Merge git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuild
[deliverable/linux.git] / arch / sparc64 / kernel / smp.c
1 /* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 */
5
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/lmb.h>
24
25 #include <asm/head.h>
26 #include <asm/ptrace.h>
27 #include <asm/atomic.h>
28 #include <asm/tlbflush.h>
29 #include <asm/mmu_context.h>
30 #include <asm/cpudata.h>
31 #include <asm/hvtramp.h>
32 #include <asm/io.h>
33 #include <asm/timer.h>
34
35 #include <asm/irq.h>
36 #include <asm/irq_regs.h>
37 #include <asm/page.h>
38 #include <asm/pgtable.h>
39 #include <asm/oplib.h>
40 #include <asm/uaccess.h>
41 #include <asm/timer.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/sections.h>
45 #include <asm/prom.h>
46 #include <asm/mdesc.h>
47 #include <asm/ldc.h>
48 #include <asm/hypervisor.h>
49
50 int sparc64_multi_core __read_mostly;
51
52 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE;
53 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
54 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
55 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
56 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
57
58 EXPORT_SYMBOL(cpu_possible_map);
59 EXPORT_SYMBOL(cpu_online_map);
60 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
61 EXPORT_SYMBOL(cpu_core_map);
62
63 static cpumask_t smp_commenced_mask;
64
65 void smp_info(struct seq_file *m)
66 {
67 int i;
68
69 seq_printf(m, "State:\n");
70 for_each_online_cpu(i)
71 seq_printf(m, "CPU%d:\t\tonline\n", i);
72 }
73
74 void smp_bogo(struct seq_file *m)
75 {
76 int i;
77
78 for_each_online_cpu(i)
79 seq_printf(m,
80 "Cpu%dClkTck\t: %016lx\n",
81 i, cpu_data(i).clock_tick);
82 }
83
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
85
86 extern void setup_sparc64_timer(void);
87
88 static volatile unsigned long callin_flag = 0;
89
90 void __cpuinit smp_callin(void)
91 {
92 int cpuid = hard_smp_processor_id();
93
94 __local_per_cpu_offset = __per_cpu_offset(cpuid);
95
96 if (tlb_type == hypervisor)
97 sun4v_ktsb_register();
98
99 __flush_tlb_all();
100
101 setup_sparc64_timer();
102
103 if (cheetah_pcache_forced_on)
104 cheetah_enable_pcache();
105
106 local_irq_enable();
107
108 callin_flag = 1;
109 __asm__ __volatile__("membar #Sync\n\t"
110 "flush %%g6" : : : "memory");
111
112 /* Clear this or we will die instantly when we
113 * schedule back to this idler...
114 */
115 current_thread_info()->new_child = 0;
116
117 /* Attach to the address space of init_task. */
118 atomic_inc(&init_mm.mm_count);
119 current->active_mm = &init_mm;
120
121 while (!cpu_isset(cpuid, smp_commenced_mask))
122 rmb();
123
124 spin_lock(&call_lock);
125 cpu_set(cpuid, cpu_online_map);
126 spin_unlock(&call_lock);
127
128 /* idle thread is expected to have preempt disabled */
129 preempt_disable();
130 }
131
132 void cpu_panic(void)
133 {
134 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
135 panic("SMP bolixed\n");
136 }
137
138 /* This tick register synchronization scheme is taken entirely from
139 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
140 *
141 * The only change I've made is to rework it so that the master
142 * initiates the synchonization instead of the slave. -DaveM
143 */
144
145 #define MASTER 0
146 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
147
148 #define NUM_ROUNDS 64 /* magic value */
149 #define NUM_ITERS 5 /* likewise */
150
151 static DEFINE_SPINLOCK(itc_sync_lock);
152 static unsigned long go[SLAVE + 1];
153
154 #define DEBUG_TICK_SYNC 0
155
156 static inline long get_delta (long *rt, long *master)
157 {
158 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
159 unsigned long tcenter, t0, t1, tm;
160 unsigned long i;
161
162 for (i = 0; i < NUM_ITERS; i++) {
163 t0 = tick_ops->get_tick();
164 go[MASTER] = 1;
165 membar_storeload();
166 while (!(tm = go[SLAVE]))
167 rmb();
168 go[SLAVE] = 0;
169 wmb();
170 t1 = tick_ops->get_tick();
171
172 if (t1 - t0 < best_t1 - best_t0)
173 best_t0 = t0, best_t1 = t1, best_tm = tm;
174 }
175
176 *rt = best_t1 - best_t0;
177 *master = best_tm - best_t0;
178
179 /* average best_t0 and best_t1 without overflow: */
180 tcenter = (best_t0/2 + best_t1/2);
181 if (best_t0 % 2 + best_t1 % 2 == 2)
182 tcenter++;
183 return tcenter - best_tm;
184 }
185
186 void smp_synchronize_tick_client(void)
187 {
188 long i, delta, adj, adjust_latency = 0, done = 0;
189 unsigned long flags, rt, master_time_stamp, bound;
190 #if DEBUG_TICK_SYNC
191 struct {
192 long rt; /* roundtrip time */
193 long master; /* master's timestamp */
194 long diff; /* difference between midpoint and master's timestamp */
195 long lat; /* estimate of itc adjustment latency */
196 } t[NUM_ROUNDS];
197 #endif
198
199 go[MASTER] = 1;
200
201 while (go[MASTER])
202 rmb();
203
204 local_irq_save(flags);
205 {
206 for (i = 0; i < NUM_ROUNDS; i++) {
207 delta = get_delta(&rt, &master_time_stamp);
208 if (delta == 0) {
209 done = 1; /* let's lock on to this... */
210 bound = rt;
211 }
212
213 if (!done) {
214 if (i > 0) {
215 adjust_latency += -delta;
216 adj = -delta + adjust_latency/4;
217 } else
218 adj = -delta;
219
220 tick_ops->add_tick(adj);
221 }
222 #if DEBUG_TICK_SYNC
223 t[i].rt = rt;
224 t[i].master = master_time_stamp;
225 t[i].diff = delta;
226 t[i].lat = adjust_latency/4;
227 #endif
228 }
229 }
230 local_irq_restore(flags);
231
232 #if DEBUG_TICK_SYNC
233 for (i = 0; i < NUM_ROUNDS; i++)
234 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
235 t[i].rt, t[i].master, t[i].diff, t[i].lat);
236 #endif
237
238 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
239 "(last diff %ld cycles, maxerr %lu cycles)\n",
240 smp_processor_id(), delta, rt);
241 }
242
243 static void smp_start_sync_tick_client(int cpu);
244
245 static void smp_synchronize_one_tick(int cpu)
246 {
247 unsigned long flags, i;
248
249 go[MASTER] = 0;
250
251 smp_start_sync_tick_client(cpu);
252
253 /* wait for client to be ready */
254 while (!go[MASTER])
255 rmb();
256
257 /* now let the client proceed into his loop */
258 go[MASTER] = 0;
259 membar_storeload();
260
261 spin_lock_irqsave(&itc_sync_lock, flags);
262 {
263 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
264 while (!go[MASTER])
265 rmb();
266 go[MASTER] = 0;
267 wmb();
268 go[SLAVE] = tick_ops->get_tick();
269 membar_storeload();
270 }
271 }
272 spin_unlock_irqrestore(&itc_sync_lock, flags);
273 }
274
275 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
276 /* XXX Put this in some common place. XXX */
277 static unsigned long kimage_addr_to_ra(void *p)
278 {
279 unsigned long val = (unsigned long) p;
280
281 return kern_base + (val - KERNBASE);
282 }
283
284 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
285 {
286 extern unsigned long sparc64_ttable_tl0;
287 extern unsigned long kern_locked_tte_data;
288 struct hvtramp_descr *hdesc;
289 unsigned long trampoline_ra;
290 struct trap_per_cpu *tb;
291 u64 tte_vaddr, tte_data;
292 unsigned long hv_err;
293 int i;
294
295 hdesc = kzalloc(sizeof(*hdesc) +
296 (sizeof(struct hvtramp_mapping) *
297 num_kernel_image_mappings - 1),
298 GFP_KERNEL);
299 if (!hdesc) {
300 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
301 "hvtramp_descr.\n");
302 return;
303 }
304
305 hdesc->cpu = cpu;
306 hdesc->num_mappings = num_kernel_image_mappings;
307
308 tb = &trap_block[cpu];
309 tb->hdesc = hdesc;
310
311 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
312 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
313
314 hdesc->thread_reg = thread_reg;
315
316 tte_vaddr = (unsigned long) KERNBASE;
317 tte_data = kern_locked_tte_data;
318
319 for (i = 0; i < hdesc->num_mappings; i++) {
320 hdesc->maps[i].vaddr = tte_vaddr;
321 hdesc->maps[i].tte = tte_data;
322 tte_vaddr += 0x400000;
323 tte_data += 0x400000;
324 }
325
326 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
327
328 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
329 kimage_addr_to_ra(&sparc64_ttable_tl0),
330 __pa(hdesc));
331 if (hv_err)
332 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
333 "gives error %lu\n", hv_err);
334 }
335 #endif
336
337 extern unsigned long sparc64_cpu_startup;
338
339 /* The OBP cpu startup callback truncates the 3rd arg cookie to
340 * 32-bits (I think) so to be safe we have it read the pointer
341 * contained here so we work on >4GB machines. -DaveM
342 */
343 static struct thread_info *cpu_new_thread = NULL;
344
345 static int __devinit smp_boot_one_cpu(unsigned int cpu)
346 {
347 struct trap_per_cpu *tb = &trap_block[cpu];
348 unsigned long entry =
349 (unsigned long)(&sparc64_cpu_startup);
350 unsigned long cookie =
351 (unsigned long)(&cpu_new_thread);
352 struct task_struct *p;
353 int timeout, ret;
354
355 p = fork_idle(cpu);
356 if (IS_ERR(p))
357 return PTR_ERR(p);
358 callin_flag = 0;
359 cpu_new_thread = task_thread_info(p);
360
361 if (tlb_type == hypervisor) {
362 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
363 if (ldom_domaining_enabled)
364 ldom_startcpu_cpuid(cpu,
365 (unsigned long) cpu_new_thread);
366 else
367 #endif
368 prom_startcpu_cpuid(cpu, entry, cookie);
369 } else {
370 struct device_node *dp = of_find_node_by_cpuid(cpu);
371
372 prom_startcpu(dp->node, entry, cookie);
373 }
374
375 for (timeout = 0; timeout < 50000; timeout++) {
376 if (callin_flag)
377 break;
378 udelay(100);
379 }
380
381 if (callin_flag) {
382 ret = 0;
383 } else {
384 printk("Processor %d is stuck.\n", cpu);
385 ret = -ENODEV;
386 }
387 cpu_new_thread = NULL;
388
389 if (tb->hdesc) {
390 kfree(tb->hdesc);
391 tb->hdesc = NULL;
392 }
393
394 return ret;
395 }
396
397 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
398 {
399 u64 result, target;
400 int stuck, tmp;
401
402 if (this_is_starfire) {
403 /* map to real upaid */
404 cpu = (((cpu & 0x3c) << 1) |
405 ((cpu & 0x40) >> 4) |
406 (cpu & 0x3));
407 }
408
409 target = (cpu << 14) | 0x70;
410 again:
411 /* Ok, this is the real Spitfire Errata #54.
412 * One must read back from a UDB internal register
413 * after writes to the UDB interrupt dispatch, but
414 * before the membar Sync for that write.
415 * So we use the high UDB control register (ASI 0x7f,
416 * ADDR 0x20) for the dummy read. -DaveM
417 */
418 tmp = 0x40;
419 __asm__ __volatile__(
420 "wrpr %1, %2, %%pstate\n\t"
421 "stxa %4, [%0] %3\n\t"
422 "stxa %5, [%0+%8] %3\n\t"
423 "add %0, %8, %0\n\t"
424 "stxa %6, [%0+%8] %3\n\t"
425 "membar #Sync\n\t"
426 "stxa %%g0, [%7] %3\n\t"
427 "membar #Sync\n\t"
428 "mov 0x20, %%g1\n\t"
429 "ldxa [%%g1] 0x7f, %%g0\n\t"
430 "membar #Sync"
431 : "=r" (tmp)
432 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
433 "r" (data0), "r" (data1), "r" (data2), "r" (target),
434 "r" (0x10), "0" (tmp)
435 : "g1");
436
437 /* NOTE: PSTATE_IE is still clear. */
438 stuck = 100000;
439 do {
440 __asm__ __volatile__("ldxa [%%g0] %1, %0"
441 : "=r" (result)
442 : "i" (ASI_INTR_DISPATCH_STAT));
443 if (result == 0) {
444 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
445 : : "r" (pstate));
446 return;
447 }
448 stuck -= 1;
449 if (stuck == 0)
450 break;
451 } while (result & 0x1);
452 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
453 : : "r" (pstate));
454 if (stuck == 0) {
455 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
456 smp_processor_id(), result);
457 } else {
458 udelay(2);
459 goto again;
460 }
461 }
462
463 static inline void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
464 {
465 u64 pstate;
466 int i;
467
468 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
469 for_each_cpu_mask(i, mask)
470 spitfire_xcall_helper(data0, data1, data2, pstate, i);
471 }
472
473 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
474 * packet, but we have no use for that. However we do take advantage of
475 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
476 */
477 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
478 {
479 u64 pstate, ver, busy_mask;
480 int nack_busy_id, is_jbus, need_more;
481
482 if (cpus_empty(mask))
483 return;
484
485 /* Unfortunately, someone at Sun had the brilliant idea to make the
486 * busy/nack fields hard-coded by ITID number for this Ultra-III
487 * derivative processor.
488 */
489 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
490 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
491 (ver >> 32) == __SERRANO_ID);
492
493 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
494
495 retry:
496 need_more = 0;
497 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
498 : : "r" (pstate), "i" (PSTATE_IE));
499
500 /* Setup the dispatch data registers. */
501 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
502 "stxa %1, [%4] %6\n\t"
503 "stxa %2, [%5] %6\n\t"
504 "membar #Sync\n\t"
505 : /* no outputs */
506 : "r" (data0), "r" (data1), "r" (data2),
507 "r" (0x40), "r" (0x50), "r" (0x60),
508 "i" (ASI_INTR_W));
509
510 nack_busy_id = 0;
511 busy_mask = 0;
512 {
513 int i;
514
515 for_each_cpu_mask(i, mask) {
516 u64 target = (i << 14) | 0x70;
517
518 if (is_jbus) {
519 busy_mask |= (0x1UL << (i * 2));
520 } else {
521 target |= (nack_busy_id << 24);
522 busy_mask |= (0x1UL <<
523 (nack_busy_id * 2));
524 }
525 __asm__ __volatile__(
526 "stxa %%g0, [%0] %1\n\t"
527 "membar #Sync\n\t"
528 : /* no outputs */
529 : "r" (target), "i" (ASI_INTR_W));
530 nack_busy_id++;
531 if (nack_busy_id == 32) {
532 need_more = 1;
533 break;
534 }
535 }
536 }
537
538 /* Now, poll for completion. */
539 {
540 u64 dispatch_stat, nack_mask;
541 long stuck;
542
543 stuck = 100000 * nack_busy_id;
544 nack_mask = busy_mask << 1;
545 do {
546 __asm__ __volatile__("ldxa [%%g0] %1, %0"
547 : "=r" (dispatch_stat)
548 : "i" (ASI_INTR_DISPATCH_STAT));
549 if (!(dispatch_stat & (busy_mask | nack_mask))) {
550 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
551 : : "r" (pstate));
552 if (unlikely(need_more)) {
553 int i, cnt = 0;
554 for_each_cpu_mask(i, mask) {
555 cpu_clear(i, mask);
556 cnt++;
557 if (cnt == 32)
558 break;
559 }
560 goto retry;
561 }
562 return;
563 }
564 if (!--stuck)
565 break;
566 } while (dispatch_stat & busy_mask);
567
568 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
569 : : "r" (pstate));
570
571 if (dispatch_stat & busy_mask) {
572 /* Busy bits will not clear, continue instead
573 * of freezing up on this cpu.
574 */
575 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
576 smp_processor_id(), dispatch_stat);
577 } else {
578 int i, this_busy_nack = 0;
579
580 /* Delay some random time with interrupts enabled
581 * to prevent deadlock.
582 */
583 udelay(2 * nack_busy_id);
584
585 /* Clear out the mask bits for cpus which did not
586 * NACK us.
587 */
588 for_each_cpu_mask(i, mask) {
589 u64 check_mask;
590
591 if (is_jbus)
592 check_mask = (0x2UL << (2*i));
593 else
594 check_mask = (0x2UL <<
595 this_busy_nack);
596 if ((dispatch_stat & check_mask) == 0)
597 cpu_clear(i, mask);
598 this_busy_nack += 2;
599 if (this_busy_nack == 64)
600 break;
601 }
602
603 goto retry;
604 }
605 }
606 }
607
608 /* Multi-cpu list version. */
609 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
610 {
611 struct trap_per_cpu *tb;
612 u16 *cpu_list;
613 u64 *mondo;
614 cpumask_t error_mask;
615 unsigned long flags, status;
616 int cnt, retries, this_cpu, prev_sent, i;
617
618 if (cpus_empty(mask))
619 return;
620
621 /* We have to do this whole thing with interrupts fully disabled.
622 * Otherwise if we send an xcall from interrupt context it will
623 * corrupt both our mondo block and cpu list state.
624 *
625 * One consequence of this is that we cannot use timeout mechanisms
626 * that depend upon interrupts being delivered locally. So, for
627 * example, we cannot sample jiffies and expect it to advance.
628 *
629 * Fortunately, udelay() uses %stick/%tick so we can use that.
630 */
631 local_irq_save(flags);
632
633 this_cpu = smp_processor_id();
634 tb = &trap_block[this_cpu];
635
636 mondo = __va(tb->cpu_mondo_block_pa);
637 mondo[0] = data0;
638 mondo[1] = data1;
639 mondo[2] = data2;
640 wmb();
641
642 cpu_list = __va(tb->cpu_list_pa);
643
644 /* Setup the initial cpu list. */
645 cnt = 0;
646 for_each_cpu_mask(i, mask)
647 cpu_list[cnt++] = i;
648
649 cpus_clear(error_mask);
650 retries = 0;
651 prev_sent = 0;
652 do {
653 int forward_progress, n_sent;
654
655 status = sun4v_cpu_mondo_send(cnt,
656 tb->cpu_list_pa,
657 tb->cpu_mondo_block_pa);
658
659 /* HV_EOK means all cpus received the xcall, we're done. */
660 if (likely(status == HV_EOK))
661 break;
662
663 /* First, see if we made any forward progress.
664 *
665 * The hypervisor indicates successful sends by setting
666 * cpu list entries to the value 0xffff.
667 */
668 n_sent = 0;
669 for (i = 0; i < cnt; i++) {
670 if (likely(cpu_list[i] == 0xffff))
671 n_sent++;
672 }
673
674 forward_progress = 0;
675 if (n_sent > prev_sent)
676 forward_progress = 1;
677
678 prev_sent = n_sent;
679
680 /* If we get a HV_ECPUERROR, then one or more of the cpus
681 * in the list are in error state. Use the cpu_state()
682 * hypervisor call to find out which cpus are in error state.
683 */
684 if (unlikely(status == HV_ECPUERROR)) {
685 for (i = 0; i < cnt; i++) {
686 long err;
687 u16 cpu;
688
689 cpu = cpu_list[i];
690 if (cpu == 0xffff)
691 continue;
692
693 err = sun4v_cpu_state(cpu);
694 if (err >= 0 &&
695 err == HV_CPU_STATE_ERROR) {
696 cpu_list[i] = 0xffff;
697 cpu_set(cpu, error_mask);
698 }
699 }
700 } else if (unlikely(status != HV_EWOULDBLOCK))
701 goto fatal_mondo_error;
702
703 /* Don't bother rewriting the CPU list, just leave the
704 * 0xffff and non-0xffff entries in there and the
705 * hypervisor will do the right thing.
706 *
707 * Only advance timeout state if we didn't make any
708 * forward progress.
709 */
710 if (unlikely(!forward_progress)) {
711 if (unlikely(++retries > 10000))
712 goto fatal_mondo_timeout;
713
714 /* Delay a little bit to let other cpus catch up
715 * on their cpu mondo queue work.
716 */
717 udelay(2 * cnt);
718 }
719 } while (1);
720
721 local_irq_restore(flags);
722
723 if (unlikely(!cpus_empty(error_mask)))
724 goto fatal_mondo_cpu_error;
725
726 return;
727
728 fatal_mondo_cpu_error:
729 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
730 "were in error state\n",
731 this_cpu);
732 printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
733 for_each_cpu_mask(i, error_mask)
734 printk("%d ", i);
735 printk("]\n");
736 return;
737
738 fatal_mondo_timeout:
739 local_irq_restore(flags);
740 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
741 " progress after %d retries.\n",
742 this_cpu, retries);
743 goto dump_cpu_list_and_out;
744
745 fatal_mondo_error:
746 local_irq_restore(flags);
747 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
748 this_cpu, status);
749 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
750 "mondo_block_pa(%lx)\n",
751 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
752
753 dump_cpu_list_and_out:
754 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
755 for (i = 0; i < cnt; i++)
756 printk("%u ", cpu_list[i]);
757 printk("]\n");
758 }
759
760 /* Send cross call to all processors mentioned in MASK
761 * except self.
762 */
763 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
764 {
765 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
766 int this_cpu = get_cpu();
767
768 cpus_and(mask, mask, cpu_online_map);
769 cpu_clear(this_cpu, mask);
770
771 if (tlb_type == spitfire)
772 spitfire_xcall_deliver(data0, data1, data2, mask);
773 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
774 cheetah_xcall_deliver(data0, data1, data2, mask);
775 else
776 hypervisor_xcall_deliver(data0, data1, data2, mask);
777 /* NOTE: Caller runs local copy on master. */
778
779 put_cpu();
780 }
781
782 extern unsigned long xcall_sync_tick;
783
784 static void smp_start_sync_tick_client(int cpu)
785 {
786 cpumask_t mask = cpumask_of_cpu(cpu);
787
788 smp_cross_call_masked(&xcall_sync_tick,
789 0, 0, 0, mask);
790 }
791
792 /* Send cross call to all processors except self. */
793 #define smp_cross_call(func, ctx, data1, data2) \
794 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
795
796 struct call_data_struct {
797 void (*func) (void *info);
798 void *info;
799 atomic_t finished;
800 int wait;
801 };
802
803 static struct call_data_struct *call_data;
804
805 extern unsigned long xcall_call_function;
806
807 /**
808 * smp_call_function(): Run a function on all other CPUs.
809 * @func: The function to run. This must be fast and non-blocking.
810 * @info: An arbitrary pointer to pass to the function.
811 * @nonatomic: currently unused.
812 * @wait: If true, wait (atomically) until function has completed on other CPUs.
813 *
814 * Returns 0 on success, else a negative status code. Does not return until
815 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
816 *
817 * You must not call this function with disabled interrupts or from a
818 * hardware interrupt handler or from a bottom half handler.
819 */
820 static int smp_call_function_mask(void (*func)(void *info), void *info,
821 int nonatomic, int wait, cpumask_t mask)
822 {
823 struct call_data_struct data;
824 int cpus;
825
826 /* Can deadlock when called with interrupts disabled */
827 WARN_ON(irqs_disabled());
828
829 data.func = func;
830 data.info = info;
831 atomic_set(&data.finished, 0);
832 data.wait = wait;
833
834 spin_lock(&call_lock);
835
836 cpu_clear(smp_processor_id(), mask);
837 cpus = cpus_weight(mask);
838 if (!cpus)
839 goto out_unlock;
840
841 call_data = &data;
842 mb();
843
844 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
845
846 /* Wait for response */
847 while (atomic_read(&data.finished) != cpus)
848 cpu_relax();
849
850 out_unlock:
851 spin_unlock(&call_lock);
852
853 return 0;
854 }
855
856 int smp_call_function(void (*func)(void *info), void *info,
857 int nonatomic, int wait)
858 {
859 return smp_call_function_mask(func, info, nonatomic, wait,
860 cpu_online_map);
861 }
862
863 void smp_call_function_client(int irq, struct pt_regs *regs)
864 {
865 void (*func) (void *info) = call_data->func;
866 void *info = call_data->info;
867
868 clear_softint(1 << irq);
869
870 irq_enter();
871
872 if (!call_data->wait) {
873 /* let initiator proceed after getting data */
874 atomic_inc(&call_data->finished);
875 }
876
877 func(info);
878
879 irq_exit();
880
881 if (call_data->wait) {
882 /* let initiator proceed only after completion */
883 atomic_inc(&call_data->finished);
884 }
885 }
886
887 static void tsb_sync(void *info)
888 {
889 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
890 struct mm_struct *mm = info;
891
892 /* It is not valid to test "currrent->active_mm == mm" here.
893 *
894 * The value of "current" is not changed atomically with
895 * switch_mm(). But that's OK, we just need to check the
896 * current cpu's trap block PGD physical address.
897 */
898 if (tp->pgd_paddr == __pa(mm->pgd))
899 tsb_context_switch(mm);
900 }
901
902 void smp_tsb_sync(struct mm_struct *mm)
903 {
904 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
905 }
906
907 extern unsigned long xcall_flush_tlb_mm;
908 extern unsigned long xcall_flush_tlb_pending;
909 extern unsigned long xcall_flush_tlb_kernel_range;
910 extern unsigned long xcall_report_regs;
911 extern unsigned long xcall_receive_signal;
912 extern unsigned long xcall_new_mmu_context_version;
913
914 #ifdef DCACHE_ALIASING_POSSIBLE
915 extern unsigned long xcall_flush_dcache_page_cheetah;
916 #endif
917 extern unsigned long xcall_flush_dcache_page_spitfire;
918
919 #ifdef CONFIG_DEBUG_DCFLUSH
920 extern atomic_t dcpage_flushes;
921 extern atomic_t dcpage_flushes_xcall;
922 #endif
923
924 static inline void __local_flush_dcache_page(struct page *page)
925 {
926 #ifdef DCACHE_ALIASING_POSSIBLE
927 __flush_dcache_page(page_address(page),
928 ((tlb_type == spitfire) &&
929 page_mapping(page) != NULL));
930 #else
931 if (page_mapping(page) != NULL &&
932 tlb_type == spitfire)
933 __flush_icache_page(__pa(page_address(page)));
934 #endif
935 }
936
937 void smp_flush_dcache_page_impl(struct page *page, int cpu)
938 {
939 cpumask_t mask = cpumask_of_cpu(cpu);
940 int this_cpu;
941
942 if (tlb_type == hypervisor)
943 return;
944
945 #ifdef CONFIG_DEBUG_DCFLUSH
946 atomic_inc(&dcpage_flushes);
947 #endif
948
949 this_cpu = get_cpu();
950
951 if (cpu == this_cpu) {
952 __local_flush_dcache_page(page);
953 } else if (cpu_online(cpu)) {
954 void *pg_addr = page_address(page);
955 u64 data0;
956
957 if (tlb_type == spitfire) {
958 data0 =
959 ((u64)&xcall_flush_dcache_page_spitfire);
960 if (page_mapping(page) != NULL)
961 data0 |= ((u64)1 << 32);
962 spitfire_xcall_deliver(data0,
963 __pa(pg_addr),
964 (u64) pg_addr,
965 mask);
966 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
967 #ifdef DCACHE_ALIASING_POSSIBLE
968 data0 =
969 ((u64)&xcall_flush_dcache_page_cheetah);
970 cheetah_xcall_deliver(data0,
971 __pa(pg_addr),
972 0, mask);
973 #endif
974 }
975 #ifdef CONFIG_DEBUG_DCFLUSH
976 atomic_inc(&dcpage_flushes_xcall);
977 #endif
978 }
979
980 put_cpu();
981 }
982
983 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
984 {
985 void *pg_addr = page_address(page);
986 cpumask_t mask = cpu_online_map;
987 u64 data0;
988 int this_cpu;
989
990 if (tlb_type == hypervisor)
991 return;
992
993 this_cpu = get_cpu();
994
995 cpu_clear(this_cpu, mask);
996
997 #ifdef CONFIG_DEBUG_DCFLUSH
998 atomic_inc(&dcpage_flushes);
999 #endif
1000 if (cpus_empty(mask))
1001 goto flush_self;
1002 if (tlb_type == spitfire) {
1003 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
1004 if (page_mapping(page) != NULL)
1005 data0 |= ((u64)1 << 32);
1006 spitfire_xcall_deliver(data0,
1007 __pa(pg_addr),
1008 (u64) pg_addr,
1009 mask);
1010 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1011 #ifdef DCACHE_ALIASING_POSSIBLE
1012 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1013 cheetah_xcall_deliver(data0,
1014 __pa(pg_addr),
1015 0, mask);
1016 #endif
1017 }
1018 #ifdef CONFIG_DEBUG_DCFLUSH
1019 atomic_inc(&dcpage_flushes_xcall);
1020 #endif
1021 flush_self:
1022 __local_flush_dcache_page(page);
1023
1024 put_cpu();
1025 }
1026
1027 static void __smp_receive_signal_mask(cpumask_t mask)
1028 {
1029 smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
1030 }
1031
1032 void smp_receive_signal(int cpu)
1033 {
1034 cpumask_t mask = cpumask_of_cpu(cpu);
1035
1036 if (cpu_online(cpu))
1037 __smp_receive_signal_mask(mask);
1038 }
1039
1040 void smp_receive_signal_client(int irq, struct pt_regs *regs)
1041 {
1042 irq_enter();
1043 clear_softint(1 << irq);
1044 irq_exit();
1045 }
1046
1047 void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
1048 {
1049 struct mm_struct *mm;
1050 unsigned long flags;
1051
1052 irq_enter();
1053
1054 clear_softint(1 << irq);
1055
1056 /* See if we need to allocate a new TLB context because
1057 * the version of the one we are using is now out of date.
1058 */
1059 mm = current->active_mm;
1060 if (unlikely(!mm || (mm == &init_mm)))
1061 return;
1062
1063 spin_lock_irqsave(&mm->context.lock, flags);
1064
1065 if (unlikely(!CTX_VALID(mm->context)))
1066 get_new_mmu_context(mm);
1067
1068 spin_unlock_irqrestore(&mm->context.lock, flags);
1069
1070 load_secondary_context(mm);
1071 __flush_tlb_mm(CTX_HWBITS(mm->context),
1072 SECONDARY_CONTEXT);
1073
1074 irq_exit();
1075 }
1076
1077 void smp_new_mmu_context_version(void)
1078 {
1079 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1080 }
1081
1082 void smp_report_regs(void)
1083 {
1084 smp_cross_call(&xcall_report_regs, 0, 0, 0);
1085 }
1086
1087 /* We know that the window frames of the user have been flushed
1088 * to the stack before we get here because all callers of us
1089 * are flush_tlb_*() routines, and these run after flush_cache_*()
1090 * which performs the flushw.
1091 *
1092 * The SMP TLB coherency scheme we use works as follows:
1093 *
1094 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1095 * space has (potentially) executed on, this is the heuristic
1096 * we use to avoid doing cross calls.
1097 *
1098 * Also, for flushing from kswapd and also for clones, we
1099 * use cpu_vm_mask as the list of cpus to make run the TLB.
1100 *
1101 * 2) TLB context numbers are shared globally across all processors
1102 * in the system, this allows us to play several games to avoid
1103 * cross calls.
1104 *
1105 * One invariant is that when a cpu switches to a process, and
1106 * that processes tsk->active_mm->cpu_vm_mask does not have the
1107 * current cpu's bit set, that tlb context is flushed locally.
1108 *
1109 * If the address space is non-shared (ie. mm->count == 1) we avoid
1110 * cross calls when we want to flush the currently running process's
1111 * tlb state. This is done by clearing all cpu bits except the current
1112 * processor's in current->active_mm->cpu_vm_mask and performing the
1113 * flush locally only. This will force any subsequent cpus which run
1114 * this task to flush the context from the local tlb if the process
1115 * migrates to another cpu (again).
1116 *
1117 * 3) For shared address spaces (threads) and swapping we bite the
1118 * bullet for most cases and perform the cross call (but only to
1119 * the cpus listed in cpu_vm_mask).
1120 *
1121 * The performance gain from "optimizing" away the cross call for threads is
1122 * questionable (in theory the big win for threads is the massive sharing of
1123 * address space state across processors).
1124 */
1125
1126 /* This currently is only used by the hugetlb arch pre-fault
1127 * hook on UltraSPARC-III+ and later when changing the pagesize
1128 * bits of the context register for an address space.
1129 */
1130 void smp_flush_tlb_mm(struct mm_struct *mm)
1131 {
1132 u32 ctx = CTX_HWBITS(mm->context);
1133 int cpu = get_cpu();
1134
1135 if (atomic_read(&mm->mm_users) == 1) {
1136 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1137 goto local_flush_and_out;
1138 }
1139
1140 smp_cross_call_masked(&xcall_flush_tlb_mm,
1141 ctx, 0, 0,
1142 mm->cpu_vm_mask);
1143
1144 local_flush_and_out:
1145 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1146
1147 put_cpu();
1148 }
1149
1150 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1151 {
1152 u32 ctx = CTX_HWBITS(mm->context);
1153 int cpu = get_cpu();
1154
1155 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1156 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1157 else
1158 smp_cross_call_masked(&xcall_flush_tlb_pending,
1159 ctx, nr, (unsigned long) vaddrs,
1160 mm->cpu_vm_mask);
1161
1162 __flush_tlb_pending(ctx, nr, vaddrs);
1163
1164 put_cpu();
1165 }
1166
1167 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1168 {
1169 start &= PAGE_MASK;
1170 end = PAGE_ALIGN(end);
1171 if (start != end) {
1172 smp_cross_call(&xcall_flush_tlb_kernel_range,
1173 0, start, end);
1174
1175 __flush_tlb_kernel_range(start, end);
1176 }
1177 }
1178
1179 /* CPU capture. */
1180 /* #define CAPTURE_DEBUG */
1181 extern unsigned long xcall_capture;
1182
1183 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1184 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1185 static unsigned long penguins_are_doing_time;
1186
1187 void smp_capture(void)
1188 {
1189 int result = atomic_add_ret(1, &smp_capture_depth);
1190
1191 if (result == 1) {
1192 int ncpus = num_online_cpus();
1193
1194 #ifdef CAPTURE_DEBUG
1195 printk("CPU[%d]: Sending penguins to jail...",
1196 smp_processor_id());
1197 #endif
1198 penguins_are_doing_time = 1;
1199 membar_storestore_loadstore();
1200 atomic_inc(&smp_capture_registry);
1201 smp_cross_call(&xcall_capture, 0, 0, 0);
1202 while (atomic_read(&smp_capture_registry) != ncpus)
1203 rmb();
1204 #ifdef CAPTURE_DEBUG
1205 printk("done\n");
1206 #endif
1207 }
1208 }
1209
1210 void smp_release(void)
1211 {
1212 if (atomic_dec_and_test(&smp_capture_depth)) {
1213 #ifdef CAPTURE_DEBUG
1214 printk("CPU[%d]: Giving pardon to "
1215 "imprisoned penguins\n",
1216 smp_processor_id());
1217 #endif
1218 penguins_are_doing_time = 0;
1219 membar_storeload_storestore();
1220 atomic_dec(&smp_capture_registry);
1221 }
1222 }
1223
1224 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1225 * can service tlb flush xcalls...
1226 */
1227 extern void prom_world(int);
1228
1229 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1230 {
1231 clear_softint(1 << irq);
1232
1233 irq_enter();
1234
1235 preempt_disable();
1236
1237 __asm__ __volatile__("flushw");
1238 prom_world(1);
1239 atomic_inc(&smp_capture_registry);
1240 membar_storeload_storestore();
1241 while (penguins_are_doing_time)
1242 rmb();
1243 atomic_dec(&smp_capture_registry);
1244 prom_world(0);
1245
1246 preempt_enable();
1247
1248 irq_exit();
1249 }
1250
1251 /* /proc/profile writes can call this, don't __init it please. */
1252 int setup_profiling_timer(unsigned int multiplier)
1253 {
1254 return -EINVAL;
1255 }
1256
1257 void __init smp_prepare_cpus(unsigned int max_cpus)
1258 {
1259 }
1260
1261 void __devinit smp_prepare_boot_cpu(void)
1262 {
1263 }
1264
1265 void __devinit smp_fill_in_sib_core_maps(void)
1266 {
1267 unsigned int i;
1268
1269 for_each_present_cpu(i) {
1270 unsigned int j;
1271
1272 cpus_clear(cpu_core_map[i]);
1273 if (cpu_data(i).core_id == 0) {
1274 cpu_set(i, cpu_core_map[i]);
1275 continue;
1276 }
1277
1278 for_each_present_cpu(j) {
1279 if (cpu_data(i).core_id ==
1280 cpu_data(j).core_id)
1281 cpu_set(j, cpu_core_map[i]);
1282 }
1283 }
1284
1285 for_each_present_cpu(i) {
1286 unsigned int j;
1287
1288 cpus_clear(per_cpu(cpu_sibling_map, i));
1289 if (cpu_data(i).proc_id == -1) {
1290 cpu_set(i, per_cpu(cpu_sibling_map, i));
1291 continue;
1292 }
1293
1294 for_each_present_cpu(j) {
1295 if (cpu_data(i).proc_id ==
1296 cpu_data(j).proc_id)
1297 cpu_set(j, per_cpu(cpu_sibling_map, i));
1298 }
1299 }
1300 }
1301
1302 int __cpuinit __cpu_up(unsigned int cpu)
1303 {
1304 int ret = smp_boot_one_cpu(cpu);
1305
1306 if (!ret) {
1307 cpu_set(cpu, smp_commenced_mask);
1308 while (!cpu_isset(cpu, cpu_online_map))
1309 mb();
1310 if (!cpu_isset(cpu, cpu_online_map)) {
1311 ret = -ENODEV;
1312 } else {
1313 /* On SUN4V, writes to %tick and %stick are
1314 * not allowed.
1315 */
1316 if (tlb_type != hypervisor)
1317 smp_synchronize_one_tick(cpu);
1318 }
1319 }
1320 return ret;
1321 }
1322
1323 #ifdef CONFIG_HOTPLUG_CPU
1324 void cpu_play_dead(void)
1325 {
1326 int cpu = smp_processor_id();
1327 unsigned long pstate;
1328
1329 idle_task_exit();
1330
1331 if (tlb_type == hypervisor) {
1332 struct trap_per_cpu *tb = &trap_block[cpu];
1333
1334 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1335 tb->cpu_mondo_pa, 0);
1336 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1337 tb->dev_mondo_pa, 0);
1338 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1339 tb->resum_mondo_pa, 0);
1340 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1341 tb->nonresum_mondo_pa, 0);
1342 }
1343
1344 cpu_clear(cpu, smp_commenced_mask);
1345 membar_safe("#Sync");
1346
1347 local_irq_disable();
1348
1349 __asm__ __volatile__(
1350 "rdpr %%pstate, %0\n\t"
1351 "wrpr %0, %1, %%pstate"
1352 : "=r" (pstate)
1353 : "i" (PSTATE_IE));
1354
1355 while (1)
1356 barrier();
1357 }
1358
1359 int __cpu_disable(void)
1360 {
1361 int cpu = smp_processor_id();
1362 cpuinfo_sparc *c;
1363 int i;
1364
1365 for_each_cpu_mask(i, cpu_core_map[cpu])
1366 cpu_clear(cpu, cpu_core_map[i]);
1367 cpus_clear(cpu_core_map[cpu]);
1368
1369 for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
1370 cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
1371 cpus_clear(per_cpu(cpu_sibling_map, cpu));
1372
1373 c = &cpu_data(cpu);
1374
1375 c->core_id = 0;
1376 c->proc_id = -1;
1377
1378 spin_lock(&call_lock);
1379 cpu_clear(cpu, cpu_online_map);
1380 spin_unlock(&call_lock);
1381
1382 smp_wmb();
1383
1384 /* Make sure no interrupts point to this cpu. */
1385 fixup_irqs();
1386
1387 local_irq_enable();
1388 mdelay(1);
1389 local_irq_disable();
1390
1391 return 0;
1392 }
1393
1394 void __cpu_die(unsigned int cpu)
1395 {
1396 int i;
1397
1398 for (i = 0; i < 100; i++) {
1399 smp_rmb();
1400 if (!cpu_isset(cpu, smp_commenced_mask))
1401 break;
1402 msleep(100);
1403 }
1404 if (cpu_isset(cpu, smp_commenced_mask)) {
1405 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1406 } else {
1407 #if defined(CONFIG_SUN_LDOMS)
1408 unsigned long hv_err;
1409 int limit = 100;
1410
1411 do {
1412 hv_err = sun4v_cpu_stop(cpu);
1413 if (hv_err == HV_EOK) {
1414 cpu_clear(cpu, cpu_present_map);
1415 break;
1416 }
1417 } while (--limit > 0);
1418 if (limit <= 0) {
1419 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1420 hv_err);
1421 }
1422 #endif
1423 }
1424 }
1425 #endif
1426
1427 void __init smp_cpus_done(unsigned int max_cpus)
1428 {
1429 }
1430
1431 void smp_send_reschedule(int cpu)
1432 {
1433 smp_receive_signal(cpu);
1434 }
1435
1436 /* This is a nop because we capture all other cpus
1437 * anyways when making the PROM active.
1438 */
1439 void smp_send_stop(void)
1440 {
1441 }
1442
1443 unsigned long __per_cpu_base __read_mostly;
1444 unsigned long __per_cpu_shift __read_mostly;
1445
1446 EXPORT_SYMBOL(__per_cpu_base);
1447 EXPORT_SYMBOL(__per_cpu_shift);
1448
1449 void __init real_setup_per_cpu_areas(void)
1450 {
1451 unsigned long paddr, goal, size, i;
1452 char *ptr;
1453
1454 /* Copy section for each CPU (we discard the original) */
1455 goal = PERCPU_ENOUGH_ROOM;
1456
1457 __per_cpu_shift = PAGE_SHIFT;
1458 for (size = PAGE_SIZE; size < goal; size <<= 1UL)
1459 __per_cpu_shift++;
1460
1461 paddr = lmb_alloc(size * NR_CPUS, PAGE_SIZE);
1462 if (!paddr) {
1463 prom_printf("Cannot allocate per-cpu memory.\n");
1464 prom_halt();
1465 }
1466
1467 ptr = __va(paddr);
1468 __per_cpu_base = ptr - __per_cpu_start;
1469
1470 for (i = 0; i < NR_CPUS; i++, ptr += size)
1471 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1472
1473 /* Setup %g5 for the boot cpu. */
1474 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1475 }
This page took 0.197139 seconds and 6 git commands to generate.