Merge branch 'upstream'
[deliverable/linux.git] / arch / sparc64 / kernel / smp.c
1 /* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
4 */
5
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/smp_lock.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/cache.h>
22 #include <linux/jiffies.h>
23 #include <linux/profile.h>
24 #include <linux/bootmem.h>
25
26 #include <asm/head.h>
27 #include <asm/ptrace.h>
28 #include <asm/atomic.h>
29 #include <asm/tlbflush.h>
30 #include <asm/mmu_context.h>
31 #include <asm/cpudata.h>
32
33 #include <asm/irq.h>
34 #include <asm/page.h>
35 #include <asm/pgtable.h>
36 #include <asm/oplib.h>
37 #include <asm/uaccess.h>
38 #include <asm/timer.h>
39 #include <asm/starfire.h>
40 #include <asm/tlb.h>
41 #include <asm/sections.h>
42
43 extern void calibrate_delay(void);
44
45 /* Please don't make this stuff initdata!!! --DaveM */
46 static unsigned char boot_cpu_id;
47
48 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
49 cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
50 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly =
51 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
52 static cpumask_t smp_commenced_mask;
53 static cpumask_t cpu_callout_map;
54
55 void smp_info(struct seq_file *m)
56 {
57 int i;
58
59 seq_printf(m, "State:\n");
60 for_each_online_cpu(i)
61 seq_printf(m, "CPU%d:\t\tonline\n", i);
62 }
63
64 void smp_bogo(struct seq_file *m)
65 {
66 int i;
67
68 for_each_online_cpu(i)
69 seq_printf(m,
70 "Cpu%dBogo\t: %lu.%02lu\n"
71 "Cpu%dClkTck\t: %016lx\n",
72 i, cpu_data(i).udelay_val / (500000/HZ),
73 (cpu_data(i).udelay_val / (5000/HZ)) % 100,
74 i, cpu_data(i).clock_tick);
75 }
76
77 void __init smp_store_cpu_info(int id)
78 {
79 int cpu_node, def;
80
81 /* multiplier and counter set by
82 smp_setup_percpu_timer() */
83 cpu_data(id).udelay_val = loops_per_jiffy;
84
85 cpu_find_by_mid(id, &cpu_node);
86 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
87 "clock-frequency", 0);
88
89 def = ((tlb_type == hypervisor) ? (8 * 1024) : (16 * 1024));
90 cpu_data(id).dcache_size = prom_getintdefault(cpu_node, "dcache-size",
91 def);
92
93 def = 32;
94 cpu_data(id).dcache_line_size =
95 prom_getintdefault(cpu_node, "dcache-line-size", def);
96
97 def = 16 * 1024;
98 cpu_data(id).icache_size = prom_getintdefault(cpu_node, "icache-size",
99 def);
100
101 def = 32;
102 cpu_data(id).icache_line_size =
103 prom_getintdefault(cpu_node, "icache-line-size", def);
104
105 def = ((tlb_type == hypervisor) ?
106 (3 * 1024 * 1024) :
107 (4 * 1024 * 1024));
108 cpu_data(id).ecache_size = prom_getintdefault(cpu_node, "ecache-size",
109 def);
110
111 def = 64;
112 cpu_data(id).ecache_line_size =
113 prom_getintdefault(cpu_node, "ecache-line-size", def);
114
115 printk("CPU[%d]: Caches "
116 "D[sz(%d):line_sz(%d)] "
117 "I[sz(%d):line_sz(%d)] "
118 "E[sz(%d):line_sz(%d)]\n",
119 id,
120 cpu_data(id).dcache_size, cpu_data(id).dcache_line_size,
121 cpu_data(id).icache_size, cpu_data(id).icache_line_size,
122 cpu_data(id).ecache_size, cpu_data(id).ecache_line_size);
123 }
124
125 static void smp_setup_percpu_timer(void);
126
127 static volatile unsigned long callin_flag = 0;
128
129 void __init smp_callin(void)
130 {
131 int cpuid = hard_smp_processor_id();
132
133 __local_per_cpu_offset = __per_cpu_offset(cpuid);
134
135 if (tlb_type == hypervisor)
136 sun4v_ktsb_register();
137
138 __flush_tlb_all();
139
140 smp_setup_percpu_timer();
141
142 if (cheetah_pcache_forced_on)
143 cheetah_enable_pcache();
144
145 local_irq_enable();
146
147 calibrate_delay();
148 smp_store_cpu_info(cpuid);
149 callin_flag = 1;
150 __asm__ __volatile__("membar #Sync\n\t"
151 "flush %%g6" : : : "memory");
152
153 /* Clear this or we will die instantly when we
154 * schedule back to this idler...
155 */
156 current_thread_info()->new_child = 0;
157
158 /* Attach to the address space of init_task. */
159 atomic_inc(&init_mm.mm_count);
160 current->active_mm = &init_mm;
161
162 while (!cpu_isset(cpuid, smp_commenced_mask))
163 rmb();
164
165 cpu_set(cpuid, cpu_online_map);
166
167 /* idle thread is expected to have preempt disabled */
168 preempt_disable();
169 }
170
171 void cpu_panic(void)
172 {
173 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
174 panic("SMP bolixed\n");
175 }
176
177 static unsigned long current_tick_offset __read_mostly;
178
179 /* This tick register synchronization scheme is taken entirely from
180 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
181 *
182 * The only change I've made is to rework it so that the master
183 * initiates the synchonization instead of the slave. -DaveM
184 */
185
186 #define MASTER 0
187 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
188
189 #define NUM_ROUNDS 64 /* magic value */
190 #define NUM_ITERS 5 /* likewise */
191
192 static DEFINE_SPINLOCK(itc_sync_lock);
193 static unsigned long go[SLAVE + 1];
194
195 #define DEBUG_TICK_SYNC 0
196
197 static inline long get_delta (long *rt, long *master)
198 {
199 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
200 unsigned long tcenter, t0, t1, tm;
201 unsigned long i;
202
203 for (i = 0; i < NUM_ITERS; i++) {
204 t0 = tick_ops->get_tick();
205 go[MASTER] = 1;
206 membar_storeload();
207 while (!(tm = go[SLAVE]))
208 rmb();
209 go[SLAVE] = 0;
210 wmb();
211 t1 = tick_ops->get_tick();
212
213 if (t1 - t0 < best_t1 - best_t0)
214 best_t0 = t0, best_t1 = t1, best_tm = tm;
215 }
216
217 *rt = best_t1 - best_t0;
218 *master = best_tm - best_t0;
219
220 /* average best_t0 and best_t1 without overflow: */
221 tcenter = (best_t0/2 + best_t1/2);
222 if (best_t0 % 2 + best_t1 % 2 == 2)
223 tcenter++;
224 return tcenter - best_tm;
225 }
226
227 void smp_synchronize_tick_client(void)
228 {
229 long i, delta, adj, adjust_latency = 0, done = 0;
230 unsigned long flags, rt, master_time_stamp, bound;
231 #if DEBUG_TICK_SYNC
232 struct {
233 long rt; /* roundtrip time */
234 long master; /* master's timestamp */
235 long diff; /* difference between midpoint and master's timestamp */
236 long lat; /* estimate of itc adjustment latency */
237 } t[NUM_ROUNDS];
238 #endif
239
240 go[MASTER] = 1;
241
242 while (go[MASTER])
243 rmb();
244
245 local_irq_save(flags);
246 {
247 for (i = 0; i < NUM_ROUNDS; i++) {
248 delta = get_delta(&rt, &master_time_stamp);
249 if (delta == 0) {
250 done = 1; /* let's lock on to this... */
251 bound = rt;
252 }
253
254 if (!done) {
255 if (i > 0) {
256 adjust_latency += -delta;
257 adj = -delta + adjust_latency/4;
258 } else
259 adj = -delta;
260
261 tick_ops->add_tick(adj, current_tick_offset);
262 }
263 #if DEBUG_TICK_SYNC
264 t[i].rt = rt;
265 t[i].master = master_time_stamp;
266 t[i].diff = delta;
267 t[i].lat = adjust_latency/4;
268 #endif
269 }
270 }
271 local_irq_restore(flags);
272
273 #if DEBUG_TICK_SYNC
274 for (i = 0; i < NUM_ROUNDS; i++)
275 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
276 t[i].rt, t[i].master, t[i].diff, t[i].lat);
277 #endif
278
279 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
280 "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
281 }
282
283 static void smp_start_sync_tick_client(int cpu);
284
285 static void smp_synchronize_one_tick(int cpu)
286 {
287 unsigned long flags, i;
288
289 go[MASTER] = 0;
290
291 smp_start_sync_tick_client(cpu);
292
293 /* wait for client to be ready */
294 while (!go[MASTER])
295 rmb();
296
297 /* now let the client proceed into his loop */
298 go[MASTER] = 0;
299 membar_storeload();
300
301 spin_lock_irqsave(&itc_sync_lock, flags);
302 {
303 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
304 while (!go[MASTER])
305 rmb();
306 go[MASTER] = 0;
307 wmb();
308 go[SLAVE] = tick_ops->get_tick();
309 membar_storeload();
310 }
311 }
312 spin_unlock_irqrestore(&itc_sync_lock, flags);
313 }
314
315 extern void sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load);
316
317 extern unsigned long sparc64_cpu_startup;
318
319 /* The OBP cpu startup callback truncates the 3rd arg cookie to
320 * 32-bits (I think) so to be safe we have it read the pointer
321 * contained here so we work on >4GB machines. -DaveM
322 */
323 static struct thread_info *cpu_new_thread = NULL;
324
325 static int __devinit smp_boot_one_cpu(unsigned int cpu)
326 {
327 unsigned long entry =
328 (unsigned long)(&sparc64_cpu_startup);
329 unsigned long cookie =
330 (unsigned long)(&cpu_new_thread);
331 struct task_struct *p;
332 int timeout, ret;
333
334 p = fork_idle(cpu);
335 callin_flag = 0;
336 cpu_new_thread = task_thread_info(p);
337 cpu_set(cpu, cpu_callout_map);
338
339 if (tlb_type == hypervisor) {
340 /* Alloc the mondo queues, cpu will load them. */
341 sun4v_init_mondo_queues(0, cpu, 1, 0);
342
343 prom_startcpu_cpuid(cpu, entry, cookie);
344 } else {
345 int cpu_node;
346
347 cpu_find_by_mid(cpu, &cpu_node);
348 prom_startcpu(cpu_node, entry, cookie);
349 }
350
351 for (timeout = 0; timeout < 5000000; timeout++) {
352 if (callin_flag)
353 break;
354 udelay(100);
355 }
356
357 if (callin_flag) {
358 ret = 0;
359 } else {
360 printk("Processor %d is stuck.\n", cpu);
361 cpu_clear(cpu, cpu_callout_map);
362 ret = -ENODEV;
363 }
364 cpu_new_thread = NULL;
365
366 return ret;
367 }
368
369 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
370 {
371 u64 result, target;
372 int stuck, tmp;
373
374 if (this_is_starfire) {
375 /* map to real upaid */
376 cpu = (((cpu & 0x3c) << 1) |
377 ((cpu & 0x40) >> 4) |
378 (cpu & 0x3));
379 }
380
381 target = (cpu << 14) | 0x70;
382 again:
383 /* Ok, this is the real Spitfire Errata #54.
384 * One must read back from a UDB internal register
385 * after writes to the UDB interrupt dispatch, but
386 * before the membar Sync for that write.
387 * So we use the high UDB control register (ASI 0x7f,
388 * ADDR 0x20) for the dummy read. -DaveM
389 */
390 tmp = 0x40;
391 __asm__ __volatile__(
392 "wrpr %1, %2, %%pstate\n\t"
393 "stxa %4, [%0] %3\n\t"
394 "stxa %5, [%0+%8] %3\n\t"
395 "add %0, %8, %0\n\t"
396 "stxa %6, [%0+%8] %3\n\t"
397 "membar #Sync\n\t"
398 "stxa %%g0, [%7] %3\n\t"
399 "membar #Sync\n\t"
400 "mov 0x20, %%g1\n\t"
401 "ldxa [%%g1] 0x7f, %%g0\n\t"
402 "membar #Sync"
403 : "=r" (tmp)
404 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
405 "r" (data0), "r" (data1), "r" (data2), "r" (target),
406 "r" (0x10), "0" (tmp)
407 : "g1");
408
409 /* NOTE: PSTATE_IE is still clear. */
410 stuck = 100000;
411 do {
412 __asm__ __volatile__("ldxa [%%g0] %1, %0"
413 : "=r" (result)
414 : "i" (ASI_INTR_DISPATCH_STAT));
415 if (result == 0) {
416 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
417 : : "r" (pstate));
418 return;
419 }
420 stuck -= 1;
421 if (stuck == 0)
422 break;
423 } while (result & 0x1);
424 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
425 : : "r" (pstate));
426 if (stuck == 0) {
427 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
428 smp_processor_id(), result);
429 } else {
430 udelay(2);
431 goto again;
432 }
433 }
434
435 static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
436 {
437 u64 pstate;
438 int i;
439
440 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
441 for_each_cpu_mask(i, mask)
442 spitfire_xcall_helper(data0, data1, data2, pstate, i);
443 }
444
445 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
446 * packet, but we have no use for that. However we do take advantage of
447 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
448 */
449 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
450 {
451 u64 pstate, ver;
452 int nack_busy_id, is_jbus;
453
454 if (cpus_empty(mask))
455 return;
456
457 /* Unfortunately, someone at Sun had the brilliant idea to make the
458 * busy/nack fields hard-coded by ITID number for this Ultra-III
459 * derivative processor.
460 */
461 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
462 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
463 (ver >> 32) == __SERRANO_ID);
464
465 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
466
467 retry:
468 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
469 : : "r" (pstate), "i" (PSTATE_IE));
470
471 /* Setup the dispatch data registers. */
472 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
473 "stxa %1, [%4] %6\n\t"
474 "stxa %2, [%5] %6\n\t"
475 "membar #Sync\n\t"
476 : /* no outputs */
477 : "r" (data0), "r" (data1), "r" (data2),
478 "r" (0x40), "r" (0x50), "r" (0x60),
479 "i" (ASI_INTR_W));
480
481 nack_busy_id = 0;
482 {
483 int i;
484
485 for_each_cpu_mask(i, mask) {
486 u64 target = (i << 14) | 0x70;
487
488 if (!is_jbus)
489 target |= (nack_busy_id << 24);
490 __asm__ __volatile__(
491 "stxa %%g0, [%0] %1\n\t"
492 "membar #Sync\n\t"
493 : /* no outputs */
494 : "r" (target), "i" (ASI_INTR_W));
495 nack_busy_id++;
496 }
497 }
498
499 /* Now, poll for completion. */
500 {
501 u64 dispatch_stat;
502 long stuck;
503
504 stuck = 100000 * nack_busy_id;
505 do {
506 __asm__ __volatile__("ldxa [%%g0] %1, %0"
507 : "=r" (dispatch_stat)
508 : "i" (ASI_INTR_DISPATCH_STAT));
509 if (dispatch_stat == 0UL) {
510 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
511 : : "r" (pstate));
512 return;
513 }
514 if (!--stuck)
515 break;
516 } while (dispatch_stat & 0x5555555555555555UL);
517
518 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
519 : : "r" (pstate));
520
521 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
522 /* Busy bits will not clear, continue instead
523 * of freezing up on this cpu.
524 */
525 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
526 smp_processor_id(), dispatch_stat);
527 } else {
528 int i, this_busy_nack = 0;
529
530 /* Delay some random time with interrupts enabled
531 * to prevent deadlock.
532 */
533 udelay(2 * nack_busy_id);
534
535 /* Clear out the mask bits for cpus which did not
536 * NACK us.
537 */
538 for_each_cpu_mask(i, mask) {
539 u64 check_mask;
540
541 if (is_jbus)
542 check_mask = (0x2UL << (2*i));
543 else
544 check_mask = (0x2UL <<
545 this_busy_nack);
546 if ((dispatch_stat & check_mask) == 0)
547 cpu_clear(i, mask);
548 this_busy_nack += 2;
549 }
550
551 goto retry;
552 }
553 }
554 }
555
556 /* Multi-cpu list version. */
557 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
558 {
559 struct trap_per_cpu *tb;
560 u16 *cpu_list;
561 u64 *mondo;
562 cpumask_t error_mask;
563 unsigned long flags, status;
564 int cnt, retries, this_cpu, prev_sent, i;
565
566 /* We have to do this whole thing with interrupts fully disabled.
567 * Otherwise if we send an xcall from interrupt context it will
568 * corrupt both our mondo block and cpu list state.
569 *
570 * One consequence of this is that we cannot use timeout mechanisms
571 * that depend upon interrupts being delivered locally. So, for
572 * example, we cannot sample jiffies and expect it to advance.
573 *
574 * Fortunately, udelay() uses %stick/%tick so we can use that.
575 */
576 local_irq_save(flags);
577
578 this_cpu = smp_processor_id();
579 tb = &trap_block[this_cpu];
580
581 mondo = __va(tb->cpu_mondo_block_pa);
582 mondo[0] = data0;
583 mondo[1] = data1;
584 mondo[2] = data2;
585 wmb();
586
587 cpu_list = __va(tb->cpu_list_pa);
588
589 /* Setup the initial cpu list. */
590 cnt = 0;
591 for_each_cpu_mask(i, mask)
592 cpu_list[cnt++] = i;
593
594 cpus_clear(error_mask);
595 retries = 0;
596 prev_sent = 0;
597 do {
598 int forward_progress, n_sent;
599
600 status = sun4v_cpu_mondo_send(cnt,
601 tb->cpu_list_pa,
602 tb->cpu_mondo_block_pa);
603
604 /* HV_EOK means all cpus received the xcall, we're done. */
605 if (likely(status == HV_EOK))
606 break;
607
608 /* First, see if we made any forward progress.
609 *
610 * The hypervisor indicates successful sends by setting
611 * cpu list entries to the value 0xffff.
612 */
613 n_sent = 0;
614 for (i = 0; i < cnt; i++) {
615 if (likely(cpu_list[i] == 0xffff))
616 n_sent++;
617 }
618
619 forward_progress = 0;
620 if (n_sent > prev_sent)
621 forward_progress = 1;
622
623 prev_sent = n_sent;
624
625 /* If we get a HV_ECPUERROR, then one or more of the cpus
626 * in the list are in error state. Use the cpu_state()
627 * hypervisor call to find out which cpus are in error state.
628 */
629 if (unlikely(status == HV_ECPUERROR)) {
630 for (i = 0; i < cnt; i++) {
631 long err;
632 u16 cpu;
633
634 cpu = cpu_list[i];
635 if (cpu == 0xffff)
636 continue;
637
638 err = sun4v_cpu_state(cpu);
639 if (err >= 0 &&
640 err == HV_CPU_STATE_ERROR) {
641 cpu_list[i] = 0xffff;
642 cpu_set(cpu, error_mask);
643 }
644 }
645 } else if (unlikely(status != HV_EWOULDBLOCK))
646 goto fatal_mondo_error;
647
648 /* Don't bother rewriting the CPU list, just leave the
649 * 0xffff and non-0xffff entries in there and the
650 * hypervisor will do the right thing.
651 *
652 * Only advance timeout state if we didn't make any
653 * forward progress.
654 */
655 if (unlikely(!forward_progress)) {
656 if (unlikely(++retries > 10000))
657 goto fatal_mondo_timeout;
658
659 /* Delay a little bit to let other cpus catch up
660 * on their cpu mondo queue work.
661 */
662 udelay(2 * cnt);
663 }
664 } while (1);
665
666 local_irq_restore(flags);
667
668 if (unlikely(!cpus_empty(error_mask)))
669 goto fatal_mondo_cpu_error;
670
671 return;
672
673 fatal_mondo_cpu_error:
674 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
675 "were in error state\n",
676 this_cpu);
677 printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
678 for_each_cpu_mask(i, error_mask)
679 printk("%d ", i);
680 printk("]\n");
681 return;
682
683 fatal_mondo_timeout:
684 local_irq_restore(flags);
685 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
686 " progress after %d retries.\n",
687 this_cpu, retries);
688 goto dump_cpu_list_and_out;
689
690 fatal_mondo_error:
691 local_irq_restore(flags);
692 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
693 this_cpu, status);
694 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
695 "mondo_block_pa(%lx)\n",
696 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
697
698 dump_cpu_list_and_out:
699 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
700 for (i = 0; i < cnt; i++)
701 printk("%u ", cpu_list[i]);
702 printk("]\n");
703 }
704
705 /* Send cross call to all processors mentioned in MASK
706 * except self.
707 */
708 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
709 {
710 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
711 int this_cpu = get_cpu();
712
713 cpus_and(mask, mask, cpu_online_map);
714 cpu_clear(this_cpu, mask);
715
716 if (tlb_type == spitfire)
717 spitfire_xcall_deliver(data0, data1, data2, mask);
718 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
719 cheetah_xcall_deliver(data0, data1, data2, mask);
720 else
721 hypervisor_xcall_deliver(data0, data1, data2, mask);
722 /* NOTE: Caller runs local copy on master. */
723
724 put_cpu();
725 }
726
727 extern unsigned long xcall_sync_tick;
728
729 static void smp_start_sync_tick_client(int cpu)
730 {
731 cpumask_t mask = cpumask_of_cpu(cpu);
732
733 smp_cross_call_masked(&xcall_sync_tick,
734 0, 0, 0, mask);
735 }
736
737 /* Send cross call to all processors except self. */
738 #define smp_cross_call(func, ctx, data1, data2) \
739 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
740
741 struct call_data_struct {
742 void (*func) (void *info);
743 void *info;
744 atomic_t finished;
745 int wait;
746 };
747
748 static DEFINE_SPINLOCK(call_lock);
749 static struct call_data_struct *call_data;
750
751 extern unsigned long xcall_call_function;
752
753 /*
754 * You must not call this function with disabled interrupts or from a
755 * hardware interrupt handler or from a bottom half handler.
756 */
757 static int smp_call_function_mask(void (*func)(void *info), void *info,
758 int nonatomic, int wait, cpumask_t mask)
759 {
760 struct call_data_struct data;
761 int cpus;
762 long timeout;
763
764 /* Can deadlock when called with interrupts disabled */
765 WARN_ON(irqs_disabled());
766
767 data.func = func;
768 data.info = info;
769 atomic_set(&data.finished, 0);
770 data.wait = wait;
771
772 spin_lock(&call_lock);
773
774 cpu_clear(smp_processor_id(), mask);
775 cpus = cpus_weight(mask);
776 if (!cpus)
777 goto out_unlock;
778
779 call_data = &data;
780
781 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
782
783 /*
784 * Wait for other cpus to complete function or at
785 * least snap the call data.
786 */
787 timeout = 1000000;
788 while (atomic_read(&data.finished) != cpus) {
789 if (--timeout <= 0)
790 goto out_timeout;
791 barrier();
792 udelay(1);
793 }
794
795 out_unlock:
796 spin_unlock(&call_lock);
797
798 return 0;
799
800 out_timeout:
801 spin_unlock(&call_lock);
802 printk("XCALL: Remote cpus not responding, ncpus=%d finished=%d\n",
803 cpus, atomic_read(&data.finished));
804 return 0;
805 }
806
807 int smp_call_function(void (*func)(void *info), void *info,
808 int nonatomic, int wait)
809 {
810 return smp_call_function_mask(func, info, nonatomic, wait,
811 cpu_online_map);
812 }
813
814 void smp_call_function_client(int irq, struct pt_regs *regs)
815 {
816 void (*func) (void *info) = call_data->func;
817 void *info = call_data->info;
818
819 clear_softint(1 << irq);
820 if (call_data->wait) {
821 /* let initiator proceed only after completion */
822 func(info);
823 atomic_inc(&call_data->finished);
824 } else {
825 /* let initiator proceed after getting data */
826 atomic_inc(&call_data->finished);
827 func(info);
828 }
829 }
830
831 static void tsb_sync(void *info)
832 {
833 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
834 struct mm_struct *mm = info;
835
836 /* It is not valid to test "currrent->active_mm == mm" here.
837 *
838 * The value of "current" is not changed atomically with
839 * switch_mm(). But that's OK, we just need to check the
840 * current cpu's trap block PGD physical address.
841 */
842 if (tp->pgd_paddr == __pa(mm->pgd))
843 tsb_context_switch(mm);
844 }
845
846 void smp_tsb_sync(struct mm_struct *mm)
847 {
848 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
849 }
850
851 extern unsigned long xcall_flush_tlb_mm;
852 extern unsigned long xcall_flush_tlb_pending;
853 extern unsigned long xcall_flush_tlb_kernel_range;
854 extern unsigned long xcall_report_regs;
855 extern unsigned long xcall_receive_signal;
856 extern unsigned long xcall_new_mmu_context_version;
857
858 #ifdef DCACHE_ALIASING_POSSIBLE
859 extern unsigned long xcall_flush_dcache_page_cheetah;
860 #endif
861 extern unsigned long xcall_flush_dcache_page_spitfire;
862
863 #ifdef CONFIG_DEBUG_DCFLUSH
864 extern atomic_t dcpage_flushes;
865 extern atomic_t dcpage_flushes_xcall;
866 #endif
867
868 static __inline__ void __local_flush_dcache_page(struct page *page)
869 {
870 #ifdef DCACHE_ALIASING_POSSIBLE
871 __flush_dcache_page(page_address(page),
872 ((tlb_type == spitfire) &&
873 page_mapping(page) != NULL));
874 #else
875 if (page_mapping(page) != NULL &&
876 tlb_type == spitfire)
877 __flush_icache_page(__pa(page_address(page)));
878 #endif
879 }
880
881 void smp_flush_dcache_page_impl(struct page *page, int cpu)
882 {
883 cpumask_t mask = cpumask_of_cpu(cpu);
884 int this_cpu;
885
886 if (tlb_type == hypervisor)
887 return;
888
889 #ifdef CONFIG_DEBUG_DCFLUSH
890 atomic_inc(&dcpage_flushes);
891 #endif
892
893 this_cpu = get_cpu();
894
895 if (cpu == this_cpu) {
896 __local_flush_dcache_page(page);
897 } else if (cpu_online(cpu)) {
898 void *pg_addr = page_address(page);
899 u64 data0;
900
901 if (tlb_type == spitfire) {
902 data0 =
903 ((u64)&xcall_flush_dcache_page_spitfire);
904 if (page_mapping(page) != NULL)
905 data0 |= ((u64)1 << 32);
906 spitfire_xcall_deliver(data0,
907 __pa(pg_addr),
908 (u64) pg_addr,
909 mask);
910 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
911 #ifdef DCACHE_ALIASING_POSSIBLE
912 data0 =
913 ((u64)&xcall_flush_dcache_page_cheetah);
914 cheetah_xcall_deliver(data0,
915 __pa(pg_addr),
916 0, mask);
917 #endif
918 }
919 #ifdef CONFIG_DEBUG_DCFLUSH
920 atomic_inc(&dcpage_flushes_xcall);
921 #endif
922 }
923
924 put_cpu();
925 }
926
927 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
928 {
929 void *pg_addr = page_address(page);
930 cpumask_t mask = cpu_online_map;
931 u64 data0;
932 int this_cpu;
933
934 if (tlb_type == hypervisor)
935 return;
936
937 this_cpu = get_cpu();
938
939 cpu_clear(this_cpu, mask);
940
941 #ifdef CONFIG_DEBUG_DCFLUSH
942 atomic_inc(&dcpage_flushes);
943 #endif
944 if (cpus_empty(mask))
945 goto flush_self;
946 if (tlb_type == spitfire) {
947 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
948 if (page_mapping(page) != NULL)
949 data0 |= ((u64)1 << 32);
950 spitfire_xcall_deliver(data0,
951 __pa(pg_addr),
952 (u64) pg_addr,
953 mask);
954 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
955 #ifdef DCACHE_ALIASING_POSSIBLE
956 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
957 cheetah_xcall_deliver(data0,
958 __pa(pg_addr),
959 0, mask);
960 #endif
961 }
962 #ifdef CONFIG_DEBUG_DCFLUSH
963 atomic_inc(&dcpage_flushes_xcall);
964 #endif
965 flush_self:
966 __local_flush_dcache_page(page);
967
968 put_cpu();
969 }
970
971 static void __smp_receive_signal_mask(cpumask_t mask)
972 {
973 smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
974 }
975
976 void smp_receive_signal(int cpu)
977 {
978 cpumask_t mask = cpumask_of_cpu(cpu);
979
980 if (cpu_online(cpu))
981 __smp_receive_signal_mask(mask);
982 }
983
984 void smp_receive_signal_client(int irq, struct pt_regs *regs)
985 {
986 clear_softint(1 << irq);
987 }
988
989 void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
990 {
991 struct mm_struct *mm;
992 unsigned long flags;
993
994 clear_softint(1 << irq);
995
996 /* See if we need to allocate a new TLB context because
997 * the version of the one we are using is now out of date.
998 */
999 mm = current->active_mm;
1000 if (unlikely(!mm || (mm == &init_mm)))
1001 return;
1002
1003 spin_lock_irqsave(&mm->context.lock, flags);
1004
1005 if (unlikely(!CTX_VALID(mm->context)))
1006 get_new_mmu_context(mm);
1007
1008 spin_unlock_irqrestore(&mm->context.lock, flags);
1009
1010 load_secondary_context(mm);
1011 __flush_tlb_mm(CTX_HWBITS(mm->context),
1012 SECONDARY_CONTEXT);
1013 }
1014
1015 void smp_new_mmu_context_version(void)
1016 {
1017 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1018 }
1019
1020 void smp_report_regs(void)
1021 {
1022 smp_cross_call(&xcall_report_regs, 0, 0, 0);
1023 }
1024
1025 /* We know that the window frames of the user have been flushed
1026 * to the stack before we get here because all callers of us
1027 * are flush_tlb_*() routines, and these run after flush_cache_*()
1028 * which performs the flushw.
1029 *
1030 * The SMP TLB coherency scheme we use works as follows:
1031 *
1032 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1033 * space has (potentially) executed on, this is the heuristic
1034 * we use to avoid doing cross calls.
1035 *
1036 * Also, for flushing from kswapd and also for clones, we
1037 * use cpu_vm_mask as the list of cpus to make run the TLB.
1038 *
1039 * 2) TLB context numbers are shared globally across all processors
1040 * in the system, this allows us to play several games to avoid
1041 * cross calls.
1042 *
1043 * One invariant is that when a cpu switches to a process, and
1044 * that processes tsk->active_mm->cpu_vm_mask does not have the
1045 * current cpu's bit set, that tlb context is flushed locally.
1046 *
1047 * If the address space is non-shared (ie. mm->count == 1) we avoid
1048 * cross calls when we want to flush the currently running process's
1049 * tlb state. This is done by clearing all cpu bits except the current
1050 * processor's in current->active_mm->cpu_vm_mask and performing the
1051 * flush locally only. This will force any subsequent cpus which run
1052 * this task to flush the context from the local tlb if the process
1053 * migrates to another cpu (again).
1054 *
1055 * 3) For shared address spaces (threads) and swapping we bite the
1056 * bullet for most cases and perform the cross call (but only to
1057 * the cpus listed in cpu_vm_mask).
1058 *
1059 * The performance gain from "optimizing" away the cross call for threads is
1060 * questionable (in theory the big win for threads is the massive sharing of
1061 * address space state across processors).
1062 */
1063
1064 /* This currently is only used by the hugetlb arch pre-fault
1065 * hook on UltraSPARC-III+ and later when changing the pagesize
1066 * bits of the context register for an address space.
1067 */
1068 void smp_flush_tlb_mm(struct mm_struct *mm)
1069 {
1070 u32 ctx = CTX_HWBITS(mm->context);
1071 int cpu = get_cpu();
1072
1073 if (atomic_read(&mm->mm_users) == 1) {
1074 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1075 goto local_flush_and_out;
1076 }
1077
1078 smp_cross_call_masked(&xcall_flush_tlb_mm,
1079 ctx, 0, 0,
1080 mm->cpu_vm_mask);
1081
1082 local_flush_and_out:
1083 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1084
1085 put_cpu();
1086 }
1087
1088 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1089 {
1090 u32 ctx = CTX_HWBITS(mm->context);
1091 int cpu = get_cpu();
1092
1093 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1094 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1095 else
1096 smp_cross_call_masked(&xcall_flush_tlb_pending,
1097 ctx, nr, (unsigned long) vaddrs,
1098 mm->cpu_vm_mask);
1099
1100 __flush_tlb_pending(ctx, nr, vaddrs);
1101
1102 put_cpu();
1103 }
1104
1105 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1106 {
1107 start &= PAGE_MASK;
1108 end = PAGE_ALIGN(end);
1109 if (start != end) {
1110 smp_cross_call(&xcall_flush_tlb_kernel_range,
1111 0, start, end);
1112
1113 __flush_tlb_kernel_range(start, end);
1114 }
1115 }
1116
1117 /* CPU capture. */
1118 /* #define CAPTURE_DEBUG */
1119 extern unsigned long xcall_capture;
1120
1121 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1122 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1123 static unsigned long penguins_are_doing_time;
1124
1125 void smp_capture(void)
1126 {
1127 int result = atomic_add_ret(1, &smp_capture_depth);
1128
1129 if (result == 1) {
1130 int ncpus = num_online_cpus();
1131
1132 #ifdef CAPTURE_DEBUG
1133 printk("CPU[%d]: Sending penguins to jail...",
1134 smp_processor_id());
1135 #endif
1136 penguins_are_doing_time = 1;
1137 membar_storestore_loadstore();
1138 atomic_inc(&smp_capture_registry);
1139 smp_cross_call(&xcall_capture, 0, 0, 0);
1140 while (atomic_read(&smp_capture_registry) != ncpus)
1141 rmb();
1142 #ifdef CAPTURE_DEBUG
1143 printk("done\n");
1144 #endif
1145 }
1146 }
1147
1148 void smp_release(void)
1149 {
1150 if (atomic_dec_and_test(&smp_capture_depth)) {
1151 #ifdef CAPTURE_DEBUG
1152 printk("CPU[%d]: Giving pardon to "
1153 "imprisoned penguins\n",
1154 smp_processor_id());
1155 #endif
1156 penguins_are_doing_time = 0;
1157 membar_storeload_storestore();
1158 atomic_dec(&smp_capture_registry);
1159 }
1160 }
1161
1162 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1163 * can service tlb flush xcalls...
1164 */
1165 extern void prom_world(int);
1166
1167 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1168 {
1169 clear_softint(1 << irq);
1170
1171 preempt_disable();
1172
1173 __asm__ __volatile__("flushw");
1174 prom_world(1);
1175 atomic_inc(&smp_capture_registry);
1176 membar_storeload_storestore();
1177 while (penguins_are_doing_time)
1178 rmb();
1179 atomic_dec(&smp_capture_registry);
1180 prom_world(0);
1181
1182 preempt_enable();
1183 }
1184
1185 #define prof_multiplier(__cpu) cpu_data(__cpu).multiplier
1186 #define prof_counter(__cpu) cpu_data(__cpu).counter
1187
1188 void smp_percpu_timer_interrupt(struct pt_regs *regs)
1189 {
1190 unsigned long compare, tick, pstate;
1191 int cpu = smp_processor_id();
1192 int user = user_mode(regs);
1193
1194 /*
1195 * Check for level 14 softint.
1196 */
1197 {
1198 unsigned long tick_mask = tick_ops->softint_mask;
1199
1200 if (!(get_softint() & tick_mask)) {
1201 extern void handler_irq(int, struct pt_regs *);
1202
1203 handler_irq(14, regs);
1204 return;
1205 }
1206 clear_softint(tick_mask);
1207 }
1208
1209 do {
1210 profile_tick(CPU_PROFILING, regs);
1211 if (!--prof_counter(cpu)) {
1212 irq_enter();
1213
1214 if (cpu == boot_cpu_id) {
1215 kstat_this_cpu.irqs[0]++;
1216 timer_tick_interrupt(regs);
1217 }
1218
1219 update_process_times(user);
1220
1221 irq_exit();
1222
1223 prof_counter(cpu) = prof_multiplier(cpu);
1224 }
1225
1226 /* Guarantee that the following sequences execute
1227 * uninterrupted.
1228 */
1229 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1230 "wrpr %0, %1, %%pstate"
1231 : "=r" (pstate)
1232 : "i" (PSTATE_IE));
1233
1234 compare = tick_ops->add_compare(current_tick_offset);
1235 tick = tick_ops->get_tick();
1236
1237 /* Restore PSTATE_IE. */
1238 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1239 : /* no outputs */
1240 : "r" (pstate));
1241 } while (time_after_eq(tick, compare));
1242 }
1243
1244 static void __init smp_setup_percpu_timer(void)
1245 {
1246 int cpu = smp_processor_id();
1247 unsigned long pstate;
1248
1249 prof_counter(cpu) = prof_multiplier(cpu) = 1;
1250
1251 /* Guarantee that the following sequences execute
1252 * uninterrupted.
1253 */
1254 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1255 "wrpr %0, %1, %%pstate"
1256 : "=r" (pstate)
1257 : "i" (PSTATE_IE));
1258
1259 tick_ops->init_tick(current_tick_offset);
1260
1261 /* Restore PSTATE_IE. */
1262 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1263 : /* no outputs */
1264 : "r" (pstate));
1265 }
1266
1267 void __init smp_tick_init(void)
1268 {
1269 boot_cpu_id = hard_smp_processor_id();
1270 current_tick_offset = timer_tick_offset;
1271
1272 cpu_set(boot_cpu_id, cpu_online_map);
1273 prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
1274 }
1275
1276 /* /proc/profile writes can call this, don't __init it please. */
1277 static DEFINE_SPINLOCK(prof_setup_lock);
1278
1279 int setup_profiling_timer(unsigned int multiplier)
1280 {
1281 unsigned long flags;
1282 int i;
1283
1284 if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
1285 return -EINVAL;
1286
1287 spin_lock_irqsave(&prof_setup_lock, flags);
1288 for_each_cpu(i)
1289 prof_multiplier(i) = multiplier;
1290 current_tick_offset = (timer_tick_offset / multiplier);
1291 spin_unlock_irqrestore(&prof_setup_lock, flags);
1292
1293 return 0;
1294 }
1295
1296 /* Constrain the number of cpus to max_cpus. */
1297 void __init smp_prepare_cpus(unsigned int max_cpus)
1298 {
1299 int i;
1300
1301 if (num_possible_cpus() > max_cpus) {
1302 int instance, mid;
1303
1304 instance = 0;
1305 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1306 if (mid != boot_cpu_id) {
1307 cpu_clear(mid, phys_cpu_present_map);
1308 cpu_clear(mid, cpu_present_map);
1309 if (num_possible_cpus() <= max_cpus)
1310 break;
1311 }
1312 instance++;
1313 }
1314 }
1315
1316 for_each_cpu(i) {
1317 if (tlb_type == hypervisor) {
1318 int j;
1319
1320 /* XXX get this mapping from machine description */
1321 for_each_cpu(j) {
1322 if ((j >> 2) == (i >> 2))
1323 cpu_set(j, cpu_sibling_map[i]);
1324 }
1325 } else {
1326 cpu_set(i, cpu_sibling_map[i]);
1327 }
1328 }
1329
1330 smp_store_cpu_info(boot_cpu_id);
1331 }
1332
1333 /* Set this up early so that things like the scheduler can init
1334 * properly. We use the same cpu mask for both the present and
1335 * possible cpu map.
1336 */
1337 void __init smp_setup_cpu_possible_map(void)
1338 {
1339 int instance, mid;
1340
1341 instance = 0;
1342 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1343 if (mid < NR_CPUS) {
1344 cpu_set(mid, phys_cpu_present_map);
1345 cpu_set(mid, cpu_present_map);
1346 }
1347 instance++;
1348 }
1349 }
1350
1351 void __devinit smp_prepare_boot_cpu(void)
1352 {
1353 int cpu = hard_smp_processor_id();
1354
1355 if (cpu >= NR_CPUS) {
1356 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
1357 prom_halt();
1358 }
1359
1360 current_thread_info()->cpu = cpu;
1361 __local_per_cpu_offset = __per_cpu_offset(cpu);
1362
1363 cpu_set(smp_processor_id(), cpu_online_map);
1364 cpu_set(smp_processor_id(), phys_cpu_present_map);
1365 }
1366
1367 int __devinit __cpu_up(unsigned int cpu)
1368 {
1369 int ret = smp_boot_one_cpu(cpu);
1370
1371 if (!ret) {
1372 cpu_set(cpu, smp_commenced_mask);
1373 while (!cpu_isset(cpu, cpu_online_map))
1374 mb();
1375 if (!cpu_isset(cpu, cpu_online_map)) {
1376 ret = -ENODEV;
1377 } else {
1378 /* On SUN4V, writes to %tick and %stick are
1379 * not allowed.
1380 */
1381 if (tlb_type != hypervisor)
1382 smp_synchronize_one_tick(cpu);
1383 }
1384 }
1385 return ret;
1386 }
1387
1388 void __init smp_cpus_done(unsigned int max_cpus)
1389 {
1390 unsigned long bogosum = 0;
1391 int i;
1392
1393 for_each_online_cpu(i)
1394 bogosum += cpu_data(i).udelay_val;
1395 printk("Total of %ld processors activated "
1396 "(%lu.%02lu BogoMIPS).\n",
1397 (long) num_online_cpus(),
1398 bogosum/(500000/HZ),
1399 (bogosum/(5000/HZ))%100);
1400 }
1401
1402 void smp_send_reschedule(int cpu)
1403 {
1404 smp_receive_signal(cpu);
1405 }
1406
1407 /* This is a nop because we capture all other cpus
1408 * anyways when making the PROM active.
1409 */
1410 void smp_send_stop(void)
1411 {
1412 }
1413
1414 unsigned long __per_cpu_base __read_mostly;
1415 unsigned long __per_cpu_shift __read_mostly;
1416
1417 EXPORT_SYMBOL(__per_cpu_base);
1418 EXPORT_SYMBOL(__per_cpu_shift);
1419
1420 void __init setup_per_cpu_areas(void)
1421 {
1422 unsigned long goal, size, i;
1423 char *ptr;
1424
1425 /* Copy section for each CPU (we discard the original) */
1426 goal = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES);
1427 #ifdef CONFIG_MODULES
1428 if (goal < PERCPU_ENOUGH_ROOM)
1429 goal = PERCPU_ENOUGH_ROOM;
1430 #endif
1431 __per_cpu_shift = 0;
1432 for (size = 1UL; size < goal; size <<= 1UL)
1433 __per_cpu_shift++;
1434
1435 ptr = alloc_bootmem(size * NR_CPUS);
1436
1437 __per_cpu_base = ptr - __per_cpu_start;
1438
1439 for (i = 0; i < NR_CPUS; i++, ptr += size)
1440 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1441 }
This page took 0.059736 seconds and 6 git commands to generate.