;
747 int wait;
748 };
749
750 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
751 static struct call_data_struct *call_data;
752
753 extern unsigned long xcall_call_function;
754
755 /**
756 * smp_call_function(): Run a function on all other CPUs.
757 * @func: The function to run. This must be fast and non-blocking.
758 * @info: An arbitrary pointer to pass to the function.
759 * @nonatomic: currently unused.
760 * @wait: If true, wait (atomically) until function has completed on other CPUs.
761 *
762 * Returns 0 on success, else a negative status code. Does not return until
763 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
764 *
765 * You must not call this function with disabled interrupts or from a
766 * hardware interrupt handler or from a bottom half handler.
767 */
768 static int smp_call_function_mask(void (*func)(void *info), void *info,
769 int nonatomic, int wait, cpumask_t mask)
770 {
771 struct call_data_struct data;
772 int cpus;
773
774 /* Can deadlock when called with interrupts disabled */
775 WARN_ON(irqs_disabled());
776
777 data.func = func;
778 data.info = info;
779 atomic_set(&data.finished, 0);
780 data.wait = wait;
781
782 spin_lock(&call_lock);
783
784 cpu_clear(smp_processor_id(), mask);
785 cpus = cpus_weight(mask);
786 if (!cpus)
787 goto out_unlock;
788
789 call_data = &data;
790 mb();
791
792 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
793
794 /* Wait for response */
795 while (atomic_read(&data.finished) != cpus)
796 cpu_relax();
797
798 out_unlock:
799 spin_unlock(&call_lock);
800
801 return 0;
802 }
803
804 int smp_call_function(void (*func)(void *info), void *info,
805 int nonatomic, int wait)
806 {
807 return smp_call_function_mask(func, info, nonatomic, wait,
808 cpu_online_map);
809 }
810
811 void smp_call_function_client(int irq, struct pt_regs *regs)
812 {
813 void (*func) (void *info) = call_data->func;
814 void *info = call_data->info;
815
816 clear_softint(1 << irq);
817 if (call_data->wait) {
818 /* let initiator proceed only after completion */
819 func(info);
820 atomic_inc(&call_data->finished);
821 } else {
822 /* let initiator proceed after getting data */
823 atomic_inc(&call_data->finished);
824 func(info);
825 }
826 }
827
828 static void tsb_sync(void *info)
829 {
830 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
831 struct mm_struct *mm = info;
832
833 /* It is not valid to test "currrent->active_mm == mm" here.
834 *
835 * The value of "current" is not changed atomically with
836 * switch_mm(). But that's OK, we just need to check the
837 * current cpu's trap block PGD physical address.
838 */
839 if (tp->pgd_paddr == __pa(mm->pgd))
840 tsb_context_switch(mm);
841 }
842
843 void smp_tsb_sync(struct mm_struct *mm)
844 {
845 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
846 }
847
848 extern unsigned long xcall_flush_tlb_mm;
849 extern unsigned long xcall_flush_tlb_pending;
850 extern unsigned long xcall_flush_tlb_kernel_range;
851 extern unsigned long xcall_report_regs;
852 extern unsigned long xcall_receive_signal;
853 extern unsigned long xcall_new_mmu_context_version;
854
855 #ifdef DCACHE_ALIASING_POSSIBLE
856 extern unsigned long xcall_flush_dcache_page_cheetah;
857 #endif
858 extern unsigned long xcall_flush_dcache_page_spitfire;
859
860 #ifdef CONFIG_DEBUG_DCFLUSH
861 extern atomic_t dcpage_flushes;
862 extern atomic_t dcpage_flushes_xcall;
863 #endif
864
865 static __inline__ void __local_flush_dcache_page(struct page *page)
866 {
867 #ifdef DCACHE_ALIASING_POSSIBLE
868 __flush_dcache_page(page_address(page),
869 ((tlb_type == spitfire) &&
870 page_mapping(page) != NULL));
871 #else
872 if (page_mapping(page) != NULL &&
873 tlb_type == spitfire)
874 __flush_icache_page(__pa(page_address(page)));
875 #endif
876 }
877
878 void smp_flush_dcache_page_impl(struct page *page, int cpu)
879 {
880 cpumask_t mask = cpumask_of_cpu(cpu);
881 int this_cpu;
882
883 if (tlb_type == hypervisor)
884 return;
885
886 #ifdef CONFIG_DEBUG_DCFLUSH
887 atomic_inc(&dcpage_flushes);
888 #endif
889
890 this_cpu = get_cpu();
891
892 if (cpu == this_cpu) {
893 __local_flush_dcache_page(page);
894 } else if (cpu_online(cpu)) {
895 void *pg_addr = page_address(page);
896 u64 data0;
897
898 if (tlb_type == spitfire) {
899 data0 =
900 ((u64)&xcall_flush_dcache_page_spitfire);
901 if (page_mapping(page) != NULL)
902 data0 |= ((u64)1 << 32);
903 spitfire_xcall_deliver(data0,
904 __pa(pg_addr),
905 (u64) pg_addr,
906 mask);
907 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
908 #ifdef DCACHE_ALIASING_POSSIBLE
909 data0 =
910 ((u64)&xcall_flush_dcache_page_cheetah);
911 cheetah_xcall_deliver(data0,
912 __pa(pg_addr),
913 0, mask);
914 #endif
915 }
916 #ifdef CONFIG_DEBUG_DCFLUSH
917 atomic_inc(&dcpage_flushes_xcall);
918 #endif
919 }
920
921 put_cpu();
922 }
923
924 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
925 {
926 void *pg_addr = page_address(page);
927 cpumask_t mask = cpu_online_map;
928 u64 data0;
929 int this_cpu;
930
931 if (tlb_type == hypervisor)
932 return;
933
934 this_cpu = get_cpu();
935
936 cpu_clear(this_cpu, mask);
937
938 #ifdef CONFIG_DEBUG_DCFLUSH
939 atomic_inc(&dcpage_flushes);
940 #endif
941 if (cpus_empty(mask))
942 goto flush_self;
943 if (tlb_type == spitfire) {
944 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
945 if (page_mapping(page) != NULL)
946 data0 |= ((u64)1 << 32);
947 spitfire_xcall_deliver(data0,
948 __pa(pg_addr),
949 (u64) pg_addr,
950 mask);
951 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
952 #ifdef DCACHE_ALIASING_POSSIBLE
953 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
954 cheetah_xcall_deliver(data0,
955 __pa(pg_addr),
956 0, mask);
957 #endif
958 }
959 #ifdef CONFIG_DEBUG_DCFLUSH
960 atomic_inc(&dcpage_flushes_xcall);
961 #endif
962 flush_self:
963 __local_flush_dcache_page(page);
964
965 put_cpu();
966 }
967
968 static void __smp_receive_signal_mask(cpumask_t mask)
969 {
970 smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
971 }
972
973 void smp_receive_signal(int cpu)
974 {
975 cpumask_t mask = cpumask_of_cpu(cpu);
976
977 if (cpu_online(cpu))
978 __smp_receive_signal_mask(mask);
979 }
980
981 void smp_receive_signal_client(int irq, struct pt_regs *regs)
982 {
983 clear_softint(1 << irq);
984 }
985
986 void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
987 {
988 struct mm_struct *mm;
989 unsigned long flags;
990
991 clear_softint(1 << irq);
992
993 /* See if we need to allocate a new TLB context because
994 * the version of the one we are using is now out of date.
995 */
996 mm = current->active_mm;
997 if (unlikely(!mm || (mm == &init_mm)))
998 return;
999
1000 spin_lock_irqsave(&mm->context.lock, flags);
1001
1002 if (unlikely(!CTX_VALID(mm->context)))
1003 get_new_mmu_context(mm);
1004
1005 spin_unlock_irqrestore(&mm->context.lock, flags);
1006
1007 load_secondary_context(mm);
1008 __flush_tlb_mm(CTX_HWBITS(mm->context),
1009 SECONDARY_CONTEXT);
1010 }
1011
1012 void smp_new_mmu_context_version(void)
1013 {
1014 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1015 }
1016
1017 void smp_report_regs(void)
1018 {
1019 smp_cross_call(&xcall_report_regs, 0, 0, 0);
1020 }
1021
1022 /* We know that the window frames of the user have been flushed
1023 * to the stack before we get here because all callers of us
1024 * are flush_tlb_*() routines, and these run after flush_cache_*()
1025 * which performs the flushw.
1026 *
1027 * The SMP TLB coherency scheme we use works as follows:
1028 *
1029 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1030 * space has (potentially) executed on, this is the heuristic
1031 * we use to avoid doing cross calls.
1032 *
1033 * Also, for flushing from kswapd and also for clones, we
1034 * use cpu_vm_mask as the list of cpus to make run the TLB.
1035 *
1036 * 2) TLB context numbers are shared globally across all processors
1037 * in the system, this allows us to play several games to avoid
1038 * cross calls.
1039 *
1040 * One invariant is that when a cpu switches to a process, and
1041 * that processes tsk->active_mm->cpu_vm_mask does not have the
1042 * current cpu's bit set, that tlb context is flushed locally.
1043 *
1044 * If the address space is non-shared (ie. mm->count == 1) we avoid
1045 * cross calls when we want to flush the currently running process's
1046 * tlb state. This is done by clearing all cpu bits except the current
1047 * processor's in current->active_mm->cpu_vm_mask and performing the
1048 * flush locally only. This will force any subsequent cpus which run
1049 * this task to flush the context from the local tlb if the process
1050 * migrates to another cpu (again).
1051 *
1052 * 3) For shared address spaces (threads) and swapping we bite the
1053 * bullet for most cases and perform the cross call (but only to
1054 * the cpus listed in cpu_vm_mask).
1055 *
1056 * The performance gain from "optimizing" away the cross call for threads is
1057 * questionable (in theory the big win for threads is the massive sharing of
1058 * address space state across processors).
1059 */
1060
1061 /* This currently is only used by the hugetlb arch pre-fault
1062 * hook on UltraSPARC-III+ and later when changing the pagesize
1063 * bits of the context register for an address space.
1064 */
1065 void smp_flush_tlb_mm(struct mm_struct *mm)
1066 {
1067 u32 ctx = CTX_HWBITS(mm->context);
1068 int cpu = get_cpu();
1069
1070 if (atomic_read(&mm->mm_users) == 1) {
1071 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1072 goto local_flush_and_out;
1073 }
1074
1075 smp_cross_call_masked(&xcall_flush_tlb_mm,
1076 ctx, 0, 0,
1077 mm->cpu_vm_mask);
1078
1079 local_flush_and_out:
1080 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1081
1082 put_cpu();
1083 }
1084
1085 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1086 {
1087 u32 ctx = CTX_HWBITS(mm->context);
1088 int cpu = get_cpu();
1089
1090 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1091 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1092 else
1093 smp_cross_call_masked(&xcall_flush_tlb_pending,
1094 ctx, nr, (unsigned long) vaddrs,
1095 mm->cpu_vm_mask);
1096
1097 __flush_tlb_pending(ctx, nr, vaddrs);
1098
1099 put_cpu();
1100 }
1101
1102 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1103 {
1104 start &= PAGE_MASK;
1105 end = PAGE_ALIGN(end);
1106 if (start != end) {
1107 smp_cross_call(&xcall_flush_tlb_kernel_range,
1108 0, start, end);
1109
1110 __flush_tlb_kernel_range(start, end);
1111 }
1112 }
1113
1114 /* CPU capture. */
1115 /* #define CAPTURE_DEBUG */
1116 extern unsigned long xcall_capture;
1117
1118 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1119 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1120 static unsigned long penguins_are_doing_time;
1121
1122 void smp_capture(void)
1123 {
1124 int result = atomic_add_ret(1, &smp_capture_depth);
1125
1126 if (result == 1) {
1127 int ncpus = num_online_cpus();
1128
1129 #ifdef CAPTURE_DEBUG
1130 printk("CPU[%d]: Sending penguins to jail...",
1131 smp_processor_id());
1132 #endif
1133 penguins_are_doing_time = 1;
1134 membar_storestore_loadstore();
1135 atomic_inc(&smp_capture_registry);
1136 smp_cross_call(&xcall_capture, 0, 0, 0);
1137 while (atomic_read(&smp_capture_registry) != ncpus)
1138 rmb();
1139 #ifdef CAPTURE_DEBUG
1140 printk("done\n");
1141 #endif
1142 }
1143 }
1144
1145 void smp_release(void)
1146 {
1147 if (atomic_dec_and_test(&smp_capture_depth)) {
1148 #ifdef CAPTURE_DEBUG
1149 printk("CPU[%d]: Giving pardon to "
1150 "imprisoned penguins\n",
1151 smp_processor_id());
1152 #endif
1153 penguins_are_doing_time = 0;
1154 membar_storeload_storestore();
1155 atomic_dec(&smp_capture_registry);
1156 }
1157 }
1158
1159 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1160 * can service tlb flush xcalls...
1161 */
1162 extern void prom_world(int);
1163
1164 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1165 {
1166 clear_softint(1 << irq);
1167
1168 preempt_disable();
1169
1170 __asm__ __volatile__("flushw");
1171 prom_world(1);
1172 atomic_inc(&smp_capture_registry);
1173 membar_storeload_storestore();
1174 while (penguins_are_doing_time)
1175 rmb();
1176 atomic_dec(&smp_capture_registry);
1177 prom_world(0);
1178
1179 preempt_enable();
1180 }
1181
1182 #define prof_multiplier(__cpu) cpu_data(__cpu).multiplier
1183 #define prof_counter(__cpu) cpu_data(__cpu).counter
1184
1185 void smp_percpu_timer_interrupt(struct pt_regs *regs)
1186 {
1187 unsigned long compare, tick, pstate;
1188 int cpu = smp_processor_id();
1189 int user = user_mode(regs);
1190
1191 /*
1192 * Check for level 14 softint.
1193 */
1194 {
1195 unsigned long tick_mask = tick_ops->softint_mask;
1196
1197 if (!(get_softint() & tick_mask)) {
1198 extern void handler_irq(int, struct pt_regs *);
1199
1200 handler_irq(14, regs);
1201 return;
1202 }
1203 clear_softint(tick_mask);
1204 }
1205
1206 do {
1207 profile_tick(CPU_PROFILING, regs);
1208 if (!--prof_counter(cpu)) {
1209 irq_enter();
1210
1211 if (cpu == boot_cpu_id) {
1212 kstat_this_cpu.irqs[0]++;
1213 timer_tick_interrupt(regs);
1214 }
1215
1216 update_process_times(user);
1217
1218 irq_exit();
1219
1220 prof_counter(cpu) = prof_multiplier(cpu);
1221 }
1222
1223 /* Guarantee that the following sequences execute
1224 * uninterrupted.
1225 */
1226 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1227 "wrpr %0, %1, %%pstate"
1228 : "=r" (pstate)
1229 : "i" (PSTATE_IE));
1230
1231 compare = tick_ops->add_compare(current_tick_offset);
1232 tick = tick_ops->get_tick();
1233
1234 /* Restore PSTATE_IE. */
1235 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1236 : /* no outputs */
1237 : "r" (pstate));
1238 } while (time_after_eq(tick, compare));
1239 }
1240
1241 static void __init smp_setup_percpu_timer(void)
1242 {
1243 int cpu = smp_processor_id();
1244 unsigned long pstate;
1245
1246 prof_counter(cpu) = prof_multiplier(cpu) = 1;
1247
1248 /* Guarantee that the following sequences execute
1249 * uninterrupted.
1250 */
1251 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1252 "wrpr %0, %1, %%pstate"
1253 : "=r" (pstate)
1254 : "i" (PSTATE_IE));
1255
1256 tick_ops->init_tick(current_tick_offset);
1257
1258 /* Restore PSTATE_IE. */
1259 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1260 : /* no outputs */
1261 : "r" (pstate));
1262 }
1263
1264 void __init smp_tick_init(void)
1265 {
1266 boot_cpu_id = hard_smp_processor_id();
1267 current_tick_offset = timer_tick_offset;
1268
1269 prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
1270 }
1271
1272 /* /proc/profile writes can call this, don't __init it please. */
1273 static DEFINE_SPINLOCK(prof_setup_lock);
1274
1275 int setup_profiling_timer(unsigned int multiplier)
1276 {
1277 unsigned long flags;
1278 int i;
1279
1280 if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
1281 return -EINVAL;
1282
1283 spin_lock_irqsave(&prof_setup_lock, flags);
1284 for_each_possible_cpu(i)
1285 prof_multiplier(i) = multiplier;
1286 current_tick_offset = (timer_tick_offset / multiplier);
1287 spin_unlock_irqrestore(&prof_setup_lock, flags);
1288
1289 return 0;
1290 }
1291
1292 static void __init smp_tune_scheduling(void)
1293 {
1294 struct device_node *dp;
1295 int instance;
1296 unsigned int def, smallest = ~0U;
1297
1298 def = ((tlb_type == hypervisor) ?
1299 (3 * 1024 * 1024) :
1300 (4 * 1024 * 1024));
1301
1302 instance = 0;
1303 while (!cpu_find_by_instance(instance, &dp, NULL)) {
1304 unsigned int val;
1305
1306 val = of_getintprop_default(dp, "ecache-size", def);
1307 if (val < smallest)
1308 smallest = val;
1309
1310 instance++;
1311 }
1312
1313 /* Any value less than 256K is nonsense. */
1314 if (smallest < (256U * 1024U))
1315 smallest = 256 * 1024;
1316
1317 max_cache_size = smallest;
1318
1319 if (smallest < 1U * 1024U * 1024U)
1320 printk(KERN_INFO "Using max_cache_size of %uKB\n",
1321 smallest / 1024U);
1322 else
1323 printk(KERN_INFO "Using max_cache_size of %uMB\n",
1324 smallest / 1024U / 1024U);
1325 }
1326
1327 /* Constrain the number of cpus to max_cpus. */
1328 void __init smp_prepare_cpus(unsigned int max_cpus)
1329 {
1330 int i;
1331
1332 if (num_possible_cpus() > max_cpus) {
1333 int instance, mid;
1334
1335 instance = 0;
1336 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1337 if (mid != boot_cpu_id) {
1338 cpu_clear(mid, phys_cpu_present_map);
1339 cpu_clear(mid, cpu_present_map);
1340 if (num_possible_cpus() <= max_cpus)
1341 break;
1342 }
1343 instance++;
1344 }
1345 }
1346
1347 for_each_possible_cpu(i) {
1348 if (tlb_type == hypervisor) {
1349 int j;
1350
1351 /* XXX get this mapping from machine description */
1352 for_each_possible_cpu(j) {
1353 if ((j >> 2) == (i >> 2))
1354 cpu_set(j, cpu_sibling_map[i]);
1355 }
1356 } else {
1357 cpu_set(i, cpu_sibling_map[i]);
1358 }
1359 }
1360
1361 smp_store_cpu_info(boot_cpu_id);
1362 smp_tune_scheduling();
1363 }
1364
1365 /* Set this up early so that things like the scheduler can init
1366 * properly. We use the same cpu mask for both the present and
1367 * possible cpu map.
1368 */
1369 void __init smp_setup_cpu_possible_map(void)
1370 {
1371 int instance, mid;
1372
1373 instance = 0;
1374 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1375 if (mid < NR_CPUS) {
1376 cpu_set(mid, phys_cpu_present_map);
1377 cpu_set(mid, cpu_present_map);
1378 }
1379 instance++;
1380 }
1381 }
1382
1383 void __devinit smp_prepare_boot_cpu(void)
1384 {
1385 }
1386
1387 int __devinit __cpu_up(unsigned int cpu)
1388 {
1389 int ret = smp_boot_one_cpu(cpu);
1390
1391 if (!ret) {
1392 cpu_set(cpu, smp_commenced_mask);
1393 while (!cpu_isset(cpu, cpu_online_map))
1394 mb();
1395 if (!cpu_isset(cpu, cpu_online_map)) {
1396 ret = -ENODEV;
1397 } else {
1398 /* On SUN4V, writes to %tick and %stick are
1399 * not allowed.
1400 */
1401 if (tlb_type != hypervisor)
1402 smp_synchronize_one_tick(cpu);
1403 }
1404 }
1405 return ret;
1406 }
1407
1408 void __init smp_cpus_done(unsigned int max_cpus)
1409 {
1410 unsigned long bogosum = 0;
1411 int i;
1412
1413 for_each_online_cpu(i)
1414 bogosum += cpu_data(i).udelay_val;
1415 printk("Total of %ld processors activated "
1416 "(%lu.%02lu BogoMIPS).\n",
1417 (long) num_online_cpus(),
1418 bogosum/(500000/HZ),
1419 (bogosum/(5000/HZ))%100);
1420 }
1421
1422 void smp_send_reschedule(int cpu)
1423 {
1424 smp_receive_signal(cpu);
1425 }
1426
1427 /* This is a nop because we capture all other cpus
1428 * anyways when making the PROM active.
1429 */
1430 void smp_send_stop(void)
1431 {
1432 }
1433
1434 unsigned long __per_cpu_base __read_mostly;
1435 unsigned long __per_cpu_shift __read_mostly;
1436
1437 EXPORT_SYMBOL(__per_cpu_base);
1438 EXPORT_SYMBOL(__per_cpu_shift);
1439
1440 void __init setup_per_cpu_areas(void)
1441 {
1442 unsigned long goal, size, i;
1443 char *ptr;
1444
1445 /* Copy section for each CPU (we discard the original) */
1446 goal = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES);
1447 #ifdef CONFIG_MODULES
1448 if (goal < PERCPU_ENOUGH_ROOM)
1449 goal = PERCPU_ENOUGH_ROOM;
1450 #endif
1451 __per_cpu_shift = 0;
1452 for (size = 1UL; size < goal; size <<= 1UL)
1453 __per_cpu_shift++;
1454
1455 ptr = alloc_bootmem(size * NR_CPUS);
1456
1457 __per_cpu_base = ptr - __per_cpu_start;
1458
1459 for (i = 0; i < NR_CPUS; i++, ptr += size)
1460 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1461
1462 /* Setup %g5 for the boot cpu. */
1463 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1464 }
This page took 0.077009 seconds and 6 git commands to generate.