[SPARC64]: Fix pci_intmap_match().
[deliverable/linux.git] / arch / sparc64 / kernel / smp.c
1 /* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
4 */
5
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/smp_lock.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/jiffies.h>
23 #include <linux/profile.h>
24 #include <linux/bootmem.h>
25
26 #include <asm/head.h>
27 #include <asm/ptrace.h>
28 #include <asm/atomic.h>
29 #include <asm/tlbflush.h>
30 #include <asm/mmu_context.h>
31 #include <asm/cpudata.h>
32
33 #include <asm/irq.h>
34 #include <asm/page.h>
35 #include <asm/pgtable.h>
36 #include <asm/oplib.h>
37 #include <asm/uaccess.h>
38 #include <asm/timer.h>
39 #include <asm/starfire.h>
40 #include <asm/tlb.h>
41 #include <asm/sections.h>
42
43 extern void calibrate_delay(void);
44
45 /* Please don't make this stuff initdata!!! --DaveM */
46 static unsigned char boot_cpu_id;
47
48 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
49 cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
50 static cpumask_t smp_commenced_mask;
51 static cpumask_t cpu_callout_map;
52
53 void smp_info(struct seq_file *m)
54 {
55 int i;
56
57 seq_printf(m, "State:\n");
58 for (i = 0; i < NR_CPUS; i++) {
59 if (cpu_online(i))
60 seq_printf(m,
61 "CPU%d:\t\tonline\n", i);
62 }
63 }
64
65 void smp_bogo(struct seq_file *m)
66 {
67 int i;
68
69 for (i = 0; i < NR_CPUS; i++)
70 if (cpu_online(i))
71 seq_printf(m,
72 "Cpu%dBogo\t: %lu.%02lu\n"
73 "Cpu%dClkTck\t: %016lx\n",
74 i, cpu_data(i).udelay_val / (500000/HZ),
75 (cpu_data(i).udelay_val / (5000/HZ)) % 100,
76 i, cpu_data(i).clock_tick);
77 }
78
79 void __init smp_store_cpu_info(int id)
80 {
81 int cpu_node, def;
82
83 /* multiplier and counter set by
84 smp_setup_percpu_timer() */
85 cpu_data(id).udelay_val = loops_per_jiffy;
86
87 cpu_find_by_mid(id, &cpu_node);
88 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
89 "clock-frequency", 0);
90
91 cpu_data(id).idle_volume = 1;
92
93 def = ((tlb_type == hypervisor) ? (8 * 1024) : (16 * 1024));
94 cpu_data(id).dcache_size = prom_getintdefault(cpu_node, "dcache-size",
95 def);
96
97 def = 32;
98 cpu_data(id).dcache_line_size =
99 prom_getintdefault(cpu_node, "dcache-line-size", def);
100
101 def = 16 * 1024;
102 cpu_data(id).icache_size = prom_getintdefault(cpu_node, "icache-size",
103 def);
104
105 def = 32;
106 cpu_data(id).icache_line_size =
107 prom_getintdefault(cpu_node, "icache-line-size", def);
108
109 def = ((tlb_type == hypervisor) ?
110 (3 * 1024 * 1024) :
111 (4 * 1024 * 1024));
112 cpu_data(id).ecache_size = prom_getintdefault(cpu_node, "ecache-size",
113 def);
114
115 def = 64;
116 cpu_data(id).ecache_line_size =
117 prom_getintdefault(cpu_node, "ecache-line-size", def);
118
119 printk("CPU[%d]: Caches "
120 "D[sz(%d):line_sz(%d)] "
121 "I[sz(%d):line_sz(%d)] "
122 "E[sz(%d):line_sz(%d)]\n",
123 id,
124 cpu_data(id).dcache_size, cpu_data(id).dcache_line_size,
125 cpu_data(id).icache_size, cpu_data(id).icache_line_size,
126 cpu_data(id).ecache_size, cpu_data(id).ecache_line_size);
127 }
128
129 static void smp_setup_percpu_timer(void);
130
131 static volatile unsigned long callin_flag = 0;
132
133 void __init smp_callin(void)
134 {
135 int cpuid = hard_smp_processor_id();
136
137 __local_per_cpu_offset = __per_cpu_offset(cpuid);
138
139 if (tlb_type == hypervisor)
140 sun4v_ktsb_register();
141
142 __flush_tlb_all();
143
144 smp_setup_percpu_timer();
145
146 if (cheetah_pcache_forced_on)
147 cheetah_enable_pcache();
148
149 local_irq_enable();
150
151 calibrate_delay();
152 smp_store_cpu_info(cpuid);
153 callin_flag = 1;
154 __asm__ __volatile__("membar #Sync\n\t"
155 "flush %%g6" : : : "memory");
156
157 /* Clear this or we will die instantly when we
158 * schedule back to this idler...
159 */
160 current_thread_info()->new_child = 0;
161
162 /* Attach to the address space of init_task. */
163 atomic_inc(&init_mm.mm_count);
164 current->active_mm = &init_mm;
165
166 while (!cpu_isset(cpuid, smp_commenced_mask))
167 rmb();
168
169 cpu_set(cpuid, cpu_online_map);
170
171 /* idle thread is expected to have preempt disabled */
172 preempt_disable();
173 }
174
175 void cpu_panic(void)
176 {
177 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
178 panic("SMP bolixed\n");
179 }
180
181 static unsigned long current_tick_offset __read_mostly;
182
183 /* This tick register synchronization scheme is taken entirely from
184 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
185 *
186 * The only change I've made is to rework it so that the master
187 * initiates the synchonization instead of the slave. -DaveM
188 */
189
190 #define MASTER 0
191 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
192
193 #define NUM_ROUNDS 64 /* magic value */
194 #define NUM_ITERS 5 /* likewise */
195
196 static DEFINE_SPINLOCK(itc_sync_lock);
197 static unsigned long go[SLAVE + 1];
198
199 #define DEBUG_TICK_SYNC 0
200
201 static inline long get_delta (long *rt, long *master)
202 {
203 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
204 unsigned long tcenter, t0, t1, tm;
205 unsigned long i;
206
207 for (i = 0; i < NUM_ITERS; i++) {
208 t0 = tick_ops->get_tick();
209 go[MASTER] = 1;
210 membar_storeload();
211 while (!(tm = go[SLAVE]))
212 rmb();
213 go[SLAVE] = 0;
214 wmb();
215 t1 = tick_ops->get_tick();
216
217 if (t1 - t0 < best_t1 - best_t0)
218 best_t0 = t0, best_t1 = t1, best_tm = tm;
219 }
220
221 *rt = best_t1 - best_t0;
222 *master = best_tm - best_t0;
223
224 /* average best_t0 and best_t1 without overflow: */
225 tcenter = (best_t0/2 + best_t1/2);
226 if (best_t0 % 2 + best_t1 % 2 == 2)
227 tcenter++;
228 return tcenter - best_tm;
229 }
230
231 void smp_synchronize_tick_client(void)
232 {
233 long i, delta, adj, adjust_latency = 0, done = 0;
234 unsigned long flags, rt, master_time_stamp, bound;
235 #if DEBUG_TICK_SYNC
236 struct {
237 long rt; /* roundtrip time */
238 long master; /* master's timestamp */
239 long diff; /* difference between midpoint and master's timestamp */
240 long lat; /* estimate of itc adjustment latency */
241 } t[NUM_ROUNDS];
242 #endif
243
244 go[MASTER] = 1;
245
246 while (go[MASTER])
247 rmb();
248
249 local_irq_save(flags);
250 {
251 for (i = 0; i < NUM_ROUNDS; i++) {
252 delta = get_delta(&rt, &master_time_stamp);
253 if (delta == 0) {
254 done = 1; /* let's lock on to this... */
255 bound = rt;
256 }
257
258 if (!done) {
259 if (i > 0) {
260 adjust_latency += -delta;
261 adj = -delta + adjust_latency/4;
262 } else
263 adj = -delta;
264
265 tick_ops->add_tick(adj, current_tick_offset);
266 }
267 #if DEBUG_TICK_SYNC
268 t[i].rt = rt;
269 t[i].master = master_time_stamp;
270 t[i].diff = delta;
271 t[i].lat = adjust_latency/4;
272 #endif
273 }
274 }
275 local_irq_restore(flags);
276
277 #if DEBUG_TICK_SYNC
278 for (i = 0; i < NUM_ROUNDS; i++)
279 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
280 t[i].rt, t[i].master, t[i].diff, t[i].lat);
281 #endif
282
283 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
284 "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
285 }
286
287 static void smp_start_sync_tick_client(int cpu);
288
289 static void smp_synchronize_one_tick(int cpu)
290 {
291 unsigned long flags, i;
292
293 go[MASTER] = 0;
294
295 smp_start_sync_tick_client(cpu);
296
297 /* wait for client to be ready */
298 while (!go[MASTER])
299 rmb();
300
301 /* now let the client proceed into his loop */
302 go[MASTER] = 0;
303 membar_storeload();
304
305 spin_lock_irqsave(&itc_sync_lock, flags);
306 {
307 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
308 while (!go[MASTER])
309 rmb();
310 go[MASTER] = 0;
311 wmb();
312 go[SLAVE] = tick_ops->get_tick();
313 membar_storeload();
314 }
315 }
316 spin_unlock_irqrestore(&itc_sync_lock, flags);
317 }
318
319 extern unsigned long sparc64_cpu_startup;
320
321 /* The OBP cpu startup callback truncates the 3rd arg cookie to
322 * 32-bits (I think) so to be safe we have it read the pointer
323 * contained here so we work on >4GB machines. -DaveM
324 */
325 static struct thread_info *cpu_new_thread = NULL;
326
327 static int __devinit smp_boot_one_cpu(unsigned int cpu)
328 {
329 unsigned long entry =
330 (unsigned long)(&sparc64_cpu_startup);
331 unsigned long cookie =
332 (unsigned long)(&cpu_new_thread);
333 struct task_struct *p;
334 int timeout, ret, cpu_node;
335
336 p = fork_idle(cpu);
337 callin_flag = 0;
338 cpu_new_thread = task_thread_info(p);
339 cpu_set(cpu, cpu_callout_map);
340
341 cpu_find_by_mid(cpu, &cpu_node);
342 prom_startcpu(cpu_node, entry, cookie);
343
344 for (timeout = 0; timeout < 5000000; timeout++) {
345 if (callin_flag)
346 break;
347 udelay(100);
348 }
349 if (callin_flag) {
350 ret = 0;
351 } else {
352 printk("Processor %d is stuck.\n", cpu);
353 cpu_clear(cpu, cpu_callout_map);
354 ret = -ENODEV;
355 }
356 cpu_new_thread = NULL;
357
358 return ret;
359 }
360
361 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
362 {
363 u64 result, target;
364 int stuck, tmp;
365
366 if (this_is_starfire) {
367 /* map to real upaid */
368 cpu = (((cpu & 0x3c) << 1) |
369 ((cpu & 0x40) >> 4) |
370 (cpu & 0x3));
371 }
372
373 target = (cpu << 14) | 0x70;
374 again:
375 /* Ok, this is the real Spitfire Errata #54.
376 * One must read back from a UDB internal register
377 * after writes to the UDB interrupt dispatch, but
378 * before the membar Sync for that write.
379 * So we use the high UDB control register (ASI 0x7f,
380 * ADDR 0x20) for the dummy read. -DaveM
381 */
382 tmp = 0x40;
383 __asm__ __volatile__(
384 "wrpr %1, %2, %%pstate\n\t"
385 "stxa %4, [%0] %3\n\t"
386 "stxa %5, [%0+%8] %3\n\t"
387 "add %0, %8, %0\n\t"
388 "stxa %6, [%0+%8] %3\n\t"
389 "membar #Sync\n\t"
390 "stxa %%g0, [%7] %3\n\t"
391 "membar #Sync\n\t"
392 "mov 0x20, %%g1\n\t"
393 "ldxa [%%g1] 0x7f, %%g0\n\t"
394 "membar #Sync"
395 : "=r" (tmp)
396 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
397 "r" (data0), "r" (data1), "r" (data2), "r" (target),
398 "r" (0x10), "0" (tmp)
399 : "g1");
400
401 /* NOTE: PSTATE_IE is still clear. */
402 stuck = 100000;
403 do {
404 __asm__ __volatile__("ldxa [%%g0] %1, %0"
405 : "=r" (result)
406 : "i" (ASI_INTR_DISPATCH_STAT));
407 if (result == 0) {
408 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
409 : : "r" (pstate));
410 return;
411 }
412 stuck -= 1;
413 if (stuck == 0)
414 break;
415 } while (result & 0x1);
416 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
417 : : "r" (pstate));
418 if (stuck == 0) {
419 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
420 smp_processor_id(), result);
421 } else {
422 udelay(2);
423 goto again;
424 }
425 }
426
427 static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
428 {
429 u64 pstate;
430 int i;
431
432 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
433 for_each_cpu_mask(i, mask)
434 spitfire_xcall_helper(data0, data1, data2, pstate, i);
435 }
436
437 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
438 * packet, but we have no use for that. However we do take advantage of
439 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
440 */
441 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
442 {
443 u64 pstate, ver;
444 int nack_busy_id, is_jbus;
445
446 if (cpus_empty(mask))
447 return;
448
449 /* Unfortunately, someone at Sun had the brilliant idea to make the
450 * busy/nack fields hard-coded by ITID number for this Ultra-III
451 * derivative processor.
452 */
453 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
454 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
455 (ver >> 32) == __SERRANO_ID);
456
457 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
458
459 retry:
460 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
461 : : "r" (pstate), "i" (PSTATE_IE));
462
463 /* Setup the dispatch data registers. */
464 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
465 "stxa %1, [%4] %6\n\t"
466 "stxa %2, [%5] %6\n\t"
467 "membar #Sync\n\t"
468 : /* no outputs */
469 : "r" (data0), "r" (data1), "r" (data2),
470 "r" (0x40), "r" (0x50), "r" (0x60),
471 "i" (ASI_INTR_W));
472
473 nack_busy_id = 0;
474 {
475 int i;
476
477 for_each_cpu_mask(i, mask) {
478 u64 target = (i << 14) | 0x70;
479
480 if (!is_jbus)
481 target |= (nack_busy_id << 24);
482 __asm__ __volatile__(
483 "stxa %%g0, [%0] %1\n\t"
484 "membar #Sync\n\t"
485 : /* no outputs */
486 : "r" (target), "i" (ASI_INTR_W));
487 nack_busy_id++;
488 }
489 }
490
491 /* Now, poll for completion. */
492 {
493 u64 dispatch_stat;
494 long stuck;
495
496 stuck = 100000 * nack_busy_id;
497 do {
498 __asm__ __volatile__("ldxa [%%g0] %1, %0"
499 : "=r" (dispatch_stat)
500 : "i" (ASI_INTR_DISPATCH_STAT));
501 if (dispatch_stat == 0UL) {
502 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
503 : : "r" (pstate));
504 return;
505 }
506 if (!--stuck)
507 break;
508 } while (dispatch_stat & 0x5555555555555555UL);
509
510 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
511 : : "r" (pstate));
512
513 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
514 /* Busy bits will not clear, continue instead
515 * of freezing up on this cpu.
516 */
517 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
518 smp_processor_id(), dispatch_stat);
519 } else {
520 int i, this_busy_nack = 0;
521
522 /* Delay some random time with interrupts enabled
523 * to prevent deadlock.
524 */
525 udelay(2 * nack_busy_id);
526
527 /* Clear out the mask bits for cpus which did not
528 * NACK us.
529 */
530 for_each_cpu_mask(i, mask) {
531 u64 check_mask;
532
533 if (is_jbus)
534 check_mask = (0x2UL << (2*i));
535 else
536 check_mask = (0x2UL <<
537 this_busy_nack);
538 if ((dispatch_stat & check_mask) == 0)
539 cpu_clear(i, mask);
540 this_busy_nack += 2;
541 }
542
543 goto retry;
544 }
545 }
546 }
547
548 #if 0
549 /* Multi-cpu list version. */
550 static int init_cpu_list(u16 *list, cpumask_t mask)
551 {
552 int i, cnt;
553
554 cnt = 0;
555 for_each_cpu_mask(i, mask)
556 list[cnt++] = i;
557
558 return cnt;
559 }
560
561 static int update_cpu_list(u16 *list, int orig_cnt, cpumask_t mask)
562 {
563 int i;
564
565 for (i = 0; i < orig_cnt; i++) {
566 if (list[i] == 0xffff)
567 cpu_clear(i, mask);
568 }
569
570 return init_cpu_list(list, mask);
571 }
572
573 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
574 {
575 int this_cpu = get_cpu();
576 struct trap_per_cpu *tb = &trap_block[this_cpu];
577 u64 *mondo = __va(tb->cpu_mondo_block_pa);
578 u16 *cpu_list = __va(tb->cpu_list_pa);
579 int cnt, retries;
580
581 mondo[0] = data0;
582 mondo[1] = data1;
583 mondo[2] = data2;
584 wmb();
585
586 retries = 0;
587 cnt = init_cpu_list(cpu_list, mask);
588 do {
589 register unsigned long func __asm__("%o5");
590 register unsigned long arg0 __asm__("%o0");
591 register unsigned long arg1 __asm__("%o1");
592 register unsigned long arg2 __asm__("%o2");
593
594 func = HV_FAST_CPU_MONDO_SEND;
595 arg0 = cnt;
596 arg1 = tb->cpu_list_pa;
597 arg2 = tb->cpu_mondo_block_pa;
598
599 __asm__ __volatile__("ta %8"
600 : "=&r" (func), "=&r" (arg0),
601 "=&r" (arg1), "=&r" (arg2)
602 : "0" (func), "1" (arg0),
603 "2" (arg1), "3" (arg2),
604 "i" (HV_FAST_TRAP)
605 : "memory");
606 if (likely(arg0 == HV_EOK))
607 break;
608
609 if (unlikely(++retries > 100)) {
610 printk("CPU[%d]: sun4v mondo error %lu\n",
611 this_cpu, func);
612 break;
613 }
614
615 cnt = update_cpu_list(cpu_list, cnt, mask);
616
617 udelay(2 * cnt);
618 } while (1);
619
620 put_cpu();
621 }
622 #else
623 /* Single-cpu list version. */
624 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
625 {
626 int this_cpu = get_cpu();
627 struct trap_per_cpu *tb = &trap_block[this_cpu];
628 u64 *mondo = __va(tb->cpu_mondo_block_pa);
629 u16 *cpu_list = __va(tb->cpu_list_pa);
630 int i;
631
632 mondo[0] = data0;
633 mondo[1] = data1;
634 mondo[2] = data2;
635 wmb();
636
637 for_each_cpu_mask(i, mask) {
638 int retries = 0;
639
640 do {
641 register unsigned long func __asm__("%o5");
642 register unsigned long arg0 __asm__("%o0");
643 register unsigned long arg1 __asm__("%o1");
644 register unsigned long arg2 __asm__("%o2");
645
646 cpu_list[0] = i;
647 func = HV_FAST_CPU_MONDO_SEND;
648 arg0 = 1;
649 arg1 = tb->cpu_list_pa;
650 arg2 = tb->cpu_mondo_block_pa;
651
652 __asm__ __volatile__("ta %8"
653 : "=&r" (func), "=&r" (arg0),
654 "=&r" (arg1), "=&r" (arg2)
655 : "0" (func), "1" (arg0),
656 "2" (arg1), "3" (arg2),
657 "i" (HV_FAST_TRAP)
658 : "memory");
659 if (likely(arg0 == HV_EOK))
660 break;
661
662 if (unlikely(++retries > 100)) {
663 printk("CPU[%d]: sun4v mondo error %lu\n",
664 this_cpu, func);
665 break;
666 }
667
668 udelay(2 * i);
669 } while (1);
670 }
671
672 put_cpu();
673 }
674 #endif
675
676 /* Send cross call to all processors mentioned in MASK
677 * except self.
678 */
679 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
680 {
681 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
682 int this_cpu = get_cpu();
683
684 cpus_and(mask, mask, cpu_online_map);
685 cpu_clear(this_cpu, mask);
686
687 if (tlb_type == spitfire)
688 spitfire_xcall_deliver(data0, data1, data2, mask);
689 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
690 cheetah_xcall_deliver(data0, data1, data2, mask);
691 else
692 hypervisor_xcall_deliver(data0, data1, data2, mask);
693 /* NOTE: Caller runs local copy on master. */
694
695 put_cpu();
696 }
697
698 extern unsigned long xcall_sync_tick;
699
700 static void smp_start_sync_tick_client(int cpu)
701 {
702 cpumask_t mask = cpumask_of_cpu(cpu);
703
704 smp_cross_call_masked(&xcall_sync_tick,
705 0, 0, 0, mask);
706 }
707
708 /* Send cross call to all processors except self. */
709 #define smp_cross_call(func, ctx, data1, data2) \
710 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
711
712 struct call_data_struct {
713 void (*func) (void *info);
714 void *info;
715 atomic_t finished;
716 int wait;
717 };
718
719 static DEFINE_SPINLOCK(call_lock);
720 static struct call_data_struct *call_data;
721
722 extern unsigned long xcall_call_function;
723
724 /*
725 * You must not call this function with disabled interrupts or from a
726 * hardware interrupt handler or from a bottom half handler.
727 */
728 static int smp_call_function_mask(void (*func)(void *info), void *info,
729 int nonatomic, int wait, cpumask_t mask)
730 {
731 struct call_data_struct data;
732 int cpus = cpus_weight(mask) - 1;
733 long timeout;
734
735 if (!cpus)
736 return 0;
737
738 /* Can deadlock when called with interrupts disabled */
739 WARN_ON(irqs_disabled());
740
741 data.func = func;
742 data.info = info;
743 atomic_set(&data.finished, 0);
744 data.wait = wait;
745
746 spin_lock(&call_lock);
747
748 call_data = &data;
749
750 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
751
752 /*
753 * Wait for other cpus to complete function or at
754 * least snap the call data.
755 */
756 timeout = 1000000;
757 while (atomic_read(&data.finished) != cpus) {
758 if (--timeout <= 0)
759 goto out_timeout;
760 barrier();
761 udelay(1);
762 }
763
764 spin_unlock(&call_lock);
765
766 return 0;
767
768 out_timeout:
769 spin_unlock(&call_lock);
770 printk("XCALL: Remote cpus not responding, ncpus=%ld finished=%ld\n",
771 (long) num_online_cpus() - 1L,
772 (long) atomic_read(&data.finished));
773 return 0;
774 }
775
776 int smp_call_function(void (*func)(void *info), void *info,
777 int nonatomic, int wait)
778 {
779 return smp_call_function_mask(func, info, nonatomic, wait,
780 cpu_online_map);
781 }
782
783 void smp_call_function_client(int irq, struct pt_regs *regs)
784 {
785 void (*func) (void *info) = call_data->func;
786 void *info = call_data->info;
787
788 clear_softint(1 << irq);
789 if (call_data->wait) {
790 /* let initiator proceed only after completion */
791 func(info);
792 atomic_inc(&call_data->finished);
793 } else {
794 /* let initiator proceed after getting data */
795 atomic_inc(&call_data->finished);
796 func(info);
797 }
798 }
799
800 static void tsb_sync(void *info)
801 {
802 struct mm_struct *mm = info;
803
804 if (current->active_mm == mm)
805 tsb_context_switch(mm);
806 }
807
808 void smp_tsb_sync(struct mm_struct *mm)
809 {
810 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
811 }
812
813 extern unsigned long xcall_flush_tlb_mm;
814 extern unsigned long xcall_flush_tlb_pending;
815 extern unsigned long xcall_flush_tlb_kernel_range;
816 extern unsigned long xcall_report_regs;
817 extern unsigned long xcall_receive_signal;
818
819 #ifdef DCACHE_ALIASING_POSSIBLE
820 extern unsigned long xcall_flush_dcache_page_cheetah;
821 #endif
822 extern unsigned long xcall_flush_dcache_page_spitfire;
823
824 #ifdef CONFIG_DEBUG_DCFLUSH
825 extern atomic_t dcpage_flushes;
826 extern atomic_t dcpage_flushes_xcall;
827 #endif
828
829 static __inline__ void __local_flush_dcache_page(struct page *page)
830 {
831 #ifdef DCACHE_ALIASING_POSSIBLE
832 __flush_dcache_page(page_address(page),
833 ((tlb_type == spitfire) &&
834 page_mapping(page) != NULL));
835 #else
836 if (page_mapping(page) != NULL &&
837 tlb_type == spitfire)
838 __flush_icache_page(__pa(page_address(page)));
839 #endif
840 }
841
842 void smp_flush_dcache_page_impl(struct page *page, int cpu)
843 {
844 cpumask_t mask = cpumask_of_cpu(cpu);
845 int this_cpu;
846
847 if (tlb_type == hypervisor)
848 return;
849
850 #ifdef CONFIG_DEBUG_DCFLUSH
851 atomic_inc(&dcpage_flushes);
852 #endif
853
854 this_cpu = get_cpu();
855
856 if (cpu == this_cpu) {
857 __local_flush_dcache_page(page);
858 } else if (cpu_online(cpu)) {
859 void *pg_addr = page_address(page);
860 u64 data0;
861
862 if (tlb_type == spitfire) {
863 data0 =
864 ((u64)&xcall_flush_dcache_page_spitfire);
865 if (page_mapping(page) != NULL)
866 data0 |= ((u64)1 << 32);
867 spitfire_xcall_deliver(data0,
868 __pa(pg_addr),
869 (u64) pg_addr,
870 mask);
871 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
872 #ifdef DCACHE_ALIASING_POSSIBLE
873 data0 =
874 ((u64)&xcall_flush_dcache_page_cheetah);
875 cheetah_xcall_deliver(data0,
876 __pa(pg_addr),
877 0, mask);
878 #endif
879 }
880 #ifdef CONFIG_DEBUG_DCFLUSH
881 atomic_inc(&dcpage_flushes_xcall);
882 #endif
883 }
884
885 put_cpu();
886 }
887
888 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
889 {
890 void *pg_addr = page_address(page);
891 cpumask_t mask = cpu_online_map;
892 u64 data0;
893 int this_cpu;
894
895 if (tlb_type == hypervisor)
896 return;
897
898 this_cpu = get_cpu();
899
900 cpu_clear(this_cpu, mask);
901
902 #ifdef CONFIG_DEBUG_DCFLUSH
903 atomic_inc(&dcpage_flushes);
904 #endif
905 if (cpus_empty(mask))
906 goto flush_self;
907 if (tlb_type == spitfire) {
908 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
909 if (page_mapping(page) != NULL)
910 data0 |= ((u64)1 << 32);
911 spitfire_xcall_deliver(data0,
912 __pa(pg_addr),
913 (u64) pg_addr,
914 mask);
915 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
916 #ifdef DCACHE_ALIASING_POSSIBLE
917 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
918 cheetah_xcall_deliver(data0,
919 __pa(pg_addr),
920 0, mask);
921 #endif
922 }
923 #ifdef CONFIG_DEBUG_DCFLUSH
924 atomic_inc(&dcpage_flushes_xcall);
925 #endif
926 flush_self:
927 __local_flush_dcache_page(page);
928
929 put_cpu();
930 }
931
932 void smp_receive_signal(int cpu)
933 {
934 cpumask_t mask = cpumask_of_cpu(cpu);
935
936 if (cpu_online(cpu)) {
937 u64 data0 = (((u64)&xcall_receive_signal) & 0xffffffff);
938
939 if (tlb_type == spitfire)
940 spitfire_xcall_deliver(data0, 0, 0, mask);
941 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
942 cheetah_xcall_deliver(data0, 0, 0, mask);
943 else if (tlb_type == hypervisor)
944 hypervisor_xcall_deliver(data0, 0, 0, mask);
945 }
946 }
947
948 void smp_receive_signal_client(int irq, struct pt_regs *regs)
949 {
950 /* Just return, rtrap takes care of the rest. */
951 clear_softint(1 << irq);
952 }
953
954 void smp_report_regs(void)
955 {
956 smp_cross_call(&xcall_report_regs, 0, 0, 0);
957 }
958
959 /* We know that the window frames of the user have been flushed
960 * to the stack before we get here because all callers of us
961 * are flush_tlb_*() routines, and these run after flush_cache_*()
962 * which performs the flushw.
963 *
964 * The SMP TLB coherency scheme we use works as follows:
965 *
966 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
967 * space has (potentially) executed on, this is the heuristic
968 * we use to avoid doing cross calls.
969 *
970 * Also, for flushing from kswapd and also for clones, we
971 * use cpu_vm_mask as the list of cpus to make run the TLB.
972 *
973 * 2) TLB context numbers are shared globally across all processors
974 * in the system, this allows us to play several games to avoid
975 * cross calls.
976 *
977 * One invariant is that when a cpu switches to a process, and
978 * that processes tsk->active_mm->cpu_vm_mask does not have the
979 * current cpu's bit set, that tlb context is flushed locally.
980 *
981 * If the address space is non-shared (ie. mm->count == 1) we avoid
982 * cross calls when we want to flush the currently running process's
983 * tlb state. This is done by clearing all cpu bits except the current
984 * processor's in current->active_mm->cpu_vm_mask and performing the
985 * flush locally only. This will force any subsequent cpus which run
986 * this task to flush the context from the local tlb if the process
987 * migrates to another cpu (again).
988 *
989 * 3) For shared address spaces (threads) and swapping we bite the
990 * bullet for most cases and perform the cross call (but only to
991 * the cpus listed in cpu_vm_mask).
992 *
993 * The performance gain from "optimizing" away the cross call for threads is
994 * questionable (in theory the big win for threads is the massive sharing of
995 * address space state across processors).
996 */
997
998 /* This currently is only used by the hugetlb arch pre-fault
999 * hook on UltraSPARC-III+ and later when changing the pagesize
1000 * bits of the context register for an address space.
1001 */
1002 void smp_flush_tlb_mm(struct mm_struct *mm)
1003 {
1004 u32 ctx = CTX_HWBITS(mm->context);
1005 int cpu = get_cpu();
1006
1007 if (atomic_read(&mm->mm_users) == 1) {
1008 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1009 goto local_flush_and_out;
1010 }
1011
1012 smp_cross_call_masked(&xcall_flush_tlb_mm,
1013 ctx, 0, 0,
1014 mm->cpu_vm_mask);
1015
1016 local_flush_and_out:
1017 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1018
1019 put_cpu();
1020 }
1021
1022 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1023 {
1024 u32 ctx = CTX_HWBITS(mm->context);
1025 int cpu = get_cpu();
1026
1027 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1028 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1029 else
1030 smp_cross_call_masked(&xcall_flush_tlb_pending,
1031 ctx, nr, (unsigned long) vaddrs,
1032 mm->cpu_vm_mask);
1033
1034 __flush_tlb_pending(ctx, nr, vaddrs);
1035
1036 put_cpu();
1037 }
1038
1039 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1040 {
1041 start &= PAGE_MASK;
1042 end = PAGE_ALIGN(end);
1043 if (start != end) {
1044 smp_cross_call(&xcall_flush_tlb_kernel_range,
1045 0, start, end);
1046
1047 __flush_tlb_kernel_range(start, end);
1048 }
1049 }
1050
1051 /* CPU capture. */
1052 /* #define CAPTURE_DEBUG */
1053 extern unsigned long xcall_capture;
1054
1055 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1056 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1057 static unsigned long penguins_are_doing_time;
1058
1059 void smp_capture(void)
1060 {
1061 int result = atomic_add_ret(1, &smp_capture_depth);
1062
1063 if (result == 1) {
1064 int ncpus = num_online_cpus();
1065
1066 #ifdef CAPTURE_DEBUG
1067 printk("CPU[%d]: Sending penguins to jail...",
1068 smp_processor_id());
1069 #endif
1070 penguins_are_doing_time = 1;
1071 membar_storestore_loadstore();
1072 atomic_inc(&smp_capture_registry);
1073 smp_cross_call(&xcall_capture, 0, 0, 0);
1074 while (atomic_read(&smp_capture_registry) != ncpus)
1075 rmb();
1076 #ifdef CAPTURE_DEBUG
1077 printk("done\n");
1078 #endif
1079 }
1080 }
1081
1082 void smp_release(void)
1083 {
1084 if (atomic_dec_and_test(&smp_capture_depth)) {
1085 #ifdef CAPTURE_DEBUG
1086 printk("CPU[%d]: Giving pardon to "
1087 "imprisoned penguins\n",
1088 smp_processor_id());
1089 #endif
1090 penguins_are_doing_time = 0;
1091 membar_storeload_storestore();
1092 atomic_dec(&smp_capture_registry);
1093 }
1094 }
1095
1096 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1097 * can service tlb flush xcalls...
1098 */
1099 extern void prom_world(int);
1100
1101 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1102 {
1103 clear_softint(1 << irq);
1104
1105 preempt_disable();
1106
1107 __asm__ __volatile__("flushw");
1108 prom_world(1);
1109 atomic_inc(&smp_capture_registry);
1110 membar_storeload_storestore();
1111 while (penguins_are_doing_time)
1112 rmb();
1113 atomic_dec(&smp_capture_registry);
1114 prom_world(0);
1115
1116 preempt_enable();
1117 }
1118
1119 #define prof_multiplier(__cpu) cpu_data(__cpu).multiplier
1120 #define prof_counter(__cpu) cpu_data(__cpu).counter
1121
1122 void smp_percpu_timer_interrupt(struct pt_regs *regs)
1123 {
1124 unsigned long compare, tick, pstate;
1125 int cpu = smp_processor_id();
1126 int user = user_mode(regs);
1127
1128 /*
1129 * Check for level 14 softint.
1130 */
1131 {
1132 unsigned long tick_mask = tick_ops->softint_mask;
1133
1134 if (!(get_softint() & tick_mask)) {
1135 extern void handler_irq(int, struct pt_regs *);
1136
1137 handler_irq(14, regs);
1138 return;
1139 }
1140 clear_softint(tick_mask);
1141 }
1142
1143 do {
1144 profile_tick(CPU_PROFILING, regs);
1145 if (!--prof_counter(cpu)) {
1146 irq_enter();
1147
1148 if (cpu == boot_cpu_id) {
1149 kstat_this_cpu.irqs[0]++;
1150 timer_tick_interrupt(regs);
1151 }
1152
1153 update_process_times(user);
1154
1155 irq_exit();
1156
1157 prof_counter(cpu) = prof_multiplier(cpu);
1158 }
1159
1160 /* Guarantee that the following sequences execute
1161 * uninterrupted.
1162 */
1163 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1164 "wrpr %0, %1, %%pstate"
1165 : "=r" (pstate)
1166 : "i" (PSTATE_IE));
1167
1168 compare = tick_ops->add_compare(current_tick_offset);
1169 tick = tick_ops->get_tick();
1170
1171 /* Restore PSTATE_IE. */
1172 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1173 : /* no outputs */
1174 : "r" (pstate));
1175 } while (time_after_eq(tick, compare));
1176 }
1177
1178 static void __init smp_setup_percpu_timer(void)
1179 {
1180 int cpu = smp_processor_id();
1181 unsigned long pstate;
1182
1183 prof_counter(cpu) = prof_multiplier(cpu) = 1;
1184
1185 /* Guarantee that the following sequences execute
1186 * uninterrupted.
1187 */
1188 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1189 "wrpr %0, %1, %%pstate"
1190 : "=r" (pstate)
1191 : "i" (PSTATE_IE));
1192
1193 tick_ops->init_tick(current_tick_offset);
1194
1195 /* Restore PSTATE_IE. */
1196 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1197 : /* no outputs */
1198 : "r" (pstate));
1199 }
1200
1201 void __init smp_tick_init(void)
1202 {
1203 boot_cpu_id = hard_smp_processor_id();
1204 current_tick_offset = timer_tick_offset;
1205
1206 cpu_set(boot_cpu_id, cpu_online_map);
1207 prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
1208 }
1209
1210 /* /proc/profile writes can call this, don't __init it please. */
1211 static DEFINE_SPINLOCK(prof_setup_lock);
1212
1213 int setup_profiling_timer(unsigned int multiplier)
1214 {
1215 unsigned long flags;
1216 int i;
1217
1218 if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
1219 return -EINVAL;
1220
1221 spin_lock_irqsave(&prof_setup_lock, flags);
1222 for (i = 0; i < NR_CPUS; i++)
1223 prof_multiplier(i) = multiplier;
1224 current_tick_offset = (timer_tick_offset / multiplier);
1225 spin_unlock_irqrestore(&prof_setup_lock, flags);
1226
1227 return 0;
1228 }
1229
1230 /* Constrain the number of cpus to max_cpus. */
1231 void __init smp_prepare_cpus(unsigned int max_cpus)
1232 {
1233 if (num_possible_cpus() > max_cpus) {
1234 int instance, mid;
1235
1236 instance = 0;
1237 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1238 if (mid != boot_cpu_id) {
1239 cpu_clear(mid, phys_cpu_present_map);
1240 if (num_possible_cpus() <= max_cpus)
1241 break;
1242 }
1243 instance++;
1244 }
1245 }
1246
1247 smp_store_cpu_info(boot_cpu_id);
1248 }
1249
1250 /* Set this up early so that things like the scheduler can init
1251 * properly. We use the same cpu mask for both the present and
1252 * possible cpu map.
1253 */
1254 void __init smp_setup_cpu_possible_map(void)
1255 {
1256 int instance, mid;
1257
1258 instance = 0;
1259 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1260 if (mid < NR_CPUS)
1261 cpu_set(mid, phys_cpu_present_map);
1262 instance++;
1263 }
1264 }
1265
1266 void __devinit smp_prepare_boot_cpu(void)
1267 {
1268 int cpu = hard_smp_processor_id();
1269
1270 if (cpu >= NR_CPUS) {
1271 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
1272 prom_halt();
1273 }
1274
1275 current_thread_info()->cpu = cpu;
1276 __local_per_cpu_offset = __per_cpu_offset(cpu);
1277
1278 cpu_set(smp_processor_id(), cpu_online_map);
1279 cpu_set(smp_processor_id(), phys_cpu_present_map);
1280 }
1281
1282 int __devinit __cpu_up(unsigned int cpu)
1283 {
1284 int ret = smp_boot_one_cpu(cpu);
1285
1286 if (!ret) {
1287 cpu_set(cpu, smp_commenced_mask);
1288 while (!cpu_isset(cpu, cpu_online_map))
1289 mb();
1290 if (!cpu_isset(cpu, cpu_online_map)) {
1291 ret = -ENODEV;
1292 } else {
1293 /* On SUN4V, writes to %tick and %stick are
1294 * not allowed.
1295 */
1296 if (tlb_type != hypervisor)
1297 smp_synchronize_one_tick(cpu);
1298 }
1299 }
1300 return ret;
1301 }
1302
1303 void __init smp_cpus_done(unsigned int max_cpus)
1304 {
1305 unsigned long bogosum = 0;
1306 int i;
1307
1308 for (i = 0; i < NR_CPUS; i++) {
1309 if (cpu_online(i))
1310 bogosum += cpu_data(i).udelay_val;
1311 }
1312 printk("Total of %ld processors activated "
1313 "(%lu.%02lu BogoMIPS).\n",
1314 (long) num_online_cpus(),
1315 bogosum/(500000/HZ),
1316 (bogosum/(5000/HZ))%100);
1317 }
1318
1319 void smp_send_reschedule(int cpu)
1320 {
1321 smp_receive_signal(cpu);
1322 }
1323
1324 /* This is a nop because we capture all other cpus
1325 * anyways when making the PROM active.
1326 */
1327 void smp_send_stop(void)
1328 {
1329 }
1330
1331 unsigned long __per_cpu_base __read_mostly;
1332 unsigned long __per_cpu_shift __read_mostly;
1333
1334 EXPORT_SYMBOL(__per_cpu_base);
1335 EXPORT_SYMBOL(__per_cpu_shift);
1336
1337 void __init setup_per_cpu_areas(void)
1338 {
1339 unsigned long goal, size, i;
1340 char *ptr;
1341
1342 /* Copy section for each CPU (we discard the original) */
1343 goal = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES);
1344 #ifdef CONFIG_MODULES
1345 if (goal < PERCPU_ENOUGH_ROOM)
1346 goal = PERCPU_ENOUGH_ROOM;
1347 #endif
1348 __per_cpu_shift = 0;
1349 for (size = 1UL; size < goal; size <<= 1UL)
1350 __per_cpu_shift++;
1351
1352 ptr = alloc_bootmem(size * NR_CPUS);
1353
1354 __per_cpu_base = ptr - __per_cpu_start;
1355
1356 for (i = 0; i < NR_CPUS; i++, ptr += size)
1357 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1358 }
This page took 0.07847 seconds and 6 git commands to generate.