[SPARC]: Remove bogus register programming in cg6 driver.
[deliverable/linux.git] / arch / sparc64 / kernel / smp.c
1 /* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
4 */
5
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/smp_lock.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/jiffies.h>
23 #include <linux/profile.h>
24 #include <linux/bootmem.h>
25
26 #include <asm/head.h>
27 #include <asm/ptrace.h>
28 #include <asm/atomic.h>
29 #include <asm/tlbflush.h>
30 #include <asm/mmu_context.h>
31 #include <asm/cpudata.h>
32
33 #include <asm/irq.h>
34 #include <asm/page.h>
35 #include <asm/pgtable.h>
36 #include <asm/oplib.h>
37 #include <asm/uaccess.h>
38 #include <asm/timer.h>
39 #include <asm/starfire.h>
40 #include <asm/tlb.h>
41
42 extern int linux_num_cpus;
43 extern void calibrate_delay(void);
44
45 /* Please don't make this stuff initdata!!! --DaveM */
46 static unsigned char boot_cpu_id;
47
48 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
49 cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
50 static cpumask_t smp_commenced_mask;
51 static cpumask_t cpu_callout_map;
52
53 void smp_info(struct seq_file *m)
54 {
55 int i;
56
57 seq_printf(m, "State:\n");
58 for (i = 0; i < NR_CPUS; i++) {
59 if (cpu_online(i))
60 seq_printf(m,
61 "CPU%d:\t\tonline\n", i);
62 }
63 }
64
65 void smp_bogo(struct seq_file *m)
66 {
67 int i;
68
69 for (i = 0; i < NR_CPUS; i++)
70 if (cpu_online(i))
71 seq_printf(m,
72 "Cpu%dBogo\t: %lu.%02lu\n"
73 "Cpu%dClkTck\t: %016lx\n",
74 i, cpu_data(i).udelay_val / (500000/HZ),
75 (cpu_data(i).udelay_val / (5000/HZ)) % 100,
76 i, cpu_data(i).clock_tick);
77 }
78
79 void __init smp_store_cpu_info(int id)
80 {
81 int cpu_node;
82
83 /* multiplier and counter set by
84 smp_setup_percpu_timer() */
85 cpu_data(id).udelay_val = loops_per_jiffy;
86
87 cpu_find_by_mid(id, &cpu_node);
88 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
89 "clock-frequency", 0);
90
91 cpu_data(id).pgcache_size = 0;
92 cpu_data(id).pte_cache[0] = NULL;
93 cpu_data(id).pte_cache[1] = NULL;
94 cpu_data(id).pgd_cache = NULL;
95 cpu_data(id).idle_volume = 1;
96
97 cpu_data(id).dcache_size = prom_getintdefault(cpu_node, "dcache-size",
98 16 * 1024);
99 cpu_data(id).dcache_line_size =
100 prom_getintdefault(cpu_node, "dcache-line-size", 32);
101 cpu_data(id).icache_size = prom_getintdefault(cpu_node, "icache-size",
102 16 * 1024);
103 cpu_data(id).icache_line_size =
104 prom_getintdefault(cpu_node, "icache-line-size", 32);
105 cpu_data(id).ecache_size = prom_getintdefault(cpu_node, "ecache-size",
106 4 * 1024 * 1024);
107 cpu_data(id).ecache_line_size =
108 prom_getintdefault(cpu_node, "ecache-line-size", 64);
109 printk("CPU[%d]: Caches "
110 "D[sz(%d):line_sz(%d)] "
111 "I[sz(%d):line_sz(%d)] "
112 "E[sz(%d):line_sz(%d)]\n",
113 id,
114 cpu_data(id).dcache_size, cpu_data(id).dcache_line_size,
115 cpu_data(id).icache_size, cpu_data(id).icache_line_size,
116 cpu_data(id).ecache_size, cpu_data(id).ecache_line_size);
117 }
118
119 static void smp_setup_percpu_timer(void);
120
121 static volatile unsigned long callin_flag = 0;
122
123 extern void inherit_locked_prom_mappings(int save_p);
124
125 static inline void cpu_setup_percpu_base(unsigned long cpu_id)
126 {
127 __asm__ __volatile__("mov %0, %%g5\n\t"
128 "stxa %0, [%1] %2\n\t"
129 "membar #Sync"
130 : /* no outputs */
131 : "r" (__per_cpu_offset(cpu_id)),
132 "r" (TSB_REG), "i" (ASI_IMMU));
133 }
134
135 void __init smp_callin(void)
136 {
137 int cpuid = hard_smp_processor_id();
138
139 inherit_locked_prom_mappings(0);
140
141 __flush_tlb_all();
142
143 cpu_setup_percpu_base(cpuid);
144
145 smp_setup_percpu_timer();
146
147 if (cheetah_pcache_forced_on)
148 cheetah_enable_pcache();
149
150 local_irq_enable();
151
152 calibrate_delay();
153 smp_store_cpu_info(cpuid);
154 callin_flag = 1;
155 __asm__ __volatile__("membar #Sync\n\t"
156 "flush %%g6" : : : "memory");
157
158 /* Clear this or we will die instantly when we
159 * schedule back to this idler...
160 */
161 current_thread_info()->new_child = 0;
162
163 /* Attach to the address space of init_task. */
164 atomic_inc(&init_mm.mm_count);
165 current->active_mm = &init_mm;
166
167 while (!cpu_isset(cpuid, smp_commenced_mask))
168 rmb();
169
170 cpu_set(cpuid, cpu_online_map);
171 }
172
173 void cpu_panic(void)
174 {
175 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
176 panic("SMP bolixed\n");
177 }
178
179 static unsigned long current_tick_offset __read_mostly;
180
181 /* This tick register synchronization scheme is taken entirely from
182 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
183 *
184 * The only change I've made is to rework it so that the master
185 * initiates the synchonization instead of the slave. -DaveM
186 */
187
188 #define MASTER 0
189 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
190
191 #define NUM_ROUNDS 64 /* magic value */
192 #define NUM_ITERS 5 /* likewise */
193
194 static DEFINE_SPINLOCK(itc_sync_lock);
195 static unsigned long go[SLAVE + 1];
196
197 #define DEBUG_TICK_SYNC 0
198
199 static inline long get_delta (long *rt, long *master)
200 {
201 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
202 unsigned long tcenter, t0, t1, tm;
203 unsigned long i;
204
205 for (i = 0; i < NUM_ITERS; i++) {
206 t0 = tick_ops->get_tick();
207 go[MASTER] = 1;
208 membar_storeload();
209 while (!(tm = go[SLAVE]))
210 rmb();
211 go[SLAVE] = 0;
212 wmb();
213 t1 = tick_ops->get_tick();
214
215 if (t1 - t0 < best_t1 - best_t0)
216 best_t0 = t0, best_t1 = t1, best_tm = tm;
217 }
218
219 *rt = best_t1 - best_t0;
220 *master = best_tm - best_t0;
221
222 /* average best_t0 and best_t1 without overflow: */
223 tcenter = (best_t0/2 + best_t1/2);
224 if (best_t0 % 2 + best_t1 % 2 == 2)
225 tcenter++;
226 return tcenter - best_tm;
227 }
228
229 void smp_synchronize_tick_client(void)
230 {
231 long i, delta, adj, adjust_latency = 0, done = 0;
232 unsigned long flags, rt, master_time_stamp, bound;
233 #if DEBUG_TICK_SYNC
234 struct {
235 long rt; /* roundtrip time */
236 long master; /* master's timestamp */
237 long diff; /* difference between midpoint and master's timestamp */
238 long lat; /* estimate of itc adjustment latency */
239 } t[NUM_ROUNDS];
240 #endif
241
242 go[MASTER] = 1;
243
244 while (go[MASTER])
245 rmb();
246
247 local_irq_save(flags);
248 {
249 for (i = 0; i < NUM_ROUNDS; i++) {
250 delta = get_delta(&rt, &master_time_stamp);
251 if (delta == 0) {
252 done = 1; /* let's lock on to this... */
253 bound = rt;
254 }
255
256 if (!done) {
257 if (i > 0) {
258 adjust_latency += -delta;
259 adj = -delta + adjust_latency/4;
260 } else
261 adj = -delta;
262
263 tick_ops->add_tick(adj, current_tick_offset);
264 }
265 #if DEBUG_TICK_SYNC
266 t[i].rt = rt;
267 t[i].master = master_time_stamp;
268 t[i].diff = delta;
269 t[i].lat = adjust_latency/4;
270 #endif
271 }
272 }
273 local_irq_restore(flags);
274
275 #if DEBUG_TICK_SYNC
276 for (i = 0; i < NUM_ROUNDS; i++)
277 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
278 t[i].rt, t[i].master, t[i].diff, t[i].lat);
279 #endif
280
281 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
282 "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
283 }
284
285 static void smp_start_sync_tick_client(int cpu);
286
287 static void smp_synchronize_one_tick(int cpu)
288 {
289 unsigned long flags, i;
290
291 go[MASTER] = 0;
292
293 smp_start_sync_tick_client(cpu);
294
295 /* wait for client to be ready */
296 while (!go[MASTER])
297 rmb();
298
299 /* now let the client proceed into his loop */
300 go[MASTER] = 0;
301 membar_storeload();
302
303 spin_lock_irqsave(&itc_sync_lock, flags);
304 {
305 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
306 while (!go[MASTER])
307 rmb();
308 go[MASTER] = 0;
309 wmb();
310 go[SLAVE] = tick_ops->get_tick();
311 membar_storeload();
312 }
313 }
314 spin_unlock_irqrestore(&itc_sync_lock, flags);
315 }
316
317 extern unsigned long sparc64_cpu_startup;
318
319 /* The OBP cpu startup callback truncates the 3rd arg cookie to
320 * 32-bits (I think) so to be safe we have it read the pointer
321 * contained here so we work on >4GB machines. -DaveM
322 */
323 static struct thread_info *cpu_new_thread = NULL;
324
325 static int __devinit smp_boot_one_cpu(unsigned int cpu)
326 {
327 unsigned long entry =
328 (unsigned long)(&sparc64_cpu_startup);
329 unsigned long cookie =
330 (unsigned long)(&cpu_new_thread);
331 struct task_struct *p;
332 int timeout, ret, cpu_node;
333
334 p = fork_idle(cpu);
335 callin_flag = 0;
336 cpu_new_thread = p->thread_info;
337 cpu_set(cpu, cpu_callout_map);
338
339 cpu_find_by_mid(cpu, &cpu_node);
340 prom_startcpu(cpu_node, entry, cookie);
341
342 for (timeout = 0; timeout < 5000000; timeout++) {
343 if (callin_flag)
344 break;
345 udelay(100);
346 }
347 if (callin_flag) {
348 ret = 0;
349 } else {
350 printk("Processor %d is stuck.\n", cpu);
351 cpu_clear(cpu, cpu_callout_map);
352 ret = -ENODEV;
353 }
354 cpu_new_thread = NULL;
355
356 return ret;
357 }
358
359 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
360 {
361 u64 result, target;
362 int stuck, tmp;
363
364 if (this_is_starfire) {
365 /* map to real upaid */
366 cpu = (((cpu & 0x3c) << 1) |
367 ((cpu & 0x40) >> 4) |
368 (cpu & 0x3));
369 }
370
371 target = (cpu << 14) | 0x70;
372 again:
373 /* Ok, this is the real Spitfire Errata #54.
374 * One must read back from a UDB internal register
375 * after writes to the UDB interrupt dispatch, but
376 * before the membar Sync for that write.
377 * So we use the high UDB control register (ASI 0x7f,
378 * ADDR 0x20) for the dummy read. -DaveM
379 */
380 tmp = 0x40;
381 __asm__ __volatile__(
382 "wrpr %1, %2, %%pstate\n\t"
383 "stxa %4, [%0] %3\n\t"
384 "stxa %5, [%0+%8] %3\n\t"
385 "add %0, %8, %0\n\t"
386 "stxa %6, [%0+%8] %3\n\t"
387 "membar #Sync\n\t"
388 "stxa %%g0, [%7] %3\n\t"
389 "membar #Sync\n\t"
390 "mov 0x20, %%g1\n\t"
391 "ldxa [%%g1] 0x7f, %%g0\n\t"
392 "membar #Sync"
393 : "=r" (tmp)
394 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
395 "r" (data0), "r" (data1), "r" (data2), "r" (target),
396 "r" (0x10), "0" (tmp)
397 : "g1");
398
399 /* NOTE: PSTATE_IE is still clear. */
400 stuck = 100000;
401 do {
402 __asm__ __volatile__("ldxa [%%g0] %1, %0"
403 : "=r" (result)
404 : "i" (ASI_INTR_DISPATCH_STAT));
405 if (result == 0) {
406 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
407 : : "r" (pstate));
408 return;
409 }
410 stuck -= 1;
411 if (stuck == 0)
412 break;
413 } while (result & 0x1);
414 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
415 : : "r" (pstate));
416 if (stuck == 0) {
417 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
418 smp_processor_id(), result);
419 } else {
420 udelay(2);
421 goto again;
422 }
423 }
424
425 static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
426 {
427 u64 pstate;
428 int i;
429
430 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
431 for_each_cpu_mask(i, mask)
432 spitfire_xcall_helper(data0, data1, data2, pstate, i);
433 }
434
435 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
436 * packet, but we have no use for that. However we do take advantage of
437 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
438 */
439 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
440 {
441 u64 pstate, ver;
442 int nack_busy_id, is_jalapeno;
443
444 if (cpus_empty(mask))
445 return;
446
447 /* Unfortunately, someone at Sun had the brilliant idea to make the
448 * busy/nack fields hard-coded by ITID number for this Ultra-III
449 * derivative processor.
450 */
451 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
452 is_jalapeno = ((ver >> 32) == 0x003e0016);
453
454 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
455
456 retry:
457 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
458 : : "r" (pstate), "i" (PSTATE_IE));
459
460 /* Setup the dispatch data registers. */
461 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
462 "stxa %1, [%4] %6\n\t"
463 "stxa %2, [%5] %6\n\t"
464 "membar #Sync\n\t"
465 : /* no outputs */
466 : "r" (data0), "r" (data1), "r" (data2),
467 "r" (0x40), "r" (0x50), "r" (0x60),
468 "i" (ASI_INTR_W));
469
470 nack_busy_id = 0;
471 {
472 int i;
473
474 for_each_cpu_mask(i, mask) {
475 u64 target = (i << 14) | 0x70;
476
477 if (!is_jalapeno)
478 target |= (nack_busy_id << 24);
479 __asm__ __volatile__(
480 "stxa %%g0, [%0] %1\n\t"
481 "membar #Sync\n\t"
482 : /* no outputs */
483 : "r" (target), "i" (ASI_INTR_W));
484 nack_busy_id++;
485 }
486 }
487
488 /* Now, poll for completion. */
489 {
490 u64 dispatch_stat;
491 long stuck;
492
493 stuck = 100000 * nack_busy_id;
494 do {
495 __asm__ __volatile__("ldxa [%%g0] %1, %0"
496 : "=r" (dispatch_stat)
497 : "i" (ASI_INTR_DISPATCH_STAT));
498 if (dispatch_stat == 0UL) {
499 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
500 : : "r" (pstate));
501 return;
502 }
503 if (!--stuck)
504 break;
505 } while (dispatch_stat & 0x5555555555555555UL);
506
507 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
508 : : "r" (pstate));
509
510 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
511 /* Busy bits will not clear, continue instead
512 * of freezing up on this cpu.
513 */
514 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
515 smp_processor_id(), dispatch_stat);
516 } else {
517 int i, this_busy_nack = 0;
518
519 /* Delay some random time with interrupts enabled
520 * to prevent deadlock.
521 */
522 udelay(2 * nack_busy_id);
523
524 /* Clear out the mask bits for cpus which did not
525 * NACK us.
526 */
527 for_each_cpu_mask(i, mask) {
528 u64 check_mask;
529
530 if (is_jalapeno)
531 check_mask = (0x2UL << (2*i));
532 else
533 check_mask = (0x2UL <<
534 this_busy_nack);
535 if ((dispatch_stat & check_mask) == 0)
536 cpu_clear(i, mask);
537 this_busy_nack += 2;
538 }
539
540 goto retry;
541 }
542 }
543 }
544
545 /* Send cross call to all processors mentioned in MASK
546 * except self.
547 */
548 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
549 {
550 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
551 int this_cpu = get_cpu();
552
553 cpus_and(mask, mask, cpu_online_map);
554 cpu_clear(this_cpu, mask);
555
556 if (tlb_type == spitfire)
557 spitfire_xcall_deliver(data0, data1, data2, mask);
558 else
559 cheetah_xcall_deliver(data0, data1, data2, mask);
560 /* NOTE: Caller runs local copy on master. */
561
562 put_cpu();
563 }
564
565 extern unsigned long xcall_sync_tick;
566
567 static void smp_start_sync_tick_client(int cpu)
568 {
569 cpumask_t mask = cpumask_of_cpu(cpu);
570
571 smp_cross_call_masked(&xcall_sync_tick,
572 0, 0, 0, mask);
573 }
574
575 /* Send cross call to all processors except self. */
576 #define smp_cross_call(func, ctx, data1, data2) \
577 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
578
579 struct call_data_struct {
580 void (*func) (void *info);
581 void *info;
582 atomic_t finished;
583 int wait;
584 };
585
586 static DEFINE_SPINLOCK(call_lock);
587 static struct call_data_struct *call_data;
588
589 extern unsigned long xcall_call_function;
590
591 /*
592 * You must not call this function with disabled interrupts or from a
593 * hardware interrupt handler or from a bottom half handler.
594 */
595 int smp_call_function(void (*func)(void *info), void *info,
596 int nonatomic, int wait)
597 {
598 struct call_data_struct data;
599 int cpus = num_online_cpus() - 1;
600 long timeout;
601
602 if (!cpus)
603 return 0;
604
605 /* Can deadlock when called with interrupts disabled */
606 WARN_ON(irqs_disabled());
607
608 data.func = func;
609 data.info = info;
610 atomic_set(&data.finished, 0);
611 data.wait = wait;
612
613 spin_lock(&call_lock);
614
615 call_data = &data;
616
617 smp_cross_call(&xcall_call_function, 0, 0, 0);
618
619 /*
620 * Wait for other cpus to complete function or at
621 * least snap the call data.
622 */
623 timeout = 1000000;
624 while (atomic_read(&data.finished) != cpus) {
625 if (--timeout <= 0)
626 goto out_timeout;
627 barrier();
628 udelay(1);
629 }
630
631 spin_unlock(&call_lock);
632
633 return 0;
634
635 out_timeout:
636 spin_unlock(&call_lock);
637 printk("XCALL: Remote cpus not responding, ncpus=%ld finished=%ld\n",
638 (long) num_online_cpus() - 1L,
639 (long) atomic_read(&data.finished));
640 return 0;
641 }
642
643 void smp_call_function_client(int irq, struct pt_regs *regs)
644 {
645 void (*func) (void *info) = call_data->func;
646 void *info = call_data->info;
647
648 clear_softint(1 << irq);
649 if (call_data->wait) {
650 /* let initiator proceed only after completion */
651 func(info);
652 atomic_inc(&call_data->finished);
653 } else {
654 /* let initiator proceed after getting data */
655 atomic_inc(&call_data->finished);
656 func(info);
657 }
658 }
659
660 extern unsigned long xcall_flush_tlb_mm;
661 extern unsigned long xcall_flush_tlb_pending;
662 extern unsigned long xcall_flush_tlb_kernel_range;
663 extern unsigned long xcall_flush_tlb_all_spitfire;
664 extern unsigned long xcall_flush_tlb_all_cheetah;
665 extern unsigned long xcall_report_regs;
666 extern unsigned long xcall_receive_signal;
667
668 #ifdef DCACHE_ALIASING_POSSIBLE
669 extern unsigned long xcall_flush_dcache_page_cheetah;
670 #endif
671 extern unsigned long xcall_flush_dcache_page_spitfire;
672
673 #ifdef CONFIG_DEBUG_DCFLUSH
674 extern atomic_t dcpage_flushes;
675 extern atomic_t dcpage_flushes_xcall;
676 #endif
677
678 static __inline__ void __local_flush_dcache_page(struct page *page)
679 {
680 #ifdef DCACHE_ALIASING_POSSIBLE
681 __flush_dcache_page(page_address(page),
682 ((tlb_type == spitfire) &&
683 page_mapping(page) != NULL));
684 #else
685 if (page_mapping(page) != NULL &&
686 tlb_type == spitfire)
687 __flush_icache_page(__pa(page_address(page)));
688 #endif
689 }
690
691 void smp_flush_dcache_page_impl(struct page *page, int cpu)
692 {
693 cpumask_t mask = cpumask_of_cpu(cpu);
694 int this_cpu = get_cpu();
695
696 #ifdef CONFIG_DEBUG_DCFLUSH
697 atomic_inc(&dcpage_flushes);
698 #endif
699 if (cpu == this_cpu) {
700 __local_flush_dcache_page(page);
701 } else if (cpu_online(cpu)) {
702 void *pg_addr = page_address(page);
703 u64 data0;
704
705 if (tlb_type == spitfire) {
706 data0 =
707 ((u64)&xcall_flush_dcache_page_spitfire);
708 if (page_mapping(page) != NULL)
709 data0 |= ((u64)1 << 32);
710 spitfire_xcall_deliver(data0,
711 __pa(pg_addr),
712 (u64) pg_addr,
713 mask);
714 } else {
715 #ifdef DCACHE_ALIASING_POSSIBLE
716 data0 =
717 ((u64)&xcall_flush_dcache_page_cheetah);
718 cheetah_xcall_deliver(data0,
719 __pa(pg_addr),
720 0, mask);
721 #endif
722 }
723 #ifdef CONFIG_DEBUG_DCFLUSH
724 atomic_inc(&dcpage_flushes_xcall);
725 #endif
726 }
727
728 put_cpu();
729 }
730
731 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
732 {
733 void *pg_addr = page_address(page);
734 cpumask_t mask = cpu_online_map;
735 u64 data0;
736 int this_cpu = get_cpu();
737
738 cpu_clear(this_cpu, mask);
739
740 #ifdef CONFIG_DEBUG_DCFLUSH
741 atomic_inc(&dcpage_flushes);
742 #endif
743 if (cpus_empty(mask))
744 goto flush_self;
745 if (tlb_type == spitfire) {
746 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
747 if (page_mapping(page) != NULL)
748 data0 |= ((u64)1 << 32);
749 spitfire_xcall_deliver(data0,
750 __pa(pg_addr),
751 (u64) pg_addr,
752 mask);
753 } else {
754 #ifdef DCACHE_ALIASING_POSSIBLE
755 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
756 cheetah_xcall_deliver(data0,
757 __pa(pg_addr),
758 0, mask);
759 #endif
760 }
761 #ifdef CONFIG_DEBUG_DCFLUSH
762 atomic_inc(&dcpage_flushes_xcall);
763 #endif
764 flush_self:
765 __local_flush_dcache_page(page);
766
767 put_cpu();
768 }
769
770 void smp_receive_signal(int cpu)
771 {
772 cpumask_t mask = cpumask_of_cpu(cpu);
773
774 if (cpu_online(cpu)) {
775 u64 data0 = (((u64)&xcall_receive_signal) & 0xffffffff);
776
777 if (tlb_type == spitfire)
778 spitfire_xcall_deliver(data0, 0, 0, mask);
779 else
780 cheetah_xcall_deliver(data0, 0, 0, mask);
781 }
782 }
783
784 void smp_receive_signal_client(int irq, struct pt_regs *regs)
785 {
786 /* Just return, rtrap takes care of the rest. */
787 clear_softint(1 << irq);
788 }
789
790 void smp_report_regs(void)
791 {
792 smp_cross_call(&xcall_report_regs, 0, 0, 0);
793 }
794
795 void smp_flush_tlb_all(void)
796 {
797 if (tlb_type == spitfire)
798 smp_cross_call(&xcall_flush_tlb_all_spitfire, 0, 0, 0);
799 else
800 smp_cross_call(&xcall_flush_tlb_all_cheetah, 0, 0, 0);
801 __flush_tlb_all();
802 }
803
804 /* We know that the window frames of the user have been flushed
805 * to the stack before we get here because all callers of us
806 * are flush_tlb_*() routines, and these run after flush_cache_*()
807 * which performs the flushw.
808 *
809 * The SMP TLB coherency scheme we use works as follows:
810 *
811 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
812 * space has (potentially) executed on, this is the heuristic
813 * we use to avoid doing cross calls.
814 *
815 * Also, for flushing from kswapd and also for clones, we
816 * use cpu_vm_mask as the list of cpus to make run the TLB.
817 *
818 * 2) TLB context numbers are shared globally across all processors
819 * in the system, this allows us to play several games to avoid
820 * cross calls.
821 *
822 * One invariant is that when a cpu switches to a process, and
823 * that processes tsk->active_mm->cpu_vm_mask does not have the
824 * current cpu's bit set, that tlb context is flushed locally.
825 *
826 * If the address space is non-shared (ie. mm->count == 1) we avoid
827 * cross calls when we want to flush the currently running process's
828 * tlb state. This is done by clearing all cpu bits except the current
829 * processor's in current->active_mm->cpu_vm_mask and performing the
830 * flush locally only. This will force any subsequent cpus which run
831 * this task to flush the context from the local tlb if the process
832 * migrates to another cpu (again).
833 *
834 * 3) For shared address spaces (threads) and swapping we bite the
835 * bullet for most cases and perform the cross call (but only to
836 * the cpus listed in cpu_vm_mask).
837 *
838 * The performance gain from "optimizing" away the cross call for threads is
839 * questionable (in theory the big win for threads is the massive sharing of
840 * address space state across processors).
841 */
842 void smp_flush_tlb_mm(struct mm_struct *mm)
843 {
844 /*
845 * This code is called from two places, dup_mmap and exit_mmap. In the
846 * former case, we really need a flush. In the later case, the callers
847 * are single threaded exec_mmap (really need a flush), multithreaded
848 * exec_mmap case (do not need to flush, since the caller gets a new
849 * context via activate_mm), and all other callers of mmput() whence
850 * the flush can be optimized since the associated threads are dead and
851 * the mm is being torn down (__exit_mm and other mmput callers) or the
852 * owning thread is dissociating itself from the mm. The
853 * (atomic_read(&mm->mm_users) == 0) check ensures real work is done
854 * for single thread exec and dup_mmap cases. An alternate check might
855 * have been (current->mm != mm).
856 * Kanoj Sarcar
857 */
858 if (atomic_read(&mm->mm_users) == 0)
859 return;
860
861 {
862 u32 ctx = CTX_HWBITS(mm->context);
863 int cpu = get_cpu();
864
865 if (atomic_read(&mm->mm_users) == 1) {
866 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
867 goto local_flush_and_out;
868 }
869
870 smp_cross_call_masked(&xcall_flush_tlb_mm,
871 ctx, 0, 0,
872 mm->cpu_vm_mask);
873
874 local_flush_and_out:
875 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
876
877 put_cpu();
878 }
879 }
880
881 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
882 {
883 u32 ctx = CTX_HWBITS(mm->context);
884 int cpu = get_cpu();
885
886 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
887 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
888 else
889 smp_cross_call_masked(&xcall_flush_tlb_pending,
890 ctx, nr, (unsigned long) vaddrs,
891 mm->cpu_vm_mask);
892
893 __flush_tlb_pending(ctx, nr, vaddrs);
894
895 put_cpu();
896 }
897
898 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
899 {
900 start &= PAGE_MASK;
901 end = PAGE_ALIGN(end);
902 if (start != end) {
903 smp_cross_call(&xcall_flush_tlb_kernel_range,
904 0, start, end);
905
906 __flush_tlb_kernel_range(start, end);
907 }
908 }
909
910 /* CPU capture. */
911 /* #define CAPTURE_DEBUG */
912 extern unsigned long xcall_capture;
913
914 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
915 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
916 static unsigned long penguins_are_doing_time;
917
918 void smp_capture(void)
919 {
920 int result = atomic_add_ret(1, &smp_capture_depth);
921
922 if (result == 1) {
923 int ncpus = num_online_cpus();
924
925 #ifdef CAPTURE_DEBUG
926 printk("CPU[%d]: Sending penguins to jail...",
927 smp_processor_id());
928 #endif
929 penguins_are_doing_time = 1;
930 membar_storestore_loadstore();
931 atomic_inc(&smp_capture_registry);
932 smp_cross_call(&xcall_capture, 0, 0, 0);
933 while (atomic_read(&smp_capture_registry) != ncpus)
934 rmb();
935 #ifdef CAPTURE_DEBUG
936 printk("done\n");
937 #endif
938 }
939 }
940
941 void smp_release(void)
942 {
943 if (atomic_dec_and_test(&smp_capture_depth)) {
944 #ifdef CAPTURE_DEBUG
945 printk("CPU[%d]: Giving pardon to "
946 "imprisoned penguins\n",
947 smp_processor_id());
948 #endif
949 penguins_are_doing_time = 0;
950 membar_storeload_storestore();
951 atomic_dec(&smp_capture_registry);
952 }
953 }
954
955 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
956 * can service tlb flush xcalls...
957 */
958 extern void prom_world(int);
959 extern void save_alternate_globals(unsigned long *);
960 extern void restore_alternate_globals(unsigned long *);
961 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
962 {
963 unsigned long global_save[24];
964
965 clear_softint(1 << irq);
966
967 preempt_disable();
968
969 __asm__ __volatile__("flushw");
970 save_alternate_globals(global_save);
971 prom_world(1);
972 atomic_inc(&smp_capture_registry);
973 membar_storeload_storestore();
974 while (penguins_are_doing_time)
975 rmb();
976 restore_alternate_globals(global_save);
977 atomic_dec(&smp_capture_registry);
978 prom_world(0);
979
980 preempt_enable();
981 }
982
983 #define prof_multiplier(__cpu) cpu_data(__cpu).multiplier
984 #define prof_counter(__cpu) cpu_data(__cpu).counter
985
986 void smp_percpu_timer_interrupt(struct pt_regs *regs)
987 {
988 unsigned long compare, tick, pstate;
989 int cpu = smp_processor_id();
990 int user = user_mode(regs);
991
992 /*
993 * Check for level 14 softint.
994 */
995 {
996 unsigned long tick_mask = tick_ops->softint_mask;
997
998 if (!(get_softint() & tick_mask)) {
999 extern void handler_irq(int, struct pt_regs *);
1000
1001 handler_irq(14, regs);
1002 return;
1003 }
1004 clear_softint(tick_mask);
1005 }
1006
1007 do {
1008 profile_tick(CPU_PROFILING, regs);
1009 if (!--prof_counter(cpu)) {
1010 irq_enter();
1011
1012 if (cpu == boot_cpu_id) {
1013 kstat_this_cpu.irqs[0]++;
1014 timer_tick_interrupt(regs);
1015 }
1016
1017 update_process_times(user);
1018
1019 irq_exit();
1020
1021 prof_counter(cpu) = prof_multiplier(cpu);
1022 }
1023
1024 /* Guarantee that the following sequences execute
1025 * uninterrupted.
1026 */
1027 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1028 "wrpr %0, %1, %%pstate"
1029 : "=r" (pstate)
1030 : "i" (PSTATE_IE));
1031
1032 compare = tick_ops->add_compare(current_tick_offset);
1033 tick = tick_ops->get_tick();
1034
1035 /* Restore PSTATE_IE. */
1036 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1037 : /* no outputs */
1038 : "r" (pstate));
1039 } while (time_after_eq(tick, compare));
1040 }
1041
1042 static void __init smp_setup_percpu_timer(void)
1043 {
1044 int cpu = smp_processor_id();
1045 unsigned long pstate;
1046
1047 prof_counter(cpu) = prof_multiplier(cpu) = 1;
1048
1049 /* Guarantee that the following sequences execute
1050 * uninterrupted.
1051 */
1052 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1053 "wrpr %0, %1, %%pstate"
1054 : "=r" (pstate)
1055 : "i" (PSTATE_IE));
1056
1057 tick_ops->init_tick(current_tick_offset);
1058
1059 /* Restore PSTATE_IE. */
1060 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1061 : /* no outputs */
1062 : "r" (pstate));
1063 }
1064
1065 void __init smp_tick_init(void)
1066 {
1067 boot_cpu_id = hard_smp_processor_id();
1068 current_tick_offset = timer_tick_offset;
1069
1070 cpu_set(boot_cpu_id, cpu_online_map);
1071 prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
1072 }
1073
1074 /* /proc/profile writes can call this, don't __init it please. */
1075 static DEFINE_SPINLOCK(prof_setup_lock);
1076
1077 int setup_profiling_timer(unsigned int multiplier)
1078 {
1079 unsigned long flags;
1080 int i;
1081
1082 if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
1083 return -EINVAL;
1084
1085 spin_lock_irqsave(&prof_setup_lock, flags);
1086 for (i = 0; i < NR_CPUS; i++)
1087 prof_multiplier(i) = multiplier;
1088 current_tick_offset = (timer_tick_offset / multiplier);
1089 spin_unlock_irqrestore(&prof_setup_lock, flags);
1090
1091 return 0;
1092 }
1093
1094 void __init smp_prepare_cpus(unsigned int max_cpus)
1095 {
1096 int instance, mid;
1097
1098 instance = 0;
1099 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1100 if (mid < max_cpus)
1101 cpu_set(mid, phys_cpu_present_map);
1102 instance++;
1103 }
1104
1105 if (num_possible_cpus() > max_cpus) {
1106 instance = 0;
1107 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1108 if (mid != boot_cpu_id) {
1109 cpu_clear(mid, phys_cpu_present_map);
1110 if (num_possible_cpus() <= max_cpus)
1111 break;
1112 }
1113 instance++;
1114 }
1115 }
1116
1117 smp_store_cpu_info(boot_cpu_id);
1118 }
1119
1120 void __devinit smp_prepare_boot_cpu(void)
1121 {
1122 if (hard_smp_processor_id() >= NR_CPUS) {
1123 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
1124 prom_halt();
1125 }
1126
1127 current_thread_info()->cpu = hard_smp_processor_id();
1128
1129 cpu_set(smp_processor_id(), cpu_online_map);
1130 cpu_set(smp_processor_id(), phys_cpu_present_map);
1131 }
1132
1133 int __devinit __cpu_up(unsigned int cpu)
1134 {
1135 int ret = smp_boot_one_cpu(cpu);
1136
1137 if (!ret) {
1138 cpu_set(cpu, smp_commenced_mask);
1139 while (!cpu_isset(cpu, cpu_online_map))
1140 mb();
1141 if (!cpu_isset(cpu, cpu_online_map)) {
1142 ret = -ENODEV;
1143 } else {
1144 smp_synchronize_one_tick(cpu);
1145 }
1146 }
1147 return ret;
1148 }
1149
1150 void __init smp_cpus_done(unsigned int max_cpus)
1151 {
1152 unsigned long bogosum = 0;
1153 int i;
1154
1155 for (i = 0; i < NR_CPUS; i++) {
1156 if (cpu_online(i))
1157 bogosum += cpu_data(i).udelay_val;
1158 }
1159 printk("Total of %ld processors activated "
1160 "(%lu.%02lu BogoMIPS).\n",
1161 (long) num_online_cpus(),
1162 bogosum/(500000/HZ),
1163 (bogosum/(5000/HZ))%100);
1164 }
1165
1166 /* This needn't do anything as we do not sleep the cpu
1167 * inside of the idler task, so an interrupt is not needed
1168 * to get a clean fast response.
1169 *
1170 * XXX Reverify this assumption... -DaveM
1171 *
1172 * Addendum: We do want it to do something for the signal
1173 * delivery case, we detect that by just seeing
1174 * if we are trying to send this to an idler or not.
1175 */
1176 void smp_send_reschedule(int cpu)
1177 {
1178 if (cpu_data(cpu).idle_volume == 0)
1179 smp_receive_signal(cpu);
1180 }
1181
1182 /* This is a nop because we capture all other cpus
1183 * anyways when making the PROM active.
1184 */
1185 void smp_send_stop(void)
1186 {
1187 }
1188
1189 unsigned long __per_cpu_base __read_mostly;
1190 unsigned long __per_cpu_shift __read_mostly;
1191
1192 EXPORT_SYMBOL(__per_cpu_base);
1193 EXPORT_SYMBOL(__per_cpu_shift);
1194
1195 void __init setup_per_cpu_areas(void)
1196 {
1197 unsigned long goal, size, i;
1198 char *ptr;
1199 /* Created by linker magic */
1200 extern char __per_cpu_start[], __per_cpu_end[];
1201
1202 /* Copy section for each CPU (we discard the original) */
1203 goal = ALIGN(__per_cpu_end - __per_cpu_start, PAGE_SIZE);
1204
1205 #ifdef CONFIG_MODULES
1206 if (goal < PERCPU_ENOUGH_ROOM)
1207 goal = PERCPU_ENOUGH_ROOM;
1208 #endif
1209 __per_cpu_shift = 0;
1210 for (size = 1UL; size < goal; size <<= 1UL)
1211 __per_cpu_shift++;
1212
1213 /* Make sure the resulting __per_cpu_base value
1214 * will fit in the 43-bit sign extended IMMU
1215 * TSB register.
1216 */
1217 ptr = __alloc_bootmem(size * NR_CPUS, PAGE_SIZE,
1218 (unsigned long) __per_cpu_start);
1219
1220 __per_cpu_base = ptr - __per_cpu_start;
1221
1222 if ((__per_cpu_shift < PAGE_SHIFT) ||
1223 (__per_cpu_base & ~PAGE_MASK) ||
1224 (__per_cpu_base != (((long) __per_cpu_base << 20) >> 20))) {
1225 prom_printf("PER_CPU: Invalid layout, "
1226 "ptr[%p] shift[%lx] base[%lx]\n",
1227 ptr, __per_cpu_shift, __per_cpu_base);
1228 prom_halt();
1229 }
1230
1231 for (i = 0; i < NR_CPUS; i++, ptr += size)
1232 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1233
1234 /* Finally, load in the boot cpu's base value.
1235 * We abuse the IMMU TSB register for trap handler
1236 * entry and exit loading of %g5. That is why it
1237 * has to be page aligned.
1238 */
1239 cpu_setup_percpu_base(hard_smp_processor_id());
1240 }
This page took 0.121206 seconds and 6 git commands to generate.