clockevents: fix resume logic
[deliverable/linux.git] / arch / sparc64 / kernel / time.c
1 /* $Id: time.c,v 1.42 2002/01/23 14:33:55 davem Exp $
2 * time.c: UltraSparc timer and TOD clock support.
3 *
4 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
6 *
7 * Based largely on code which is:
8 *
9 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
10 */
11
12 #include <linux/errno.h>
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/param.h>
17 #include <linux/string.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/time.h>
21 #include <linux/timex.h>
22 #include <linux/init.h>
23 #include <linux/ioport.h>
24 #include <linux/mc146818rtc.h>
25 #include <linux/delay.h>
26 #include <linux/profile.h>
27 #include <linux/bcd.h>
28 #include <linux/jiffies.h>
29 #include <linux/cpufreq.h>
30 #include <linux/percpu.h>
31 #include <linux/profile.h>
32 #include <linux/miscdevice.h>
33 #include <linux/rtc.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/clocksource.h>
37
38 #include <asm/oplib.h>
39 #include <asm/mostek.h>
40 #include <asm/timer.h>
41 #include <asm/irq.h>
42 #include <asm/io.h>
43 #include <asm/prom.h>
44 #include <asm/of_device.h>
45 #include <asm/starfire.h>
46 #include <asm/smp.h>
47 #include <asm/sections.h>
48 #include <asm/cpudata.h>
49 #include <asm/uaccess.h>
50 #include <asm/prom.h>
51 #include <asm/irq_regs.h>
52
53 DEFINE_SPINLOCK(mostek_lock);
54 DEFINE_SPINLOCK(rtc_lock);
55 void __iomem *mstk48t02_regs = NULL;
56 #ifdef CONFIG_PCI
57 unsigned long ds1287_regs = 0UL;
58 static void __iomem *bq4802_regs;
59 #endif
60
61 static void __iomem *mstk48t08_regs;
62 static void __iomem *mstk48t59_regs;
63
64 static int set_rtc_mmss(unsigned long);
65
66 #define TICK_PRIV_BIT (1UL << 63)
67 #define TICKCMP_IRQ_BIT (1UL << 63)
68
69 #ifdef CONFIG_SMP
70 unsigned long profile_pc(struct pt_regs *regs)
71 {
72 unsigned long pc = instruction_pointer(regs);
73
74 if (in_lock_functions(pc))
75 return regs->u_regs[UREG_RETPC];
76 return pc;
77 }
78 EXPORT_SYMBOL(profile_pc);
79 #endif
80
81 static void tick_disable_protection(void)
82 {
83 /* Set things up so user can access tick register for profiling
84 * purposes. Also workaround BB_ERRATA_1 by doing a dummy
85 * read back of %tick after writing it.
86 */
87 __asm__ __volatile__(
88 " ba,pt %%xcc, 1f\n"
89 " nop\n"
90 " .align 64\n"
91 "1: rd %%tick, %%g2\n"
92 " add %%g2, 6, %%g2\n"
93 " andn %%g2, %0, %%g2\n"
94 " wrpr %%g2, 0, %%tick\n"
95 " rdpr %%tick, %%g0"
96 : /* no outputs */
97 : "r" (TICK_PRIV_BIT)
98 : "g2");
99 }
100
101 static void tick_disable_irq(void)
102 {
103 __asm__ __volatile__(
104 " ba,pt %%xcc, 1f\n"
105 " nop\n"
106 " .align 64\n"
107 "1: wr %0, 0x0, %%tick_cmpr\n"
108 " rd %%tick_cmpr, %%g0"
109 : /* no outputs */
110 : "r" (TICKCMP_IRQ_BIT));
111 }
112
113 static void tick_init_tick(void)
114 {
115 tick_disable_protection();
116 tick_disable_irq();
117 }
118
119 static unsigned long tick_get_tick(void)
120 {
121 unsigned long ret;
122
123 __asm__ __volatile__("rd %%tick, %0\n\t"
124 "mov %0, %0"
125 : "=r" (ret));
126
127 return ret & ~TICK_PRIV_BIT;
128 }
129
130 static int tick_add_compare(unsigned long adj)
131 {
132 unsigned long orig_tick, new_tick, new_compare;
133
134 __asm__ __volatile__("rd %%tick, %0"
135 : "=r" (orig_tick));
136
137 orig_tick &= ~TICKCMP_IRQ_BIT;
138
139 /* Workaround for Spitfire Errata (#54 I think??), I discovered
140 * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
141 * number 103640.
142 *
143 * On Blackbird writes to %tick_cmpr can fail, the
144 * workaround seems to be to execute the wr instruction
145 * at the start of an I-cache line, and perform a dummy
146 * read back from %tick_cmpr right after writing to it. -DaveM
147 */
148 __asm__ __volatile__("ba,pt %%xcc, 1f\n\t"
149 " add %1, %2, %0\n\t"
150 ".align 64\n"
151 "1:\n\t"
152 "wr %0, 0, %%tick_cmpr\n\t"
153 "rd %%tick_cmpr, %%g0\n\t"
154 : "=r" (new_compare)
155 : "r" (orig_tick), "r" (adj));
156
157 __asm__ __volatile__("rd %%tick, %0"
158 : "=r" (new_tick));
159 new_tick &= ~TICKCMP_IRQ_BIT;
160
161 return ((long)(new_tick - (orig_tick+adj))) > 0L;
162 }
163
164 static unsigned long tick_add_tick(unsigned long adj)
165 {
166 unsigned long new_tick;
167
168 /* Also need to handle Blackbird bug here too. */
169 __asm__ __volatile__("rd %%tick, %0\n\t"
170 "add %0, %1, %0\n\t"
171 "wrpr %0, 0, %%tick\n\t"
172 : "=&r" (new_tick)
173 : "r" (adj));
174
175 return new_tick;
176 }
177
178 static struct sparc64_tick_ops tick_operations __read_mostly = {
179 .name = "tick",
180 .init_tick = tick_init_tick,
181 .disable_irq = tick_disable_irq,
182 .get_tick = tick_get_tick,
183 .add_tick = tick_add_tick,
184 .add_compare = tick_add_compare,
185 .softint_mask = 1UL << 0,
186 };
187
188 struct sparc64_tick_ops *tick_ops __read_mostly = &tick_operations;
189
190 static void stick_disable_irq(void)
191 {
192 __asm__ __volatile__(
193 "wr %0, 0x0, %%asr25"
194 : /* no outputs */
195 : "r" (TICKCMP_IRQ_BIT));
196 }
197
198 static void stick_init_tick(void)
199 {
200 /* Writes to the %tick and %stick register are not
201 * allowed on sun4v. The Hypervisor controls that
202 * bit, per-strand.
203 */
204 if (tlb_type != hypervisor) {
205 tick_disable_protection();
206 tick_disable_irq();
207
208 /* Let the user get at STICK too. */
209 __asm__ __volatile__(
210 " rd %%asr24, %%g2\n"
211 " andn %%g2, %0, %%g2\n"
212 " wr %%g2, 0, %%asr24"
213 : /* no outputs */
214 : "r" (TICK_PRIV_BIT)
215 : "g1", "g2");
216 }
217
218 stick_disable_irq();
219 }
220
221 static unsigned long stick_get_tick(void)
222 {
223 unsigned long ret;
224
225 __asm__ __volatile__("rd %%asr24, %0"
226 : "=r" (ret));
227
228 return ret & ~TICK_PRIV_BIT;
229 }
230
231 static unsigned long stick_add_tick(unsigned long adj)
232 {
233 unsigned long new_tick;
234
235 __asm__ __volatile__("rd %%asr24, %0\n\t"
236 "add %0, %1, %0\n\t"
237 "wr %0, 0, %%asr24\n\t"
238 : "=&r" (new_tick)
239 : "r" (adj));
240
241 return new_tick;
242 }
243
244 static int stick_add_compare(unsigned long adj)
245 {
246 unsigned long orig_tick, new_tick;
247
248 __asm__ __volatile__("rd %%asr24, %0"
249 : "=r" (orig_tick));
250 orig_tick &= ~TICKCMP_IRQ_BIT;
251
252 __asm__ __volatile__("wr %0, 0, %%asr25"
253 : /* no outputs */
254 : "r" (orig_tick + adj));
255
256 __asm__ __volatile__("rd %%asr24, %0"
257 : "=r" (new_tick));
258 new_tick &= ~TICKCMP_IRQ_BIT;
259
260 return ((long)(new_tick - (orig_tick+adj))) > 0L;
261 }
262
263 static struct sparc64_tick_ops stick_operations __read_mostly = {
264 .name = "stick",
265 .init_tick = stick_init_tick,
266 .disable_irq = stick_disable_irq,
267 .get_tick = stick_get_tick,
268 .add_tick = stick_add_tick,
269 .add_compare = stick_add_compare,
270 .softint_mask = 1UL << 16,
271 };
272
273 /* On Hummingbird the STICK/STICK_CMPR register is implemented
274 * in I/O space. There are two 64-bit registers each, the
275 * first holds the low 32-bits of the value and the second holds
276 * the high 32-bits.
277 *
278 * Since STICK is constantly updating, we have to access it carefully.
279 *
280 * The sequence we use to read is:
281 * 1) read high
282 * 2) read low
283 * 3) read high again, if it rolled re-read both low and high again.
284 *
285 * Writing STICK safely is also tricky:
286 * 1) write low to zero
287 * 2) write high
288 * 3) write low
289 */
290 #define HBIRD_STICKCMP_ADDR 0x1fe0000f060UL
291 #define HBIRD_STICK_ADDR 0x1fe0000f070UL
292
293 static unsigned long __hbird_read_stick(void)
294 {
295 unsigned long ret, tmp1, tmp2, tmp3;
296 unsigned long addr = HBIRD_STICK_ADDR+8;
297
298 __asm__ __volatile__("ldxa [%1] %5, %2\n"
299 "1:\n\t"
300 "sub %1, 0x8, %1\n\t"
301 "ldxa [%1] %5, %3\n\t"
302 "add %1, 0x8, %1\n\t"
303 "ldxa [%1] %5, %4\n\t"
304 "cmp %4, %2\n\t"
305 "bne,a,pn %%xcc, 1b\n\t"
306 " mov %4, %2\n\t"
307 "sllx %4, 32, %4\n\t"
308 "or %3, %4, %0\n\t"
309 : "=&r" (ret), "=&r" (addr),
310 "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3)
311 : "i" (ASI_PHYS_BYPASS_EC_E), "1" (addr));
312
313 return ret;
314 }
315
316 static void __hbird_write_stick(unsigned long val)
317 {
318 unsigned long low = (val & 0xffffffffUL);
319 unsigned long high = (val >> 32UL);
320 unsigned long addr = HBIRD_STICK_ADDR;
321
322 __asm__ __volatile__("stxa %%g0, [%0] %4\n\t"
323 "add %0, 0x8, %0\n\t"
324 "stxa %3, [%0] %4\n\t"
325 "sub %0, 0x8, %0\n\t"
326 "stxa %2, [%0] %4"
327 : "=&r" (addr)
328 : "0" (addr), "r" (low), "r" (high),
329 "i" (ASI_PHYS_BYPASS_EC_E));
330 }
331
332 static void __hbird_write_compare(unsigned long val)
333 {
334 unsigned long low = (val & 0xffffffffUL);
335 unsigned long high = (val >> 32UL);
336 unsigned long addr = HBIRD_STICKCMP_ADDR + 0x8UL;
337
338 __asm__ __volatile__("stxa %3, [%0] %4\n\t"
339 "sub %0, 0x8, %0\n\t"
340 "stxa %2, [%0] %4"
341 : "=&r" (addr)
342 : "0" (addr), "r" (low), "r" (high),
343 "i" (ASI_PHYS_BYPASS_EC_E));
344 }
345
346 static void hbtick_disable_irq(void)
347 {
348 __hbird_write_compare(TICKCMP_IRQ_BIT);
349 }
350
351 static void hbtick_init_tick(void)
352 {
353 tick_disable_protection();
354
355 /* XXX This seems to be necessary to 'jumpstart' Hummingbird
356 * XXX into actually sending STICK interrupts. I think because
357 * XXX of how we store %tick_cmpr in head.S this somehow resets the
358 * XXX {TICK + STICK} interrupt mux. -DaveM
359 */
360 __hbird_write_stick(__hbird_read_stick());
361
362 hbtick_disable_irq();
363 }
364
365 static unsigned long hbtick_get_tick(void)
366 {
367 return __hbird_read_stick() & ~TICK_PRIV_BIT;
368 }
369
370 static unsigned long hbtick_add_tick(unsigned long adj)
371 {
372 unsigned long val;
373
374 val = __hbird_read_stick() + adj;
375 __hbird_write_stick(val);
376
377 return val;
378 }
379
380 static int hbtick_add_compare(unsigned long adj)
381 {
382 unsigned long val = __hbird_read_stick();
383 unsigned long val2;
384
385 val &= ~TICKCMP_IRQ_BIT;
386 val += adj;
387 __hbird_write_compare(val);
388
389 val2 = __hbird_read_stick() & ~TICKCMP_IRQ_BIT;
390
391 return ((long)(val2 - val)) > 0L;
392 }
393
394 static struct sparc64_tick_ops hbtick_operations __read_mostly = {
395 .name = "hbtick",
396 .init_tick = hbtick_init_tick,
397 .disable_irq = hbtick_disable_irq,
398 .get_tick = hbtick_get_tick,
399 .add_tick = hbtick_add_tick,
400 .add_compare = hbtick_add_compare,
401 .softint_mask = 1UL << 0,
402 };
403
404 static unsigned long timer_ticks_per_nsec_quotient __read_mostly;
405
406 #define TICK_SIZE (tick_nsec / 1000)
407
408 #define USEC_AFTER 500000
409 #define USEC_BEFORE 500000
410
411 static void sync_cmos_clock(unsigned long dummy);
412
413 static DEFINE_TIMER(sync_cmos_timer, sync_cmos_clock, 0, 0);
414
415 static void sync_cmos_clock(unsigned long dummy)
416 {
417 struct timeval now, next;
418 int fail = 1;
419
420 /*
421 * If we have an externally synchronized Linux clock, then update
422 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
423 * called as close as possible to 500 ms before the new second starts.
424 * This code is run on a timer. If the clock is set, that timer
425 * may not expire at the correct time. Thus, we adjust...
426 */
427 if (!ntp_synced())
428 /*
429 * Not synced, exit, do not restart a timer (if one is
430 * running, let it run out).
431 */
432 return;
433
434 do_gettimeofday(&now);
435 if (now.tv_usec >= USEC_AFTER - ((unsigned) TICK_SIZE) / 2 &&
436 now.tv_usec <= USEC_BEFORE + ((unsigned) TICK_SIZE) / 2)
437 fail = set_rtc_mmss(now.tv_sec);
438
439 next.tv_usec = USEC_AFTER - now.tv_usec;
440 if (next.tv_usec <= 0)
441 next.tv_usec += USEC_PER_SEC;
442
443 if (!fail)
444 next.tv_sec = 659;
445 else
446 next.tv_sec = 0;
447
448 if (next.tv_usec >= USEC_PER_SEC) {
449 next.tv_sec++;
450 next.tv_usec -= USEC_PER_SEC;
451 }
452 mod_timer(&sync_cmos_timer, jiffies + timeval_to_jiffies(&next));
453 }
454
455 void notify_arch_cmos_timer(void)
456 {
457 mod_timer(&sync_cmos_timer, jiffies + 1);
458 }
459
460 /* Kick start a stopped clock (procedure from the Sun NVRAM/hostid FAQ). */
461 static void __init kick_start_clock(void)
462 {
463 void __iomem *regs = mstk48t02_regs;
464 u8 sec, tmp;
465 int i, count;
466
467 prom_printf("CLOCK: Clock was stopped. Kick start ");
468
469 spin_lock_irq(&mostek_lock);
470
471 /* Turn on the kick start bit to start the oscillator. */
472 tmp = mostek_read(regs + MOSTEK_CREG);
473 tmp |= MSTK_CREG_WRITE;
474 mostek_write(regs + MOSTEK_CREG, tmp);
475 tmp = mostek_read(regs + MOSTEK_SEC);
476 tmp &= ~MSTK_STOP;
477 mostek_write(regs + MOSTEK_SEC, tmp);
478 tmp = mostek_read(regs + MOSTEK_HOUR);
479 tmp |= MSTK_KICK_START;
480 mostek_write(regs + MOSTEK_HOUR, tmp);
481 tmp = mostek_read(regs + MOSTEK_CREG);
482 tmp &= ~MSTK_CREG_WRITE;
483 mostek_write(regs + MOSTEK_CREG, tmp);
484
485 spin_unlock_irq(&mostek_lock);
486
487 /* Delay to allow the clock oscillator to start. */
488 sec = MSTK_REG_SEC(regs);
489 for (i = 0; i < 3; i++) {
490 while (sec == MSTK_REG_SEC(regs))
491 for (count = 0; count < 100000; count++)
492 /* nothing */ ;
493 prom_printf(".");
494 sec = MSTK_REG_SEC(regs);
495 }
496 prom_printf("\n");
497
498 spin_lock_irq(&mostek_lock);
499
500 /* Turn off kick start and set a "valid" time and date. */
501 tmp = mostek_read(regs + MOSTEK_CREG);
502 tmp |= MSTK_CREG_WRITE;
503 mostek_write(regs + MOSTEK_CREG, tmp);
504 tmp = mostek_read(regs + MOSTEK_HOUR);
505 tmp &= ~MSTK_KICK_START;
506 mostek_write(regs + MOSTEK_HOUR, tmp);
507 MSTK_SET_REG_SEC(regs,0);
508 MSTK_SET_REG_MIN(regs,0);
509 MSTK_SET_REG_HOUR(regs,0);
510 MSTK_SET_REG_DOW(regs,5);
511 MSTK_SET_REG_DOM(regs,1);
512 MSTK_SET_REG_MONTH(regs,8);
513 MSTK_SET_REG_YEAR(regs,1996 - MSTK_YEAR_ZERO);
514 tmp = mostek_read(regs + MOSTEK_CREG);
515 tmp &= ~MSTK_CREG_WRITE;
516 mostek_write(regs + MOSTEK_CREG, tmp);
517
518 spin_unlock_irq(&mostek_lock);
519
520 /* Ensure the kick start bit is off. If it isn't, turn it off. */
521 while (mostek_read(regs + MOSTEK_HOUR) & MSTK_KICK_START) {
522 prom_printf("CLOCK: Kick start still on!\n");
523
524 spin_lock_irq(&mostek_lock);
525
526 tmp = mostek_read(regs + MOSTEK_CREG);
527 tmp |= MSTK_CREG_WRITE;
528 mostek_write(regs + MOSTEK_CREG, tmp);
529
530 tmp = mostek_read(regs + MOSTEK_HOUR);
531 tmp &= ~MSTK_KICK_START;
532 mostek_write(regs + MOSTEK_HOUR, tmp);
533
534 tmp = mostek_read(regs + MOSTEK_CREG);
535 tmp &= ~MSTK_CREG_WRITE;
536 mostek_write(regs + MOSTEK_CREG, tmp);
537
538 spin_unlock_irq(&mostek_lock);
539 }
540
541 prom_printf("CLOCK: Kick start procedure successful.\n");
542 }
543
544 /* Return nonzero if the clock chip battery is low. */
545 static int __init has_low_battery(void)
546 {
547 void __iomem *regs = mstk48t02_regs;
548 u8 data1, data2;
549
550 spin_lock_irq(&mostek_lock);
551
552 data1 = mostek_read(regs + MOSTEK_EEPROM); /* Read some data. */
553 mostek_write(regs + MOSTEK_EEPROM, ~data1); /* Write back the complement. */
554 data2 = mostek_read(regs + MOSTEK_EEPROM); /* Read back the complement. */
555 mostek_write(regs + MOSTEK_EEPROM, data1); /* Restore original value. */
556
557 spin_unlock_irq(&mostek_lock);
558
559 return (data1 == data2); /* Was the write blocked? */
560 }
561
562 /* Probe for the real time clock chip. */
563 static void __init set_system_time(void)
564 {
565 unsigned int year, mon, day, hour, min, sec;
566 void __iomem *mregs = mstk48t02_regs;
567 #ifdef CONFIG_PCI
568 unsigned long dregs = ds1287_regs;
569 void __iomem *bregs = bq4802_regs;
570 #else
571 unsigned long dregs = 0UL;
572 void __iomem *bregs = 0UL;
573 #endif
574 u8 tmp;
575
576 if (!mregs && !dregs && !bregs) {
577 prom_printf("Something wrong, clock regs not mapped yet.\n");
578 prom_halt();
579 }
580
581 if (mregs) {
582 spin_lock_irq(&mostek_lock);
583
584 /* Traditional Mostek chip. */
585 tmp = mostek_read(mregs + MOSTEK_CREG);
586 tmp |= MSTK_CREG_READ;
587 mostek_write(mregs + MOSTEK_CREG, tmp);
588
589 sec = MSTK_REG_SEC(mregs);
590 min = MSTK_REG_MIN(mregs);
591 hour = MSTK_REG_HOUR(mregs);
592 day = MSTK_REG_DOM(mregs);
593 mon = MSTK_REG_MONTH(mregs);
594 year = MSTK_CVT_YEAR( MSTK_REG_YEAR(mregs) );
595 } else if (bregs) {
596 unsigned char val = readb(bregs + 0x0e);
597 unsigned int century;
598
599 /* BQ4802 RTC chip. */
600
601 writeb(val | 0x08, bregs + 0x0e);
602
603 sec = readb(bregs + 0x00);
604 min = readb(bregs + 0x02);
605 hour = readb(bregs + 0x04);
606 day = readb(bregs + 0x06);
607 mon = readb(bregs + 0x09);
608 year = readb(bregs + 0x0a);
609 century = readb(bregs + 0x0f);
610
611 writeb(val, bregs + 0x0e);
612
613 BCD_TO_BIN(sec);
614 BCD_TO_BIN(min);
615 BCD_TO_BIN(hour);
616 BCD_TO_BIN(day);
617 BCD_TO_BIN(mon);
618 BCD_TO_BIN(year);
619 BCD_TO_BIN(century);
620
621 year += (century * 100);
622 } else {
623 /* Dallas 12887 RTC chip. */
624
625 do {
626 sec = CMOS_READ(RTC_SECONDS);
627 min = CMOS_READ(RTC_MINUTES);
628 hour = CMOS_READ(RTC_HOURS);
629 day = CMOS_READ(RTC_DAY_OF_MONTH);
630 mon = CMOS_READ(RTC_MONTH);
631 year = CMOS_READ(RTC_YEAR);
632 } while (sec != CMOS_READ(RTC_SECONDS));
633
634 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
635 BCD_TO_BIN(sec);
636 BCD_TO_BIN(min);
637 BCD_TO_BIN(hour);
638 BCD_TO_BIN(day);
639 BCD_TO_BIN(mon);
640 BCD_TO_BIN(year);
641 }
642 if ((year += 1900) < 1970)
643 year += 100;
644 }
645
646 xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
647 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
648 set_normalized_timespec(&wall_to_monotonic,
649 -xtime.tv_sec, -xtime.tv_nsec);
650
651 if (mregs) {
652 tmp = mostek_read(mregs + MOSTEK_CREG);
653 tmp &= ~MSTK_CREG_READ;
654 mostek_write(mregs + MOSTEK_CREG, tmp);
655
656 spin_unlock_irq(&mostek_lock);
657 }
658 }
659
660 /* davem suggests we keep this within the 4M locked kernel image */
661 static u32 starfire_get_time(void)
662 {
663 static char obp_gettod[32];
664 static u32 unix_tod;
665
666 sprintf(obp_gettod, "h# %08x unix-gettod",
667 (unsigned int) (long) &unix_tod);
668 prom_feval(obp_gettod);
669
670 return unix_tod;
671 }
672
673 static int starfire_set_time(u32 val)
674 {
675 /* Do nothing, time is set using the service processor
676 * console on this platform.
677 */
678 return 0;
679 }
680
681 static u32 hypervisor_get_time(void)
682 {
683 unsigned long ret, time;
684 int retries = 10000;
685
686 retry:
687 ret = sun4v_tod_get(&time);
688 if (ret == HV_EOK)
689 return time;
690 if (ret == HV_EWOULDBLOCK) {
691 if (--retries > 0) {
692 udelay(100);
693 goto retry;
694 }
695 printk(KERN_WARNING "SUN4V: tod_get() timed out.\n");
696 return 0;
697 }
698 printk(KERN_WARNING "SUN4V: tod_get() not supported.\n");
699 return 0;
700 }
701
702 static int hypervisor_set_time(u32 secs)
703 {
704 unsigned long ret;
705 int retries = 10000;
706
707 retry:
708 ret = sun4v_tod_set(secs);
709 if (ret == HV_EOK)
710 return 0;
711 if (ret == HV_EWOULDBLOCK) {
712 if (--retries > 0) {
713 udelay(100);
714 goto retry;
715 }
716 printk(KERN_WARNING "SUN4V: tod_set() timed out.\n");
717 return -EAGAIN;
718 }
719 printk(KERN_WARNING "SUN4V: tod_set() not supported.\n");
720 return -EOPNOTSUPP;
721 }
722
723 static int __init clock_model_matches(const char *model)
724 {
725 if (strcmp(model, "mk48t02") &&
726 strcmp(model, "mk48t08") &&
727 strcmp(model, "mk48t59") &&
728 strcmp(model, "m5819") &&
729 strcmp(model, "m5819p") &&
730 strcmp(model, "m5823") &&
731 strcmp(model, "ds1287") &&
732 strcmp(model, "bq4802"))
733 return 0;
734
735 return 1;
736 }
737
738 static int __devinit clock_probe(struct of_device *op, const struct of_device_id *match)
739 {
740 struct device_node *dp = op->node;
741 const char *model = of_get_property(dp, "model", NULL);
742 const char *compat = of_get_property(dp, "compatible", NULL);
743 unsigned long size, flags;
744 void __iomem *regs;
745
746 if (!model)
747 model = compat;
748
749 if (!model || !clock_model_matches(model))
750 return -ENODEV;
751
752 /* On an Enterprise system there can be multiple mostek clocks.
753 * We should only match the one that is on the central FHC bus.
754 */
755 if (!strcmp(dp->parent->name, "fhc") &&
756 strcmp(dp->parent->parent->name, "central") != 0)
757 return -ENODEV;
758
759 size = (op->resource[0].end - op->resource[0].start) + 1;
760 regs = of_ioremap(&op->resource[0], 0, size, "clock");
761 if (!regs)
762 return -ENOMEM;
763
764 #ifdef CONFIG_PCI
765 if (!strcmp(model, "ds1287") ||
766 !strcmp(model, "m5819") ||
767 !strcmp(model, "m5819p") ||
768 !strcmp(model, "m5823")) {
769 ds1287_regs = (unsigned long) regs;
770 } else if (!strcmp(model, "bq4802")) {
771 bq4802_regs = regs;
772 } else
773 #endif
774 if (model[5] == '0' && model[6] == '2') {
775 mstk48t02_regs = regs;
776 } else if(model[5] == '0' && model[6] == '8') {
777 mstk48t08_regs = regs;
778 mstk48t02_regs = mstk48t08_regs + MOSTEK_48T08_48T02;
779 } else {
780 mstk48t59_regs = regs;
781 mstk48t02_regs = mstk48t59_regs + MOSTEK_48T59_48T02;
782 }
783
784 printk(KERN_INFO "%s: Clock regs at %p\n", dp->full_name, regs);
785
786 local_irq_save(flags);
787
788 if (mstk48t02_regs != NULL) {
789 /* Report a low battery voltage condition. */
790 if (has_low_battery())
791 prom_printf("NVRAM: Low battery voltage!\n");
792
793 /* Kick start the clock if it is completely stopped. */
794 if (mostek_read(mstk48t02_regs + MOSTEK_SEC) & MSTK_STOP)
795 kick_start_clock();
796 }
797
798 set_system_time();
799
800 local_irq_restore(flags);
801
802 return 0;
803 }
804
805 static struct of_device_id clock_match[] = {
806 {
807 .name = "eeprom",
808 },
809 {
810 .name = "rtc",
811 },
812 {},
813 };
814
815 static struct of_platform_driver clock_driver = {
816 .name = "clock",
817 .match_table = clock_match,
818 .probe = clock_probe,
819 };
820
821 static int __init clock_init(void)
822 {
823 if (this_is_starfire) {
824 xtime.tv_sec = starfire_get_time();
825 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
826 set_normalized_timespec(&wall_to_monotonic,
827 -xtime.tv_sec, -xtime.tv_nsec);
828 return 0;
829 }
830 if (tlb_type == hypervisor) {
831 xtime.tv_sec = hypervisor_get_time();
832 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
833 set_normalized_timespec(&wall_to_monotonic,
834 -xtime.tv_sec, -xtime.tv_nsec);
835 return 0;
836 }
837
838 return of_register_driver(&clock_driver, &of_platform_bus_type);
839 }
840
841 /* Must be after subsys_initcall() so that busses are probed. Must
842 * be before device_initcall() because things like the RTC driver
843 * need to see the clock registers.
844 */
845 fs_initcall(clock_init);
846
847 /* This is gets the master TICK_INT timer going. */
848 static unsigned long sparc64_init_timers(void)
849 {
850 struct device_node *dp;
851 unsigned long clock;
852
853 dp = of_find_node_by_path("/");
854 if (tlb_type == spitfire) {
855 unsigned long ver, manuf, impl;
856
857 __asm__ __volatile__ ("rdpr %%ver, %0"
858 : "=&r" (ver));
859 manuf = ((ver >> 48) & 0xffff);
860 impl = ((ver >> 32) & 0xffff);
861 if (manuf == 0x17 && impl == 0x13) {
862 /* Hummingbird, aka Ultra-IIe */
863 tick_ops = &hbtick_operations;
864 clock = of_getintprop_default(dp, "stick-frequency", 0);
865 } else {
866 tick_ops = &tick_operations;
867 clock = local_cpu_data().clock_tick;
868 }
869 } else {
870 tick_ops = &stick_operations;
871 clock = of_getintprop_default(dp, "stick-frequency", 0);
872 }
873
874 return clock;
875 }
876
877 struct freq_table {
878 unsigned long clock_tick_ref;
879 unsigned int ref_freq;
880 };
881 static DEFINE_PER_CPU(struct freq_table, sparc64_freq_table) = { 0, 0 };
882
883 unsigned long sparc64_get_clock_tick(unsigned int cpu)
884 {
885 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
886
887 if (ft->clock_tick_ref)
888 return ft->clock_tick_ref;
889 return cpu_data(cpu).clock_tick;
890 }
891
892 #ifdef CONFIG_CPU_FREQ
893
894 static int sparc64_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
895 void *data)
896 {
897 struct cpufreq_freqs *freq = data;
898 unsigned int cpu = freq->cpu;
899 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
900
901 if (!ft->ref_freq) {
902 ft->ref_freq = freq->old;
903 ft->clock_tick_ref = cpu_data(cpu).clock_tick;
904 }
905 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
906 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
907 (val == CPUFREQ_RESUMECHANGE)) {
908 cpu_data(cpu).clock_tick =
909 cpufreq_scale(ft->clock_tick_ref,
910 ft->ref_freq,
911 freq->new);
912 }
913
914 return 0;
915 }
916
917 static struct notifier_block sparc64_cpufreq_notifier_block = {
918 .notifier_call = sparc64_cpufreq_notifier
919 };
920
921 #endif /* CONFIG_CPU_FREQ */
922
923 static int sparc64_next_event(unsigned long delta,
924 struct clock_event_device *evt)
925 {
926 return tick_ops->add_compare(delta) ? -ETIME : 0;
927 }
928
929 static void sparc64_timer_setup(enum clock_event_mode mode,
930 struct clock_event_device *evt)
931 {
932 switch (mode) {
933 case CLOCK_EVT_MODE_ONESHOT:
934 case CLOCK_EVT_MODE_RESUME:
935 break;
936
937 case CLOCK_EVT_MODE_SHUTDOWN:
938 tick_ops->disable_irq();
939 break;
940
941 case CLOCK_EVT_MODE_PERIODIC:
942 case CLOCK_EVT_MODE_UNUSED:
943 WARN_ON(1);
944 break;
945 };
946 }
947
948 static struct clock_event_device sparc64_clockevent = {
949 .features = CLOCK_EVT_FEAT_ONESHOT,
950 .set_mode = sparc64_timer_setup,
951 .set_next_event = sparc64_next_event,
952 .rating = 100,
953 .shift = 30,
954 .irq = -1,
955 };
956 static DEFINE_PER_CPU(struct clock_event_device, sparc64_events);
957
958 void timer_interrupt(int irq, struct pt_regs *regs)
959 {
960 struct pt_regs *old_regs = set_irq_regs(regs);
961 unsigned long tick_mask = tick_ops->softint_mask;
962 int cpu = smp_processor_id();
963 struct clock_event_device *evt = &per_cpu(sparc64_events, cpu);
964
965 clear_softint(tick_mask);
966
967 irq_enter();
968
969 kstat_this_cpu.irqs[0]++;
970
971 if (unlikely(!evt->event_handler)) {
972 printk(KERN_WARNING
973 "Spurious SPARC64 timer interrupt on cpu %d\n", cpu);
974 } else
975 evt->event_handler(evt);
976
977 irq_exit();
978
979 set_irq_regs(old_regs);
980 }
981
982 void __devinit setup_sparc64_timer(void)
983 {
984 struct clock_event_device *sevt;
985 unsigned long pstate;
986
987 /* Guarantee that the following sequences execute
988 * uninterrupted.
989 */
990 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
991 "wrpr %0, %1, %%pstate"
992 : "=r" (pstate)
993 : "i" (PSTATE_IE));
994
995 tick_ops->init_tick();
996
997 /* Restore PSTATE_IE. */
998 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
999 : /* no outputs */
1000 : "r" (pstate));
1001
1002 sevt = &__get_cpu_var(sparc64_events);
1003
1004 memcpy(sevt, &sparc64_clockevent, sizeof(*sevt));
1005 sevt->cpumask = cpumask_of_cpu(smp_processor_id());
1006
1007 clockevents_register_device(sevt);
1008 }
1009
1010 #define SPARC64_NSEC_PER_CYC_SHIFT 10UL
1011
1012 static struct clocksource clocksource_tick = {
1013 .rating = 100,
1014 .mask = CLOCKSOURCE_MASK(64),
1015 .shift = 16,
1016 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
1017 };
1018
1019 static void __init setup_clockevent_multiplier(unsigned long hz)
1020 {
1021 unsigned long mult, shift = 32;
1022
1023 while (1) {
1024 mult = div_sc(hz, NSEC_PER_SEC, shift);
1025 if (mult && (mult >> 32UL) == 0UL)
1026 break;
1027
1028 shift--;
1029 }
1030
1031 sparc64_clockevent.shift = shift;
1032 sparc64_clockevent.mult = mult;
1033 }
1034
1035 static unsigned long tb_ticks_per_usec __read_mostly;
1036
1037 void __delay(unsigned long loops)
1038 {
1039 unsigned long bclock, now;
1040
1041 bclock = tick_ops->get_tick();
1042 do {
1043 now = tick_ops->get_tick();
1044 } while ((now-bclock) < loops);
1045 }
1046 EXPORT_SYMBOL(__delay);
1047
1048 void udelay(unsigned long usecs)
1049 {
1050 __delay(tb_ticks_per_usec * usecs);
1051 }
1052 EXPORT_SYMBOL(udelay);
1053
1054 void __init time_init(void)
1055 {
1056 unsigned long clock = sparc64_init_timers();
1057
1058 tb_ticks_per_usec = clock / USEC_PER_SEC;
1059
1060 timer_ticks_per_nsec_quotient =
1061 clocksource_hz2mult(clock, SPARC64_NSEC_PER_CYC_SHIFT);
1062
1063 clocksource_tick.name = tick_ops->name;
1064 clocksource_tick.mult =
1065 clocksource_hz2mult(clock,
1066 clocksource_tick.shift);
1067 clocksource_tick.read = tick_ops->get_tick;
1068
1069 printk("clocksource: mult[%x] shift[%d]\n",
1070 clocksource_tick.mult, clocksource_tick.shift);
1071
1072 clocksource_register(&clocksource_tick);
1073
1074 sparc64_clockevent.name = tick_ops->name;
1075
1076 setup_clockevent_multiplier(clock);
1077
1078 sparc64_clockevent.max_delta_ns =
1079 clockevent_delta2ns(0x7fffffffffffffff, &sparc64_clockevent);
1080 sparc64_clockevent.min_delta_ns =
1081 clockevent_delta2ns(0xF, &sparc64_clockevent);
1082
1083 printk("clockevent: mult[%lx] shift[%d]\n",
1084 sparc64_clockevent.mult, sparc64_clockevent.shift);
1085
1086 setup_sparc64_timer();
1087
1088 #ifdef CONFIG_CPU_FREQ
1089 cpufreq_register_notifier(&sparc64_cpufreq_notifier_block,
1090 CPUFREQ_TRANSITION_NOTIFIER);
1091 #endif
1092 }
1093
1094 unsigned long long sched_clock(void)
1095 {
1096 unsigned long ticks = tick_ops->get_tick();
1097
1098 return (ticks * timer_ticks_per_nsec_quotient)
1099 >> SPARC64_NSEC_PER_CYC_SHIFT;
1100 }
1101
1102 static int set_rtc_mmss(unsigned long nowtime)
1103 {
1104 int real_seconds, real_minutes, chip_minutes;
1105 void __iomem *mregs = mstk48t02_regs;
1106 #ifdef CONFIG_PCI
1107 unsigned long dregs = ds1287_regs;
1108 void __iomem *bregs = bq4802_regs;
1109 #else
1110 unsigned long dregs = 0UL;
1111 void __iomem *bregs = 0UL;
1112 #endif
1113 unsigned long flags;
1114 u8 tmp;
1115
1116 /*
1117 * Not having a register set can lead to trouble.
1118 * Also starfire doesn't have a tod clock.
1119 */
1120 if (!mregs && !dregs & !bregs)
1121 return -1;
1122
1123 if (mregs) {
1124 spin_lock_irqsave(&mostek_lock, flags);
1125
1126 /* Read the current RTC minutes. */
1127 tmp = mostek_read(mregs + MOSTEK_CREG);
1128 tmp |= MSTK_CREG_READ;
1129 mostek_write(mregs + MOSTEK_CREG, tmp);
1130
1131 chip_minutes = MSTK_REG_MIN(mregs);
1132
1133 tmp = mostek_read(mregs + MOSTEK_CREG);
1134 tmp &= ~MSTK_CREG_READ;
1135 mostek_write(mregs + MOSTEK_CREG, tmp);
1136
1137 /*
1138 * since we're only adjusting minutes and seconds,
1139 * don't interfere with hour overflow. This avoids
1140 * messing with unknown time zones but requires your
1141 * RTC not to be off by more than 15 minutes
1142 */
1143 real_seconds = nowtime % 60;
1144 real_minutes = nowtime / 60;
1145 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1146 real_minutes += 30; /* correct for half hour time zone */
1147 real_minutes %= 60;
1148
1149 if (abs(real_minutes - chip_minutes) < 30) {
1150 tmp = mostek_read(mregs + MOSTEK_CREG);
1151 tmp |= MSTK_CREG_WRITE;
1152 mostek_write(mregs + MOSTEK_CREG, tmp);
1153
1154 MSTK_SET_REG_SEC(mregs,real_seconds);
1155 MSTK_SET_REG_MIN(mregs,real_minutes);
1156
1157 tmp = mostek_read(mregs + MOSTEK_CREG);
1158 tmp &= ~MSTK_CREG_WRITE;
1159 mostek_write(mregs + MOSTEK_CREG, tmp);
1160
1161 spin_unlock_irqrestore(&mostek_lock, flags);
1162
1163 return 0;
1164 } else {
1165 spin_unlock_irqrestore(&mostek_lock, flags);
1166
1167 return -1;
1168 }
1169 } else if (bregs) {
1170 int retval = 0;
1171 unsigned char val = readb(bregs + 0x0e);
1172
1173 /* BQ4802 RTC chip. */
1174
1175 writeb(val | 0x08, bregs + 0x0e);
1176
1177 chip_minutes = readb(bregs + 0x02);
1178 BCD_TO_BIN(chip_minutes);
1179 real_seconds = nowtime % 60;
1180 real_minutes = nowtime / 60;
1181 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1182 real_minutes += 30;
1183 real_minutes %= 60;
1184
1185 if (abs(real_minutes - chip_minutes) < 30) {
1186 BIN_TO_BCD(real_seconds);
1187 BIN_TO_BCD(real_minutes);
1188 writeb(real_seconds, bregs + 0x00);
1189 writeb(real_minutes, bregs + 0x02);
1190 } else {
1191 printk(KERN_WARNING
1192 "set_rtc_mmss: can't update from %d to %d\n",
1193 chip_minutes, real_minutes);
1194 retval = -1;
1195 }
1196
1197 writeb(val, bregs + 0x0e);
1198
1199 return retval;
1200 } else {
1201 int retval = 0;
1202 unsigned char save_control, save_freq_select;
1203
1204 /* Stolen from arch/i386/kernel/time.c, see there for
1205 * credits and descriptive comments.
1206 */
1207 spin_lock_irqsave(&rtc_lock, flags);
1208 save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
1209 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
1210
1211 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
1212 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
1213
1214 chip_minutes = CMOS_READ(RTC_MINUTES);
1215 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1216 BCD_TO_BIN(chip_minutes);
1217 real_seconds = nowtime % 60;
1218 real_minutes = nowtime / 60;
1219 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1220 real_minutes += 30;
1221 real_minutes %= 60;
1222
1223 if (abs(real_minutes - chip_minutes) < 30) {
1224 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1225 BIN_TO_BCD(real_seconds);
1226 BIN_TO_BCD(real_minutes);
1227 }
1228 CMOS_WRITE(real_seconds,RTC_SECONDS);
1229 CMOS_WRITE(real_minutes,RTC_MINUTES);
1230 } else {
1231 printk(KERN_WARNING
1232 "set_rtc_mmss: can't update from %d to %d\n",
1233 chip_minutes, real_minutes);
1234 retval = -1;
1235 }
1236
1237 CMOS_WRITE(save_control, RTC_CONTROL);
1238 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
1239 spin_unlock_irqrestore(&rtc_lock, flags);
1240
1241 return retval;
1242 }
1243 }
1244
1245 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
1246 static unsigned char mini_rtc_status; /* bitmapped status byte. */
1247
1248 #define FEBRUARY 2
1249 #define STARTOFTIME 1970
1250 #define SECDAY 86400L
1251 #define SECYR (SECDAY * 365)
1252 #define leapyear(year) ((year) % 4 == 0 && \
1253 ((year) % 100 != 0 || (year) % 400 == 0))
1254 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1255 #define days_in_month(a) (month_days[(a) - 1])
1256
1257 static int month_days[12] = {
1258 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1259 };
1260
1261 /*
1262 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1263 */
1264 static void GregorianDay(struct rtc_time * tm)
1265 {
1266 int leapsToDate;
1267 int lastYear;
1268 int day;
1269 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1270
1271 lastYear = tm->tm_year - 1;
1272
1273 /*
1274 * Number of leap corrections to apply up to end of last year
1275 */
1276 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1277
1278 /*
1279 * This year is a leap year if it is divisible by 4 except when it is
1280 * divisible by 100 unless it is divisible by 400
1281 *
1282 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1283 */
1284 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1285
1286 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1287 tm->tm_mday;
1288
1289 tm->tm_wday = day % 7;
1290 }
1291
1292 static void to_tm(int tim, struct rtc_time *tm)
1293 {
1294 register int i;
1295 register long hms, day;
1296
1297 day = tim / SECDAY;
1298 hms = tim % SECDAY;
1299
1300 /* Hours, minutes, seconds are easy */
1301 tm->tm_hour = hms / 3600;
1302 tm->tm_min = (hms % 3600) / 60;
1303 tm->tm_sec = (hms % 3600) % 60;
1304
1305 /* Number of years in days */
1306 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1307 day -= days_in_year(i);
1308 tm->tm_year = i;
1309
1310 /* Number of months in days left */
1311 if (leapyear(tm->tm_year))
1312 days_in_month(FEBRUARY) = 29;
1313 for (i = 1; day >= days_in_month(i); i++)
1314 day -= days_in_month(i);
1315 days_in_month(FEBRUARY) = 28;
1316 tm->tm_mon = i;
1317
1318 /* Days are what is left over (+1) from all that. */
1319 tm->tm_mday = day + 1;
1320
1321 /*
1322 * Determine the day of week
1323 */
1324 GregorianDay(tm);
1325 }
1326
1327 /* Both Starfire and SUN4V give us seconds since Jan 1st, 1970,
1328 * aka Unix time. So we have to convert to/from rtc_time.
1329 */
1330 static void starfire_get_rtc_time(struct rtc_time *time)
1331 {
1332 u32 seconds = starfire_get_time();
1333
1334 to_tm(seconds, time);
1335 time->tm_year -= 1900;
1336 time->tm_mon -= 1;
1337 }
1338
1339 static int starfire_set_rtc_time(struct rtc_time *time)
1340 {
1341 u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1,
1342 time->tm_mday, time->tm_hour,
1343 time->tm_min, time->tm_sec);
1344
1345 return starfire_set_time(seconds);
1346 }
1347
1348 static void hypervisor_get_rtc_time(struct rtc_time *time)
1349 {
1350 u32 seconds = hypervisor_get_time();
1351
1352 to_tm(seconds, time);
1353 time->tm_year -= 1900;
1354 time->tm_mon -= 1;
1355 }
1356
1357 static int hypervisor_set_rtc_time(struct rtc_time *time)
1358 {
1359 u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1,
1360 time->tm_mday, time->tm_hour,
1361 time->tm_min, time->tm_sec);
1362
1363 return hypervisor_set_time(seconds);
1364 }
1365
1366 #ifdef CONFIG_PCI
1367 static void bq4802_get_rtc_time(struct rtc_time *time)
1368 {
1369 unsigned char val = readb(bq4802_regs + 0x0e);
1370 unsigned int century;
1371
1372 writeb(val | 0x08, bq4802_regs + 0x0e);
1373
1374 time->tm_sec = readb(bq4802_regs + 0x00);
1375 time->tm_min = readb(bq4802_regs + 0x02);
1376 time->tm_hour = readb(bq4802_regs + 0x04);
1377 time->tm_mday = readb(bq4802_regs + 0x06);
1378 time->tm_mon = readb(bq4802_regs + 0x09);
1379 time->tm_year = readb(bq4802_regs + 0x0a);
1380 time->tm_wday = readb(bq4802_regs + 0x08);
1381 century = readb(bq4802_regs + 0x0f);
1382
1383 writeb(val, bq4802_regs + 0x0e);
1384
1385 BCD_TO_BIN(time->tm_sec);
1386 BCD_TO_BIN(time->tm_min);
1387 BCD_TO_BIN(time->tm_hour);
1388 BCD_TO_BIN(time->tm_mday);
1389 BCD_TO_BIN(time->tm_mon);
1390 BCD_TO_BIN(time->tm_year);
1391 BCD_TO_BIN(time->tm_wday);
1392 BCD_TO_BIN(century);
1393
1394 time->tm_year += (century * 100);
1395 time->tm_year -= 1900;
1396
1397 time->tm_mon--;
1398 }
1399
1400 static int bq4802_set_rtc_time(struct rtc_time *time)
1401 {
1402 unsigned char val = readb(bq4802_regs + 0x0e);
1403 unsigned char sec, min, hrs, day, mon, yrs, century;
1404 unsigned int year;
1405
1406 year = time->tm_year + 1900;
1407 century = year / 100;
1408 yrs = year % 100;
1409
1410 mon = time->tm_mon + 1; /* tm_mon starts at zero */
1411 day = time->tm_mday;
1412 hrs = time->tm_hour;
1413 min = time->tm_min;
1414 sec = time->tm_sec;
1415
1416 BIN_TO_BCD(sec);
1417 BIN_TO_BCD(min);
1418 BIN_TO_BCD(hrs);
1419 BIN_TO_BCD(day);
1420 BIN_TO_BCD(mon);
1421 BIN_TO_BCD(yrs);
1422 BIN_TO_BCD(century);
1423
1424 writeb(val | 0x08, bq4802_regs + 0x0e);
1425
1426 writeb(sec, bq4802_regs + 0x00);
1427 writeb(min, bq4802_regs + 0x02);
1428 writeb(hrs, bq4802_regs + 0x04);
1429 writeb(day, bq4802_regs + 0x06);
1430 writeb(mon, bq4802_regs + 0x09);
1431 writeb(yrs, bq4802_regs + 0x0a);
1432 writeb(century, bq4802_regs + 0x0f);
1433
1434 writeb(val, bq4802_regs + 0x0e);
1435
1436 return 0;
1437 }
1438
1439 static void cmos_get_rtc_time(struct rtc_time *rtc_tm)
1440 {
1441 unsigned char ctrl;
1442
1443 rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1444 rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1445 rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1446 rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1447 rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1448 rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1449 rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1450
1451 ctrl = CMOS_READ(RTC_CONTROL);
1452 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1453 BCD_TO_BIN(rtc_tm->tm_sec);
1454 BCD_TO_BIN(rtc_tm->tm_min);
1455 BCD_TO_BIN(rtc_tm->tm_hour);
1456 BCD_TO_BIN(rtc_tm->tm_mday);
1457 BCD_TO_BIN(rtc_tm->tm_mon);
1458 BCD_TO_BIN(rtc_tm->tm_year);
1459 BCD_TO_BIN(rtc_tm->tm_wday);
1460 }
1461
1462 if (rtc_tm->tm_year <= 69)
1463 rtc_tm->tm_year += 100;
1464
1465 rtc_tm->tm_mon--;
1466 }
1467
1468 static int cmos_set_rtc_time(struct rtc_time *rtc_tm)
1469 {
1470 unsigned char mon, day, hrs, min, sec;
1471 unsigned char save_control, save_freq_select;
1472 unsigned int yrs;
1473
1474 yrs = rtc_tm->tm_year;
1475 mon = rtc_tm->tm_mon + 1;
1476 day = rtc_tm->tm_mday;
1477 hrs = rtc_tm->tm_hour;
1478 min = rtc_tm->tm_min;
1479 sec = rtc_tm->tm_sec;
1480
1481 if (yrs >= 100)
1482 yrs -= 100;
1483
1484 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1485 BIN_TO_BCD(sec);
1486 BIN_TO_BCD(min);
1487 BIN_TO_BCD(hrs);
1488 BIN_TO_BCD(day);
1489 BIN_TO_BCD(mon);
1490 BIN_TO_BCD(yrs);
1491 }
1492
1493 save_control = CMOS_READ(RTC_CONTROL);
1494 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
1495 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
1496 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
1497
1498 CMOS_WRITE(yrs, RTC_YEAR);
1499 CMOS_WRITE(mon, RTC_MONTH);
1500 CMOS_WRITE(day, RTC_DAY_OF_MONTH);
1501 CMOS_WRITE(hrs, RTC_HOURS);
1502 CMOS_WRITE(min, RTC_MINUTES);
1503 CMOS_WRITE(sec, RTC_SECONDS);
1504
1505 CMOS_WRITE(save_control, RTC_CONTROL);
1506 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
1507
1508 return 0;
1509 }
1510 #endif /* CONFIG_PCI */
1511
1512 struct mini_rtc_ops {
1513 void (*get_rtc_time)(struct rtc_time *);
1514 int (*set_rtc_time)(struct rtc_time *);
1515 };
1516
1517 static struct mini_rtc_ops starfire_rtc_ops = {
1518 .get_rtc_time = starfire_get_rtc_time,
1519 .set_rtc_time = starfire_set_rtc_time,
1520 };
1521
1522 static struct mini_rtc_ops hypervisor_rtc_ops = {
1523 .get_rtc_time = hypervisor_get_rtc_time,
1524 .set_rtc_time = hypervisor_set_rtc_time,
1525 };
1526
1527 #ifdef CONFIG_PCI
1528 static struct mini_rtc_ops bq4802_rtc_ops = {
1529 .get_rtc_time = bq4802_get_rtc_time,
1530 .set_rtc_time = bq4802_set_rtc_time,
1531 };
1532
1533 static struct mini_rtc_ops cmos_rtc_ops = {
1534 .get_rtc_time = cmos_get_rtc_time,
1535 .set_rtc_time = cmos_set_rtc_time,
1536 };
1537 #endif /* CONFIG_PCI */
1538
1539 static struct mini_rtc_ops *mini_rtc_ops;
1540
1541 static inline void mini_get_rtc_time(struct rtc_time *time)
1542 {
1543 unsigned long flags;
1544
1545 spin_lock_irqsave(&rtc_lock, flags);
1546 mini_rtc_ops->get_rtc_time(time);
1547 spin_unlock_irqrestore(&rtc_lock, flags);
1548 }
1549
1550 static inline int mini_set_rtc_time(struct rtc_time *time)
1551 {
1552 unsigned long flags;
1553 int err;
1554
1555 spin_lock_irqsave(&rtc_lock, flags);
1556 err = mini_rtc_ops->set_rtc_time(time);
1557 spin_unlock_irqrestore(&rtc_lock, flags);
1558
1559 return err;
1560 }
1561
1562 static int mini_rtc_ioctl(struct inode *inode, struct file *file,
1563 unsigned int cmd, unsigned long arg)
1564 {
1565 struct rtc_time wtime;
1566 void __user *argp = (void __user *)arg;
1567
1568 switch (cmd) {
1569
1570 case RTC_PLL_GET:
1571 return -EINVAL;
1572
1573 case RTC_PLL_SET:
1574 return -EINVAL;
1575
1576 case RTC_UIE_OFF: /* disable ints from RTC updates. */
1577 return 0;
1578
1579 case RTC_UIE_ON: /* enable ints for RTC updates. */
1580 return -EINVAL;
1581
1582 case RTC_RD_TIME: /* Read the time/date from RTC */
1583 /* this doesn't get week-day, who cares */
1584 memset(&wtime, 0, sizeof(wtime));
1585 mini_get_rtc_time(&wtime);
1586
1587 return copy_to_user(argp, &wtime, sizeof(wtime)) ? -EFAULT : 0;
1588
1589 case RTC_SET_TIME: /* Set the RTC */
1590 {
1591 int year, days;
1592
1593 if (!capable(CAP_SYS_TIME))
1594 return -EACCES;
1595
1596 if (copy_from_user(&wtime, argp, sizeof(wtime)))
1597 return -EFAULT;
1598
1599 year = wtime.tm_year + 1900;
1600 days = month_days[wtime.tm_mon] +
1601 ((wtime.tm_mon == 1) && leapyear(year));
1602
1603 if ((wtime.tm_mon < 0 || wtime.tm_mon > 11) ||
1604 (wtime.tm_mday < 1))
1605 return -EINVAL;
1606
1607 if (wtime.tm_mday < 0 || wtime.tm_mday > days)
1608 return -EINVAL;
1609
1610 if (wtime.tm_hour < 0 || wtime.tm_hour >= 24 ||
1611 wtime.tm_min < 0 || wtime.tm_min >= 60 ||
1612 wtime.tm_sec < 0 || wtime.tm_sec >= 60)
1613 return -EINVAL;
1614
1615 return mini_set_rtc_time(&wtime);
1616 }
1617 }
1618
1619 return -EINVAL;
1620 }
1621
1622 static int mini_rtc_open(struct inode *inode, struct file *file)
1623 {
1624 if (mini_rtc_status & RTC_IS_OPEN)
1625 return -EBUSY;
1626
1627 mini_rtc_status |= RTC_IS_OPEN;
1628
1629 return 0;
1630 }
1631
1632 static int mini_rtc_release(struct inode *inode, struct file *file)
1633 {
1634 mini_rtc_status &= ~RTC_IS_OPEN;
1635 return 0;
1636 }
1637
1638
1639 static const struct file_operations mini_rtc_fops = {
1640 .owner = THIS_MODULE,
1641 .ioctl = mini_rtc_ioctl,
1642 .open = mini_rtc_open,
1643 .release = mini_rtc_release,
1644 };
1645
1646 static struct miscdevice rtc_mini_dev =
1647 {
1648 .minor = RTC_MINOR,
1649 .name = "rtc",
1650 .fops = &mini_rtc_fops,
1651 };
1652
1653 static int __init rtc_mini_init(void)
1654 {
1655 int retval;
1656
1657 if (tlb_type == hypervisor)
1658 mini_rtc_ops = &hypervisor_rtc_ops;
1659 else if (this_is_starfire)
1660 mini_rtc_ops = &starfire_rtc_ops;
1661 #ifdef CONFIG_PCI
1662 else if (bq4802_regs)
1663 mini_rtc_ops = &bq4802_rtc_ops;
1664 else if (ds1287_regs)
1665 mini_rtc_ops = &cmos_rtc_ops;
1666 #endif /* CONFIG_PCI */
1667 else
1668 return -ENODEV;
1669
1670 printk(KERN_INFO "Mini RTC Driver\n");
1671
1672 retval = misc_register(&rtc_mini_dev);
1673 if (retval < 0)
1674 return retval;
1675
1676 return 0;
1677 }
1678
1679 static void __exit rtc_mini_exit(void)
1680 {
1681 misc_deregister(&rtc_mini_dev);
1682 }
1683
1684
1685 module_init(rtc_mini_init);
1686 module_exit(rtc_mini_exit);
This page took 0.757457 seconds and 6 git commands to generate.