Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[deliverable/linux.git] / arch / sparc64 / kernel / time.c
1 /* $Id: time.c,v 1.42 2002/01/23 14:33:55 davem Exp $
2 * time.c: UltraSparc timer and TOD clock support.
3 *
4 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
6 *
7 * Based largely on code which is:
8 *
9 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
10 */
11
12 #include <linux/errno.h>
13 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/param.h>
17 #include <linux/string.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/time.h>
21 #include <linux/timex.h>
22 #include <linux/init.h>
23 #include <linux/ioport.h>
24 #include <linux/mc146818rtc.h>
25 #include <linux/delay.h>
26 #include <linux/profile.h>
27 #include <linux/bcd.h>
28 #include <linux/jiffies.h>
29 #include <linux/cpufreq.h>
30 #include <linux/percpu.h>
31 #include <linux/profile.h>
32 #include <linux/miscdevice.h>
33 #include <linux/rtc.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/clockchips.h>
36 #include <linux/clocksource.h>
37
38 #include <asm/oplib.h>
39 #include <asm/mostek.h>
40 #include <asm/timer.h>
41 #include <asm/irq.h>
42 #include <asm/io.h>
43 #include <asm/prom.h>
44 #include <asm/of_device.h>
45 #include <asm/starfire.h>
46 #include <asm/smp.h>
47 #include <asm/sections.h>
48 #include <asm/cpudata.h>
49 #include <asm/uaccess.h>
50 #include <asm/prom.h>
51 #include <asm/irq_regs.h>
52
53 DEFINE_SPINLOCK(mostek_lock);
54 DEFINE_SPINLOCK(rtc_lock);
55 void __iomem *mstk48t02_regs = NULL;
56 #ifdef CONFIG_PCI
57 unsigned long ds1287_regs = 0UL;
58 static void __iomem *bq4802_regs;
59 #endif
60
61 static void __iomem *mstk48t08_regs;
62 static void __iomem *mstk48t59_regs;
63
64 static int set_rtc_mmss(unsigned long);
65
66 #define TICK_PRIV_BIT (1UL << 63)
67 #define TICKCMP_IRQ_BIT (1UL << 63)
68
69 #ifdef CONFIG_SMP
70 unsigned long profile_pc(struct pt_regs *regs)
71 {
72 unsigned long pc = instruction_pointer(regs);
73
74 if (in_lock_functions(pc))
75 return regs->u_regs[UREG_RETPC];
76 return pc;
77 }
78 EXPORT_SYMBOL(profile_pc);
79 #endif
80
81 static void tick_disable_protection(void)
82 {
83 /* Set things up so user can access tick register for profiling
84 * purposes. Also workaround BB_ERRATA_1 by doing a dummy
85 * read back of %tick after writing it.
86 */
87 __asm__ __volatile__(
88 " ba,pt %%xcc, 1f\n"
89 " nop\n"
90 " .align 64\n"
91 "1: rd %%tick, %%g2\n"
92 " add %%g2, 6, %%g2\n"
93 " andn %%g2, %0, %%g2\n"
94 " wrpr %%g2, 0, %%tick\n"
95 " rdpr %%tick, %%g0"
96 : /* no outputs */
97 : "r" (TICK_PRIV_BIT)
98 : "g2");
99 }
100
101 static void tick_disable_irq(void)
102 {
103 __asm__ __volatile__(
104 " ba,pt %%xcc, 1f\n"
105 " nop\n"
106 " .align 64\n"
107 "1: wr %0, 0x0, %%tick_cmpr\n"
108 " rd %%tick_cmpr, %%g0"
109 : /* no outputs */
110 : "r" (TICKCMP_IRQ_BIT));
111 }
112
113 static void tick_init_tick(void)
114 {
115 tick_disable_protection();
116 tick_disable_irq();
117 }
118
119 static unsigned long tick_get_tick(void)
120 {
121 unsigned long ret;
122
123 __asm__ __volatile__("rd %%tick, %0\n\t"
124 "mov %0, %0"
125 : "=r" (ret));
126
127 return ret & ~TICK_PRIV_BIT;
128 }
129
130 static int tick_add_compare(unsigned long adj)
131 {
132 unsigned long orig_tick, new_tick, new_compare;
133
134 __asm__ __volatile__("rd %%tick, %0"
135 : "=r" (orig_tick));
136
137 orig_tick &= ~TICKCMP_IRQ_BIT;
138
139 /* Workaround for Spitfire Errata (#54 I think??), I discovered
140 * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
141 * number 103640.
142 *
143 * On Blackbird writes to %tick_cmpr can fail, the
144 * workaround seems to be to execute the wr instruction
145 * at the start of an I-cache line, and perform a dummy
146 * read back from %tick_cmpr right after writing to it. -DaveM
147 */
148 __asm__ __volatile__("ba,pt %%xcc, 1f\n\t"
149 " add %1, %2, %0\n\t"
150 ".align 64\n"
151 "1:\n\t"
152 "wr %0, 0, %%tick_cmpr\n\t"
153 "rd %%tick_cmpr, %%g0\n\t"
154 : "=r" (new_compare)
155 : "r" (orig_tick), "r" (adj));
156
157 __asm__ __volatile__("rd %%tick, %0"
158 : "=r" (new_tick));
159 new_tick &= ~TICKCMP_IRQ_BIT;
160
161 return ((long)(new_tick - (orig_tick+adj))) > 0L;
162 }
163
164 static unsigned long tick_add_tick(unsigned long adj)
165 {
166 unsigned long new_tick;
167
168 /* Also need to handle Blackbird bug here too. */
169 __asm__ __volatile__("rd %%tick, %0\n\t"
170 "add %0, %1, %0\n\t"
171 "wrpr %0, 0, %%tick\n\t"
172 : "=&r" (new_tick)
173 : "r" (adj));
174
175 return new_tick;
176 }
177
178 static struct sparc64_tick_ops tick_operations __read_mostly = {
179 .name = "tick",
180 .init_tick = tick_init_tick,
181 .disable_irq = tick_disable_irq,
182 .get_tick = tick_get_tick,
183 .add_tick = tick_add_tick,
184 .add_compare = tick_add_compare,
185 .softint_mask = 1UL << 0,
186 };
187
188 struct sparc64_tick_ops *tick_ops __read_mostly = &tick_operations;
189
190 static void stick_disable_irq(void)
191 {
192 __asm__ __volatile__(
193 "wr %0, 0x0, %%asr25"
194 : /* no outputs */
195 : "r" (TICKCMP_IRQ_BIT));
196 }
197
198 static void stick_init_tick(void)
199 {
200 /* Writes to the %tick and %stick register are not
201 * allowed on sun4v. The Hypervisor controls that
202 * bit, per-strand.
203 */
204 if (tlb_type != hypervisor) {
205 tick_disable_protection();
206 tick_disable_irq();
207
208 /* Let the user get at STICK too. */
209 __asm__ __volatile__(
210 " rd %%asr24, %%g2\n"
211 " andn %%g2, %0, %%g2\n"
212 " wr %%g2, 0, %%asr24"
213 : /* no outputs */
214 : "r" (TICK_PRIV_BIT)
215 : "g1", "g2");
216 }
217
218 stick_disable_irq();
219 }
220
221 static unsigned long stick_get_tick(void)
222 {
223 unsigned long ret;
224
225 __asm__ __volatile__("rd %%asr24, %0"
226 : "=r" (ret));
227
228 return ret & ~TICK_PRIV_BIT;
229 }
230
231 static unsigned long stick_add_tick(unsigned long adj)
232 {
233 unsigned long new_tick;
234
235 __asm__ __volatile__("rd %%asr24, %0\n\t"
236 "add %0, %1, %0\n\t"
237 "wr %0, 0, %%asr24\n\t"
238 : "=&r" (new_tick)
239 : "r" (adj));
240
241 return new_tick;
242 }
243
244 static int stick_add_compare(unsigned long adj)
245 {
246 unsigned long orig_tick, new_tick;
247
248 __asm__ __volatile__("rd %%asr24, %0"
249 : "=r" (orig_tick));
250 orig_tick &= ~TICKCMP_IRQ_BIT;
251
252 __asm__ __volatile__("wr %0, 0, %%asr25"
253 : /* no outputs */
254 : "r" (orig_tick + adj));
255
256 __asm__ __volatile__("rd %%asr24, %0"
257 : "=r" (new_tick));
258 new_tick &= ~TICKCMP_IRQ_BIT;
259
260 return ((long)(new_tick - (orig_tick+adj))) > 0L;
261 }
262
263 static struct sparc64_tick_ops stick_operations __read_mostly = {
264 .name = "stick",
265 .init_tick = stick_init_tick,
266 .disable_irq = stick_disable_irq,
267 .get_tick = stick_get_tick,
268 .add_tick = stick_add_tick,
269 .add_compare = stick_add_compare,
270 .softint_mask = 1UL << 16,
271 };
272
273 /* On Hummingbird the STICK/STICK_CMPR register is implemented
274 * in I/O space. There are two 64-bit registers each, the
275 * first holds the low 32-bits of the value and the second holds
276 * the high 32-bits.
277 *
278 * Since STICK is constantly updating, we have to access it carefully.
279 *
280 * The sequence we use to read is:
281 * 1) read high
282 * 2) read low
283 * 3) read high again, if it rolled re-read both low and high again.
284 *
285 * Writing STICK safely is also tricky:
286 * 1) write low to zero
287 * 2) write high
288 * 3) write low
289 */
290 #define HBIRD_STICKCMP_ADDR 0x1fe0000f060UL
291 #define HBIRD_STICK_ADDR 0x1fe0000f070UL
292
293 static unsigned long __hbird_read_stick(void)
294 {
295 unsigned long ret, tmp1, tmp2, tmp3;
296 unsigned long addr = HBIRD_STICK_ADDR+8;
297
298 __asm__ __volatile__("ldxa [%1] %5, %2\n"
299 "1:\n\t"
300 "sub %1, 0x8, %1\n\t"
301 "ldxa [%1] %5, %3\n\t"
302 "add %1, 0x8, %1\n\t"
303 "ldxa [%1] %5, %4\n\t"
304 "cmp %4, %2\n\t"
305 "bne,a,pn %%xcc, 1b\n\t"
306 " mov %4, %2\n\t"
307 "sllx %4, 32, %4\n\t"
308 "or %3, %4, %0\n\t"
309 : "=&r" (ret), "=&r" (addr),
310 "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3)
311 : "i" (ASI_PHYS_BYPASS_EC_E), "1" (addr));
312
313 return ret;
314 }
315
316 static void __hbird_write_stick(unsigned long val)
317 {
318 unsigned long low = (val & 0xffffffffUL);
319 unsigned long high = (val >> 32UL);
320 unsigned long addr = HBIRD_STICK_ADDR;
321
322 __asm__ __volatile__("stxa %%g0, [%0] %4\n\t"
323 "add %0, 0x8, %0\n\t"
324 "stxa %3, [%0] %4\n\t"
325 "sub %0, 0x8, %0\n\t"
326 "stxa %2, [%0] %4"
327 : "=&r" (addr)
328 : "0" (addr), "r" (low), "r" (high),
329 "i" (ASI_PHYS_BYPASS_EC_E));
330 }
331
332 static void __hbird_write_compare(unsigned long val)
333 {
334 unsigned long low = (val & 0xffffffffUL);
335 unsigned long high = (val >> 32UL);
336 unsigned long addr = HBIRD_STICKCMP_ADDR + 0x8UL;
337
338 __asm__ __volatile__("stxa %3, [%0] %4\n\t"
339 "sub %0, 0x8, %0\n\t"
340 "stxa %2, [%0] %4"
341 : "=&r" (addr)
342 : "0" (addr), "r" (low), "r" (high),
343 "i" (ASI_PHYS_BYPASS_EC_E));
344 }
345
346 static void hbtick_disable_irq(void)
347 {
348 __hbird_write_compare(TICKCMP_IRQ_BIT);
349 }
350
351 static void hbtick_init_tick(void)
352 {
353 tick_disable_protection();
354
355 /* XXX This seems to be necessary to 'jumpstart' Hummingbird
356 * XXX into actually sending STICK interrupts. I think because
357 * XXX of how we store %tick_cmpr in head.S this somehow resets the
358 * XXX {TICK + STICK} interrupt mux. -DaveM
359 */
360 __hbird_write_stick(__hbird_read_stick());
361
362 hbtick_disable_irq();
363 }
364
365 static unsigned long hbtick_get_tick(void)
366 {
367 return __hbird_read_stick() & ~TICK_PRIV_BIT;
368 }
369
370 static unsigned long hbtick_add_tick(unsigned long adj)
371 {
372 unsigned long val;
373
374 val = __hbird_read_stick() + adj;
375 __hbird_write_stick(val);
376
377 return val;
378 }
379
380 static int hbtick_add_compare(unsigned long adj)
381 {
382 unsigned long val = __hbird_read_stick();
383 unsigned long val2;
384
385 val &= ~TICKCMP_IRQ_BIT;
386 val += adj;
387 __hbird_write_compare(val);
388
389 val2 = __hbird_read_stick() & ~TICKCMP_IRQ_BIT;
390
391 return ((long)(val2 - val)) > 0L;
392 }
393
394 static struct sparc64_tick_ops hbtick_operations __read_mostly = {
395 .name = "hbtick",
396 .init_tick = hbtick_init_tick,
397 .disable_irq = hbtick_disable_irq,
398 .get_tick = hbtick_get_tick,
399 .add_tick = hbtick_add_tick,
400 .add_compare = hbtick_add_compare,
401 .softint_mask = 1UL << 0,
402 };
403
404 static unsigned long timer_ticks_per_nsec_quotient __read_mostly;
405
406 int update_persistent_clock(struct timespec now)
407 {
408 return set_rtc_mmss(now.tv_sec);
409 }
410
411 /* Kick start a stopped clock (procedure from the Sun NVRAM/hostid FAQ). */
412 static void __init kick_start_clock(void)
413 {
414 void __iomem *regs = mstk48t02_regs;
415 u8 sec, tmp;
416 int i, count;
417
418 prom_printf("CLOCK: Clock was stopped. Kick start ");
419
420 spin_lock_irq(&mostek_lock);
421
422 /* Turn on the kick start bit to start the oscillator. */
423 tmp = mostek_read(regs + MOSTEK_CREG);
424 tmp |= MSTK_CREG_WRITE;
425 mostek_write(regs + MOSTEK_CREG, tmp);
426 tmp = mostek_read(regs + MOSTEK_SEC);
427 tmp &= ~MSTK_STOP;
428 mostek_write(regs + MOSTEK_SEC, tmp);
429 tmp = mostek_read(regs + MOSTEK_HOUR);
430 tmp |= MSTK_KICK_START;
431 mostek_write(regs + MOSTEK_HOUR, tmp);
432 tmp = mostek_read(regs + MOSTEK_CREG);
433 tmp &= ~MSTK_CREG_WRITE;
434 mostek_write(regs + MOSTEK_CREG, tmp);
435
436 spin_unlock_irq(&mostek_lock);
437
438 /* Delay to allow the clock oscillator to start. */
439 sec = MSTK_REG_SEC(regs);
440 for (i = 0; i < 3; i++) {
441 while (sec == MSTK_REG_SEC(regs))
442 for (count = 0; count < 100000; count++)
443 /* nothing */ ;
444 prom_printf(".");
445 sec = MSTK_REG_SEC(regs);
446 }
447 prom_printf("\n");
448
449 spin_lock_irq(&mostek_lock);
450
451 /* Turn off kick start and set a "valid" time and date. */
452 tmp = mostek_read(regs + MOSTEK_CREG);
453 tmp |= MSTK_CREG_WRITE;
454 mostek_write(regs + MOSTEK_CREG, tmp);
455 tmp = mostek_read(regs + MOSTEK_HOUR);
456 tmp &= ~MSTK_KICK_START;
457 mostek_write(regs + MOSTEK_HOUR, tmp);
458 MSTK_SET_REG_SEC(regs,0);
459 MSTK_SET_REG_MIN(regs,0);
460 MSTK_SET_REG_HOUR(regs,0);
461 MSTK_SET_REG_DOW(regs,5);
462 MSTK_SET_REG_DOM(regs,1);
463 MSTK_SET_REG_MONTH(regs,8);
464 MSTK_SET_REG_YEAR(regs,1996 - MSTK_YEAR_ZERO);
465 tmp = mostek_read(regs + MOSTEK_CREG);
466 tmp &= ~MSTK_CREG_WRITE;
467 mostek_write(regs + MOSTEK_CREG, tmp);
468
469 spin_unlock_irq(&mostek_lock);
470
471 /* Ensure the kick start bit is off. If it isn't, turn it off. */
472 while (mostek_read(regs + MOSTEK_HOUR) & MSTK_KICK_START) {
473 prom_printf("CLOCK: Kick start still on!\n");
474
475 spin_lock_irq(&mostek_lock);
476
477 tmp = mostek_read(regs + MOSTEK_CREG);
478 tmp |= MSTK_CREG_WRITE;
479 mostek_write(regs + MOSTEK_CREG, tmp);
480
481 tmp = mostek_read(regs + MOSTEK_HOUR);
482 tmp &= ~MSTK_KICK_START;
483 mostek_write(regs + MOSTEK_HOUR, tmp);
484
485 tmp = mostek_read(regs + MOSTEK_CREG);
486 tmp &= ~MSTK_CREG_WRITE;
487 mostek_write(regs + MOSTEK_CREG, tmp);
488
489 spin_unlock_irq(&mostek_lock);
490 }
491
492 prom_printf("CLOCK: Kick start procedure successful.\n");
493 }
494
495 /* Return nonzero if the clock chip battery is low. */
496 static int __init has_low_battery(void)
497 {
498 void __iomem *regs = mstk48t02_regs;
499 u8 data1, data2;
500
501 spin_lock_irq(&mostek_lock);
502
503 data1 = mostek_read(regs + MOSTEK_EEPROM); /* Read some data. */
504 mostek_write(regs + MOSTEK_EEPROM, ~data1); /* Write back the complement. */
505 data2 = mostek_read(regs + MOSTEK_EEPROM); /* Read back the complement. */
506 mostek_write(regs + MOSTEK_EEPROM, data1); /* Restore original value. */
507
508 spin_unlock_irq(&mostek_lock);
509
510 return (data1 == data2); /* Was the write blocked? */
511 }
512
513 /* Probe for the real time clock chip. */
514 static void __init set_system_time(void)
515 {
516 unsigned int year, mon, day, hour, min, sec;
517 void __iomem *mregs = mstk48t02_regs;
518 #ifdef CONFIG_PCI
519 unsigned long dregs = ds1287_regs;
520 void __iomem *bregs = bq4802_regs;
521 #else
522 unsigned long dregs = 0UL;
523 void __iomem *bregs = 0UL;
524 #endif
525 u8 tmp;
526
527 if (!mregs && !dregs && !bregs) {
528 prom_printf("Something wrong, clock regs not mapped yet.\n");
529 prom_halt();
530 }
531
532 if (mregs) {
533 spin_lock_irq(&mostek_lock);
534
535 /* Traditional Mostek chip. */
536 tmp = mostek_read(mregs + MOSTEK_CREG);
537 tmp |= MSTK_CREG_READ;
538 mostek_write(mregs + MOSTEK_CREG, tmp);
539
540 sec = MSTK_REG_SEC(mregs);
541 min = MSTK_REG_MIN(mregs);
542 hour = MSTK_REG_HOUR(mregs);
543 day = MSTK_REG_DOM(mregs);
544 mon = MSTK_REG_MONTH(mregs);
545 year = MSTK_CVT_YEAR( MSTK_REG_YEAR(mregs) );
546 } else if (bregs) {
547 unsigned char val = readb(bregs + 0x0e);
548 unsigned int century;
549
550 /* BQ4802 RTC chip. */
551
552 writeb(val | 0x08, bregs + 0x0e);
553
554 sec = readb(bregs + 0x00);
555 min = readb(bregs + 0x02);
556 hour = readb(bregs + 0x04);
557 day = readb(bregs + 0x06);
558 mon = readb(bregs + 0x09);
559 year = readb(bregs + 0x0a);
560 century = readb(bregs + 0x0f);
561
562 writeb(val, bregs + 0x0e);
563
564 BCD_TO_BIN(sec);
565 BCD_TO_BIN(min);
566 BCD_TO_BIN(hour);
567 BCD_TO_BIN(day);
568 BCD_TO_BIN(mon);
569 BCD_TO_BIN(year);
570 BCD_TO_BIN(century);
571
572 year += (century * 100);
573 } else {
574 /* Dallas 12887 RTC chip. */
575
576 do {
577 sec = CMOS_READ(RTC_SECONDS);
578 min = CMOS_READ(RTC_MINUTES);
579 hour = CMOS_READ(RTC_HOURS);
580 day = CMOS_READ(RTC_DAY_OF_MONTH);
581 mon = CMOS_READ(RTC_MONTH);
582 year = CMOS_READ(RTC_YEAR);
583 } while (sec != CMOS_READ(RTC_SECONDS));
584
585 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
586 BCD_TO_BIN(sec);
587 BCD_TO_BIN(min);
588 BCD_TO_BIN(hour);
589 BCD_TO_BIN(day);
590 BCD_TO_BIN(mon);
591 BCD_TO_BIN(year);
592 }
593 if ((year += 1900) < 1970)
594 year += 100;
595 }
596
597 xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
598 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
599 set_normalized_timespec(&wall_to_monotonic,
600 -xtime.tv_sec, -xtime.tv_nsec);
601
602 if (mregs) {
603 tmp = mostek_read(mregs + MOSTEK_CREG);
604 tmp &= ~MSTK_CREG_READ;
605 mostek_write(mregs + MOSTEK_CREG, tmp);
606
607 spin_unlock_irq(&mostek_lock);
608 }
609 }
610
611 /* davem suggests we keep this within the 4M locked kernel image */
612 static u32 starfire_get_time(void)
613 {
614 static char obp_gettod[32];
615 static u32 unix_tod;
616
617 sprintf(obp_gettod, "h# %08x unix-gettod",
618 (unsigned int) (long) &unix_tod);
619 prom_feval(obp_gettod);
620
621 return unix_tod;
622 }
623
624 static int starfire_set_time(u32 val)
625 {
626 /* Do nothing, time is set using the service processor
627 * console on this platform.
628 */
629 return 0;
630 }
631
632 static u32 hypervisor_get_time(void)
633 {
634 unsigned long ret, time;
635 int retries = 10000;
636
637 retry:
638 ret = sun4v_tod_get(&time);
639 if (ret == HV_EOK)
640 return time;
641 if (ret == HV_EWOULDBLOCK) {
642 if (--retries > 0) {
643 udelay(100);
644 goto retry;
645 }
646 printk(KERN_WARNING "SUN4V: tod_get() timed out.\n");
647 return 0;
648 }
649 printk(KERN_WARNING "SUN4V: tod_get() not supported.\n");
650 return 0;
651 }
652
653 static int hypervisor_set_time(u32 secs)
654 {
655 unsigned long ret;
656 int retries = 10000;
657
658 retry:
659 ret = sun4v_tod_set(secs);
660 if (ret == HV_EOK)
661 return 0;
662 if (ret == HV_EWOULDBLOCK) {
663 if (--retries > 0) {
664 udelay(100);
665 goto retry;
666 }
667 printk(KERN_WARNING "SUN4V: tod_set() timed out.\n");
668 return -EAGAIN;
669 }
670 printk(KERN_WARNING "SUN4V: tod_set() not supported.\n");
671 return -EOPNOTSUPP;
672 }
673
674 static int __init clock_model_matches(const char *model)
675 {
676 if (strcmp(model, "mk48t02") &&
677 strcmp(model, "mk48t08") &&
678 strcmp(model, "mk48t59") &&
679 strcmp(model, "m5819") &&
680 strcmp(model, "m5819p") &&
681 strcmp(model, "m5823") &&
682 strcmp(model, "ds1287") &&
683 strcmp(model, "bq4802"))
684 return 0;
685
686 return 1;
687 }
688
689 static int __devinit clock_probe(struct of_device *op, const struct of_device_id *match)
690 {
691 struct device_node *dp = op->node;
692 const char *model = of_get_property(dp, "model", NULL);
693 const char *compat = of_get_property(dp, "compatible", NULL);
694 unsigned long size, flags;
695 void __iomem *regs;
696
697 if (!model)
698 model = compat;
699
700 if (!model || !clock_model_matches(model))
701 return -ENODEV;
702
703 /* On an Enterprise system there can be multiple mostek clocks.
704 * We should only match the one that is on the central FHC bus.
705 */
706 if (!strcmp(dp->parent->name, "fhc") &&
707 strcmp(dp->parent->parent->name, "central") != 0)
708 return -ENODEV;
709
710 size = (op->resource[0].end - op->resource[0].start) + 1;
711 regs = of_ioremap(&op->resource[0], 0, size, "clock");
712 if (!regs)
713 return -ENOMEM;
714
715 #ifdef CONFIG_PCI
716 if (!strcmp(model, "ds1287") ||
717 !strcmp(model, "m5819") ||
718 !strcmp(model, "m5819p") ||
719 !strcmp(model, "m5823")) {
720 ds1287_regs = (unsigned long) regs;
721 } else if (!strcmp(model, "bq4802")) {
722 bq4802_regs = regs;
723 } else
724 #endif
725 if (model[5] == '0' && model[6] == '2') {
726 mstk48t02_regs = regs;
727 } else if(model[5] == '0' && model[6] == '8') {
728 mstk48t08_regs = regs;
729 mstk48t02_regs = mstk48t08_regs + MOSTEK_48T08_48T02;
730 } else {
731 mstk48t59_regs = regs;
732 mstk48t02_regs = mstk48t59_regs + MOSTEK_48T59_48T02;
733 }
734
735 printk(KERN_INFO "%s: Clock regs at %p\n", dp->full_name, regs);
736
737 local_irq_save(flags);
738
739 if (mstk48t02_regs != NULL) {
740 /* Report a low battery voltage condition. */
741 if (has_low_battery())
742 prom_printf("NVRAM: Low battery voltage!\n");
743
744 /* Kick start the clock if it is completely stopped. */
745 if (mostek_read(mstk48t02_regs + MOSTEK_SEC) & MSTK_STOP)
746 kick_start_clock();
747 }
748
749 set_system_time();
750
751 local_irq_restore(flags);
752
753 return 0;
754 }
755
756 static struct of_device_id clock_match[] = {
757 {
758 .name = "eeprom",
759 },
760 {
761 .name = "rtc",
762 },
763 {},
764 };
765
766 static struct of_platform_driver clock_driver = {
767 .match_table = clock_match,
768 .probe = clock_probe,
769 .driver = {
770 .name = "clock",
771 },
772 };
773
774 static int __init clock_init(void)
775 {
776 if (this_is_starfire) {
777 xtime.tv_sec = starfire_get_time();
778 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
779 set_normalized_timespec(&wall_to_monotonic,
780 -xtime.tv_sec, -xtime.tv_nsec);
781 return 0;
782 }
783 if (tlb_type == hypervisor) {
784 xtime.tv_sec = hypervisor_get_time();
785 xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
786 set_normalized_timespec(&wall_to_monotonic,
787 -xtime.tv_sec, -xtime.tv_nsec);
788 return 0;
789 }
790
791 return of_register_driver(&clock_driver, &of_platform_bus_type);
792 }
793
794 /* Must be after subsys_initcall() so that busses are probed. Must
795 * be before device_initcall() because things like the RTC driver
796 * need to see the clock registers.
797 */
798 fs_initcall(clock_init);
799
800 /* This is gets the master TICK_INT timer going. */
801 static unsigned long sparc64_init_timers(void)
802 {
803 struct device_node *dp;
804 unsigned long clock;
805
806 dp = of_find_node_by_path("/");
807 if (tlb_type == spitfire) {
808 unsigned long ver, manuf, impl;
809
810 __asm__ __volatile__ ("rdpr %%ver, %0"
811 : "=&r" (ver));
812 manuf = ((ver >> 48) & 0xffff);
813 impl = ((ver >> 32) & 0xffff);
814 if (manuf == 0x17 && impl == 0x13) {
815 /* Hummingbird, aka Ultra-IIe */
816 tick_ops = &hbtick_operations;
817 clock = of_getintprop_default(dp, "stick-frequency", 0);
818 } else {
819 tick_ops = &tick_operations;
820 clock = local_cpu_data().clock_tick;
821 }
822 } else {
823 tick_ops = &stick_operations;
824 clock = of_getintprop_default(dp, "stick-frequency", 0);
825 }
826
827 return clock;
828 }
829
830 struct freq_table {
831 unsigned long clock_tick_ref;
832 unsigned int ref_freq;
833 };
834 static DEFINE_PER_CPU(struct freq_table, sparc64_freq_table) = { 0, 0 };
835
836 unsigned long sparc64_get_clock_tick(unsigned int cpu)
837 {
838 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
839
840 if (ft->clock_tick_ref)
841 return ft->clock_tick_ref;
842 return cpu_data(cpu).clock_tick;
843 }
844
845 #ifdef CONFIG_CPU_FREQ
846
847 static int sparc64_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
848 void *data)
849 {
850 struct cpufreq_freqs *freq = data;
851 unsigned int cpu = freq->cpu;
852 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
853
854 if (!ft->ref_freq) {
855 ft->ref_freq = freq->old;
856 ft->clock_tick_ref = cpu_data(cpu).clock_tick;
857 }
858 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
859 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
860 (val == CPUFREQ_RESUMECHANGE)) {
861 cpu_data(cpu).clock_tick =
862 cpufreq_scale(ft->clock_tick_ref,
863 ft->ref_freq,
864 freq->new);
865 }
866
867 return 0;
868 }
869
870 static struct notifier_block sparc64_cpufreq_notifier_block = {
871 .notifier_call = sparc64_cpufreq_notifier
872 };
873
874 #endif /* CONFIG_CPU_FREQ */
875
876 static int sparc64_next_event(unsigned long delta,
877 struct clock_event_device *evt)
878 {
879 return tick_ops->add_compare(delta) ? -ETIME : 0;
880 }
881
882 static void sparc64_timer_setup(enum clock_event_mode mode,
883 struct clock_event_device *evt)
884 {
885 switch (mode) {
886 case CLOCK_EVT_MODE_ONESHOT:
887 case CLOCK_EVT_MODE_RESUME:
888 break;
889
890 case CLOCK_EVT_MODE_SHUTDOWN:
891 tick_ops->disable_irq();
892 break;
893
894 case CLOCK_EVT_MODE_PERIODIC:
895 case CLOCK_EVT_MODE_UNUSED:
896 WARN_ON(1);
897 break;
898 };
899 }
900
901 static struct clock_event_device sparc64_clockevent = {
902 .features = CLOCK_EVT_FEAT_ONESHOT,
903 .set_mode = sparc64_timer_setup,
904 .set_next_event = sparc64_next_event,
905 .rating = 100,
906 .shift = 30,
907 .irq = -1,
908 };
909 static DEFINE_PER_CPU(struct clock_event_device, sparc64_events);
910
911 void timer_interrupt(int irq, struct pt_regs *regs)
912 {
913 struct pt_regs *old_regs = set_irq_regs(regs);
914 unsigned long tick_mask = tick_ops->softint_mask;
915 int cpu = smp_processor_id();
916 struct clock_event_device *evt = &per_cpu(sparc64_events, cpu);
917
918 clear_softint(tick_mask);
919
920 irq_enter();
921
922 kstat_this_cpu.irqs[0]++;
923
924 if (unlikely(!evt->event_handler)) {
925 printk(KERN_WARNING
926 "Spurious SPARC64 timer interrupt on cpu %d\n", cpu);
927 } else
928 evt->event_handler(evt);
929
930 irq_exit();
931
932 set_irq_regs(old_regs);
933 }
934
935 void __devinit setup_sparc64_timer(void)
936 {
937 struct clock_event_device *sevt;
938 unsigned long pstate;
939
940 /* Guarantee that the following sequences execute
941 * uninterrupted.
942 */
943 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
944 "wrpr %0, %1, %%pstate"
945 : "=r" (pstate)
946 : "i" (PSTATE_IE));
947
948 tick_ops->init_tick();
949
950 /* Restore PSTATE_IE. */
951 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
952 : /* no outputs */
953 : "r" (pstate));
954
955 sevt = &__get_cpu_var(sparc64_events);
956
957 memcpy(sevt, &sparc64_clockevent, sizeof(*sevt));
958 sevt->cpumask = cpumask_of_cpu(smp_processor_id());
959
960 clockevents_register_device(sevt);
961 }
962
963 #define SPARC64_NSEC_PER_CYC_SHIFT 10UL
964
965 static struct clocksource clocksource_tick = {
966 .rating = 100,
967 .mask = CLOCKSOURCE_MASK(64),
968 .shift = 16,
969 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
970 };
971
972 static void __init setup_clockevent_multiplier(unsigned long hz)
973 {
974 unsigned long mult, shift = 32;
975
976 while (1) {
977 mult = div_sc(hz, NSEC_PER_SEC, shift);
978 if (mult && (mult >> 32UL) == 0UL)
979 break;
980
981 shift--;
982 }
983
984 sparc64_clockevent.shift = shift;
985 sparc64_clockevent.mult = mult;
986 }
987
988 static unsigned long tb_ticks_per_usec __read_mostly;
989
990 void __delay(unsigned long loops)
991 {
992 unsigned long bclock, now;
993
994 bclock = tick_ops->get_tick();
995 do {
996 now = tick_ops->get_tick();
997 } while ((now-bclock) < loops);
998 }
999 EXPORT_SYMBOL(__delay);
1000
1001 void udelay(unsigned long usecs)
1002 {
1003 __delay(tb_ticks_per_usec * usecs);
1004 }
1005 EXPORT_SYMBOL(udelay);
1006
1007 void __init time_init(void)
1008 {
1009 unsigned long clock = sparc64_init_timers();
1010
1011 tb_ticks_per_usec = clock / USEC_PER_SEC;
1012
1013 timer_ticks_per_nsec_quotient =
1014 clocksource_hz2mult(clock, SPARC64_NSEC_PER_CYC_SHIFT);
1015
1016 clocksource_tick.name = tick_ops->name;
1017 clocksource_tick.mult =
1018 clocksource_hz2mult(clock,
1019 clocksource_tick.shift);
1020 clocksource_tick.read = tick_ops->get_tick;
1021
1022 printk("clocksource: mult[%x] shift[%d]\n",
1023 clocksource_tick.mult, clocksource_tick.shift);
1024
1025 clocksource_register(&clocksource_tick);
1026
1027 sparc64_clockevent.name = tick_ops->name;
1028
1029 setup_clockevent_multiplier(clock);
1030
1031 sparc64_clockevent.max_delta_ns =
1032 clockevent_delta2ns(0x7fffffffffffffff, &sparc64_clockevent);
1033 sparc64_clockevent.min_delta_ns =
1034 clockevent_delta2ns(0xF, &sparc64_clockevent);
1035
1036 printk("clockevent: mult[%lx] shift[%d]\n",
1037 sparc64_clockevent.mult, sparc64_clockevent.shift);
1038
1039 setup_sparc64_timer();
1040
1041 #ifdef CONFIG_CPU_FREQ
1042 cpufreq_register_notifier(&sparc64_cpufreq_notifier_block,
1043 CPUFREQ_TRANSITION_NOTIFIER);
1044 #endif
1045 }
1046
1047 unsigned long long sched_clock(void)
1048 {
1049 unsigned long ticks = tick_ops->get_tick();
1050
1051 return (ticks * timer_ticks_per_nsec_quotient)
1052 >> SPARC64_NSEC_PER_CYC_SHIFT;
1053 }
1054
1055 static int set_rtc_mmss(unsigned long nowtime)
1056 {
1057 int real_seconds, real_minutes, chip_minutes;
1058 void __iomem *mregs = mstk48t02_regs;
1059 #ifdef CONFIG_PCI
1060 unsigned long dregs = ds1287_regs;
1061 void __iomem *bregs = bq4802_regs;
1062 #else
1063 unsigned long dregs = 0UL;
1064 void __iomem *bregs = 0UL;
1065 #endif
1066 unsigned long flags;
1067 u8 tmp;
1068
1069 /*
1070 * Not having a register set can lead to trouble.
1071 * Also starfire doesn't have a tod clock.
1072 */
1073 if (!mregs && !dregs & !bregs)
1074 return -1;
1075
1076 if (mregs) {
1077 spin_lock_irqsave(&mostek_lock, flags);
1078
1079 /* Read the current RTC minutes. */
1080 tmp = mostek_read(mregs + MOSTEK_CREG);
1081 tmp |= MSTK_CREG_READ;
1082 mostek_write(mregs + MOSTEK_CREG, tmp);
1083
1084 chip_minutes = MSTK_REG_MIN(mregs);
1085
1086 tmp = mostek_read(mregs + MOSTEK_CREG);
1087 tmp &= ~MSTK_CREG_READ;
1088 mostek_write(mregs + MOSTEK_CREG, tmp);
1089
1090 /*
1091 * since we're only adjusting minutes and seconds,
1092 * don't interfere with hour overflow. This avoids
1093 * messing with unknown time zones but requires your
1094 * RTC not to be off by more than 15 minutes
1095 */
1096 real_seconds = nowtime % 60;
1097 real_minutes = nowtime / 60;
1098 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1099 real_minutes += 30; /* correct for half hour time zone */
1100 real_minutes %= 60;
1101
1102 if (abs(real_minutes - chip_minutes) < 30) {
1103 tmp = mostek_read(mregs + MOSTEK_CREG);
1104 tmp |= MSTK_CREG_WRITE;
1105 mostek_write(mregs + MOSTEK_CREG, tmp);
1106
1107 MSTK_SET_REG_SEC(mregs,real_seconds);
1108 MSTK_SET_REG_MIN(mregs,real_minutes);
1109
1110 tmp = mostek_read(mregs + MOSTEK_CREG);
1111 tmp &= ~MSTK_CREG_WRITE;
1112 mostek_write(mregs + MOSTEK_CREG, tmp);
1113
1114 spin_unlock_irqrestore(&mostek_lock, flags);
1115
1116 return 0;
1117 } else {
1118 spin_unlock_irqrestore(&mostek_lock, flags);
1119
1120 return -1;
1121 }
1122 } else if (bregs) {
1123 int retval = 0;
1124 unsigned char val = readb(bregs + 0x0e);
1125
1126 /* BQ4802 RTC chip. */
1127
1128 writeb(val | 0x08, bregs + 0x0e);
1129
1130 chip_minutes = readb(bregs + 0x02);
1131 BCD_TO_BIN(chip_minutes);
1132 real_seconds = nowtime % 60;
1133 real_minutes = nowtime / 60;
1134 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1135 real_minutes += 30;
1136 real_minutes %= 60;
1137
1138 if (abs(real_minutes - chip_minutes) < 30) {
1139 BIN_TO_BCD(real_seconds);
1140 BIN_TO_BCD(real_minutes);
1141 writeb(real_seconds, bregs + 0x00);
1142 writeb(real_minutes, bregs + 0x02);
1143 } else {
1144 printk(KERN_WARNING
1145 "set_rtc_mmss: can't update from %d to %d\n",
1146 chip_minutes, real_minutes);
1147 retval = -1;
1148 }
1149
1150 writeb(val, bregs + 0x0e);
1151
1152 return retval;
1153 } else {
1154 int retval = 0;
1155 unsigned char save_control, save_freq_select;
1156
1157 /* Stolen from arch/i386/kernel/time.c, see there for
1158 * credits and descriptive comments.
1159 */
1160 spin_lock_irqsave(&rtc_lock, flags);
1161 save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
1162 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
1163
1164 save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
1165 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
1166
1167 chip_minutes = CMOS_READ(RTC_MINUTES);
1168 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1169 BCD_TO_BIN(chip_minutes);
1170 real_seconds = nowtime % 60;
1171 real_minutes = nowtime / 60;
1172 if (((abs(real_minutes - chip_minutes) + 15)/30) & 1)
1173 real_minutes += 30;
1174 real_minutes %= 60;
1175
1176 if (abs(real_minutes - chip_minutes) < 30) {
1177 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1178 BIN_TO_BCD(real_seconds);
1179 BIN_TO_BCD(real_minutes);
1180 }
1181 CMOS_WRITE(real_seconds,RTC_SECONDS);
1182 CMOS_WRITE(real_minutes,RTC_MINUTES);
1183 } else {
1184 printk(KERN_WARNING
1185 "set_rtc_mmss: can't update from %d to %d\n",
1186 chip_minutes, real_minutes);
1187 retval = -1;
1188 }
1189
1190 CMOS_WRITE(save_control, RTC_CONTROL);
1191 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
1192 spin_unlock_irqrestore(&rtc_lock, flags);
1193
1194 return retval;
1195 }
1196 }
1197
1198 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
1199 static unsigned char mini_rtc_status; /* bitmapped status byte. */
1200
1201 #define FEBRUARY 2
1202 #define STARTOFTIME 1970
1203 #define SECDAY 86400L
1204 #define SECYR (SECDAY * 365)
1205 #define leapyear(year) ((year) % 4 == 0 && \
1206 ((year) % 100 != 0 || (year) % 400 == 0))
1207 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1208 #define days_in_month(a) (month_days[(a) - 1])
1209
1210 static int month_days[12] = {
1211 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1212 };
1213
1214 /*
1215 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1216 */
1217 static void GregorianDay(struct rtc_time * tm)
1218 {
1219 int leapsToDate;
1220 int lastYear;
1221 int day;
1222 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1223
1224 lastYear = tm->tm_year - 1;
1225
1226 /*
1227 * Number of leap corrections to apply up to end of last year
1228 */
1229 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1230
1231 /*
1232 * This year is a leap year if it is divisible by 4 except when it is
1233 * divisible by 100 unless it is divisible by 400
1234 *
1235 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1236 */
1237 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1238
1239 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1240 tm->tm_mday;
1241
1242 tm->tm_wday = day % 7;
1243 }
1244
1245 static void to_tm(int tim, struct rtc_time *tm)
1246 {
1247 register int i;
1248 register long hms, day;
1249
1250 day = tim / SECDAY;
1251 hms = tim % SECDAY;
1252
1253 /* Hours, minutes, seconds are easy */
1254 tm->tm_hour = hms / 3600;
1255 tm->tm_min = (hms % 3600) / 60;
1256 tm->tm_sec = (hms % 3600) % 60;
1257
1258 /* Number of years in days */
1259 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1260 day -= days_in_year(i);
1261 tm->tm_year = i;
1262
1263 /* Number of months in days left */
1264 if (leapyear(tm->tm_year))
1265 days_in_month(FEBRUARY) = 29;
1266 for (i = 1; day >= days_in_month(i); i++)
1267 day -= days_in_month(i);
1268 days_in_month(FEBRUARY) = 28;
1269 tm->tm_mon = i;
1270
1271 /* Days are what is left over (+1) from all that. */
1272 tm->tm_mday = day + 1;
1273
1274 /*
1275 * Determine the day of week
1276 */
1277 GregorianDay(tm);
1278 }
1279
1280 /* Both Starfire and SUN4V give us seconds since Jan 1st, 1970,
1281 * aka Unix time. So we have to convert to/from rtc_time.
1282 */
1283 static void starfire_get_rtc_time(struct rtc_time *time)
1284 {
1285 u32 seconds = starfire_get_time();
1286
1287 to_tm(seconds, time);
1288 time->tm_year -= 1900;
1289 time->tm_mon -= 1;
1290 }
1291
1292 static int starfire_set_rtc_time(struct rtc_time *time)
1293 {
1294 u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1,
1295 time->tm_mday, time->tm_hour,
1296 time->tm_min, time->tm_sec);
1297
1298 return starfire_set_time(seconds);
1299 }
1300
1301 static void hypervisor_get_rtc_time(struct rtc_time *time)
1302 {
1303 u32 seconds = hypervisor_get_time();
1304
1305 to_tm(seconds, time);
1306 time->tm_year -= 1900;
1307 time->tm_mon -= 1;
1308 }
1309
1310 static int hypervisor_set_rtc_time(struct rtc_time *time)
1311 {
1312 u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1,
1313 time->tm_mday, time->tm_hour,
1314 time->tm_min, time->tm_sec);
1315
1316 return hypervisor_set_time(seconds);
1317 }
1318
1319 #ifdef CONFIG_PCI
1320 static void bq4802_get_rtc_time(struct rtc_time *time)
1321 {
1322 unsigned char val = readb(bq4802_regs + 0x0e);
1323 unsigned int century;
1324
1325 writeb(val | 0x08, bq4802_regs + 0x0e);
1326
1327 time->tm_sec = readb(bq4802_regs + 0x00);
1328 time->tm_min = readb(bq4802_regs + 0x02);
1329 time->tm_hour = readb(bq4802_regs + 0x04);
1330 time->tm_mday = readb(bq4802_regs + 0x06);
1331 time->tm_mon = readb(bq4802_regs + 0x09);
1332 time->tm_year = readb(bq4802_regs + 0x0a);
1333 time->tm_wday = readb(bq4802_regs + 0x08);
1334 century = readb(bq4802_regs + 0x0f);
1335
1336 writeb(val, bq4802_regs + 0x0e);
1337
1338 BCD_TO_BIN(time->tm_sec);
1339 BCD_TO_BIN(time->tm_min);
1340 BCD_TO_BIN(time->tm_hour);
1341 BCD_TO_BIN(time->tm_mday);
1342 BCD_TO_BIN(time->tm_mon);
1343 BCD_TO_BIN(time->tm_year);
1344 BCD_TO_BIN(time->tm_wday);
1345 BCD_TO_BIN(century);
1346
1347 time->tm_year += (century * 100);
1348 time->tm_year -= 1900;
1349
1350 time->tm_mon--;
1351 }
1352
1353 static int bq4802_set_rtc_time(struct rtc_time *time)
1354 {
1355 unsigned char val = readb(bq4802_regs + 0x0e);
1356 unsigned char sec, min, hrs, day, mon, yrs, century;
1357 unsigned int year;
1358
1359 year = time->tm_year + 1900;
1360 century = year / 100;
1361 yrs = year % 100;
1362
1363 mon = time->tm_mon + 1; /* tm_mon starts at zero */
1364 day = time->tm_mday;
1365 hrs = time->tm_hour;
1366 min = time->tm_min;
1367 sec = time->tm_sec;
1368
1369 BIN_TO_BCD(sec);
1370 BIN_TO_BCD(min);
1371 BIN_TO_BCD(hrs);
1372 BIN_TO_BCD(day);
1373 BIN_TO_BCD(mon);
1374 BIN_TO_BCD(yrs);
1375 BIN_TO_BCD(century);
1376
1377 writeb(val | 0x08, bq4802_regs + 0x0e);
1378
1379 writeb(sec, bq4802_regs + 0x00);
1380 writeb(min, bq4802_regs + 0x02);
1381 writeb(hrs, bq4802_regs + 0x04);
1382 writeb(day, bq4802_regs + 0x06);
1383 writeb(mon, bq4802_regs + 0x09);
1384 writeb(yrs, bq4802_regs + 0x0a);
1385 writeb(century, bq4802_regs + 0x0f);
1386
1387 writeb(val, bq4802_regs + 0x0e);
1388
1389 return 0;
1390 }
1391
1392 static void cmos_get_rtc_time(struct rtc_time *rtc_tm)
1393 {
1394 unsigned char ctrl;
1395
1396 rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1397 rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1398 rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1399 rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1400 rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1401 rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1402 rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1403
1404 ctrl = CMOS_READ(RTC_CONTROL);
1405 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1406 BCD_TO_BIN(rtc_tm->tm_sec);
1407 BCD_TO_BIN(rtc_tm->tm_min);
1408 BCD_TO_BIN(rtc_tm->tm_hour);
1409 BCD_TO_BIN(rtc_tm->tm_mday);
1410 BCD_TO_BIN(rtc_tm->tm_mon);
1411 BCD_TO_BIN(rtc_tm->tm_year);
1412 BCD_TO_BIN(rtc_tm->tm_wday);
1413 }
1414
1415 if (rtc_tm->tm_year <= 69)
1416 rtc_tm->tm_year += 100;
1417
1418 rtc_tm->tm_mon--;
1419 }
1420
1421 static int cmos_set_rtc_time(struct rtc_time *rtc_tm)
1422 {
1423 unsigned char mon, day, hrs, min, sec;
1424 unsigned char save_control, save_freq_select;
1425 unsigned int yrs;
1426
1427 yrs = rtc_tm->tm_year;
1428 mon = rtc_tm->tm_mon + 1;
1429 day = rtc_tm->tm_mday;
1430 hrs = rtc_tm->tm_hour;
1431 min = rtc_tm->tm_min;
1432 sec = rtc_tm->tm_sec;
1433
1434 if (yrs >= 100)
1435 yrs -= 100;
1436
1437 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1438 BIN_TO_BCD(sec);
1439 BIN_TO_BCD(min);
1440 BIN_TO_BCD(hrs);
1441 BIN_TO_BCD(day);
1442 BIN_TO_BCD(mon);
1443 BIN_TO_BCD(yrs);
1444 }
1445
1446 save_control = CMOS_READ(RTC_CONTROL);
1447 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
1448 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
1449 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
1450
1451 CMOS_WRITE(yrs, RTC_YEAR);
1452 CMOS_WRITE(mon, RTC_MONTH);
1453 CMOS_WRITE(day, RTC_DAY_OF_MONTH);
1454 CMOS_WRITE(hrs, RTC_HOURS);
1455 CMOS_WRITE(min, RTC_MINUTES);
1456 CMOS_WRITE(sec, RTC_SECONDS);
1457
1458 CMOS_WRITE(save_control, RTC_CONTROL);
1459 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
1460
1461 return 0;
1462 }
1463 #endif /* CONFIG_PCI */
1464
1465 static void mostek_get_rtc_time(struct rtc_time *rtc_tm)
1466 {
1467 void __iomem *regs = mstk48t02_regs;
1468 u8 tmp;
1469
1470 spin_lock_irq(&mostek_lock);
1471
1472 tmp = mostek_read(regs + MOSTEK_CREG);
1473 tmp |= MSTK_CREG_READ;
1474 mostek_write(regs + MOSTEK_CREG, tmp);
1475
1476 rtc_tm->tm_sec = MSTK_REG_SEC(regs);
1477 rtc_tm->tm_min = MSTK_REG_MIN(regs);
1478 rtc_tm->tm_hour = MSTK_REG_HOUR(regs);
1479 rtc_tm->tm_mday = MSTK_REG_DOM(regs);
1480 rtc_tm->tm_mon = MSTK_REG_MONTH(regs);
1481 rtc_tm->tm_year = MSTK_CVT_YEAR( MSTK_REG_YEAR(regs) );
1482 rtc_tm->tm_wday = MSTK_REG_DOW(regs);
1483
1484 tmp = mostek_read(regs + MOSTEK_CREG);
1485 tmp &= ~MSTK_CREG_READ;
1486 mostek_write(regs + MOSTEK_CREG, tmp);
1487
1488 spin_unlock_irq(&mostek_lock);
1489
1490 rtc_tm->tm_mon--;
1491 rtc_tm->tm_wday--;
1492 rtc_tm->tm_year -= 1900;
1493 }
1494
1495 static int mostek_set_rtc_time(struct rtc_time *rtc_tm)
1496 {
1497 unsigned char mon, day, hrs, min, sec, wday;
1498 void __iomem *regs = mstk48t02_regs;
1499 unsigned int yrs;
1500 u8 tmp;
1501
1502 yrs = rtc_tm->tm_year + 1900;
1503 mon = rtc_tm->tm_mon + 1;
1504 day = rtc_tm->tm_mday;
1505 wday = rtc_tm->tm_wday + 1;
1506 hrs = rtc_tm->tm_hour;
1507 min = rtc_tm->tm_min;
1508 sec = rtc_tm->tm_sec;
1509
1510 spin_lock_irq(&mostek_lock);
1511
1512 tmp = mostek_read(regs + MOSTEK_CREG);
1513 tmp |= MSTK_CREG_WRITE;
1514 mostek_write(regs + MOSTEK_CREG, tmp);
1515
1516 MSTK_SET_REG_SEC(regs, sec);
1517 MSTK_SET_REG_MIN(regs, min);
1518 MSTK_SET_REG_HOUR(regs, hrs);
1519 MSTK_SET_REG_DOW(regs, wday);
1520 MSTK_SET_REG_DOM(regs, day);
1521 MSTK_SET_REG_MONTH(regs, mon);
1522 MSTK_SET_REG_YEAR(regs, yrs - MSTK_YEAR_ZERO);
1523
1524 tmp = mostek_read(regs + MOSTEK_CREG);
1525 tmp &= ~MSTK_CREG_WRITE;
1526 mostek_write(regs + MOSTEK_CREG, tmp);
1527
1528 spin_unlock_irq(&mostek_lock);
1529
1530 return 0;
1531 }
1532
1533 struct mini_rtc_ops {
1534 void (*get_rtc_time)(struct rtc_time *);
1535 int (*set_rtc_time)(struct rtc_time *);
1536 };
1537
1538 static struct mini_rtc_ops starfire_rtc_ops = {
1539 .get_rtc_time = starfire_get_rtc_time,
1540 .set_rtc_time = starfire_set_rtc_time,
1541 };
1542
1543 static struct mini_rtc_ops hypervisor_rtc_ops = {
1544 .get_rtc_time = hypervisor_get_rtc_time,
1545 .set_rtc_time = hypervisor_set_rtc_time,
1546 };
1547
1548 #ifdef CONFIG_PCI
1549 static struct mini_rtc_ops bq4802_rtc_ops = {
1550 .get_rtc_time = bq4802_get_rtc_time,
1551 .set_rtc_time = bq4802_set_rtc_time,
1552 };
1553
1554 static struct mini_rtc_ops cmos_rtc_ops = {
1555 .get_rtc_time = cmos_get_rtc_time,
1556 .set_rtc_time = cmos_set_rtc_time,
1557 };
1558 #endif /* CONFIG_PCI */
1559
1560 static struct mini_rtc_ops mostek_rtc_ops = {
1561 .get_rtc_time = mostek_get_rtc_time,
1562 .set_rtc_time = mostek_set_rtc_time,
1563 };
1564
1565 static struct mini_rtc_ops *mini_rtc_ops;
1566
1567 static inline void mini_get_rtc_time(struct rtc_time *time)
1568 {
1569 unsigned long flags;
1570
1571 spin_lock_irqsave(&rtc_lock, flags);
1572 mini_rtc_ops->get_rtc_time(time);
1573 spin_unlock_irqrestore(&rtc_lock, flags);
1574 }
1575
1576 static inline int mini_set_rtc_time(struct rtc_time *time)
1577 {
1578 unsigned long flags;
1579 int err;
1580
1581 spin_lock_irqsave(&rtc_lock, flags);
1582 err = mini_rtc_ops->set_rtc_time(time);
1583 spin_unlock_irqrestore(&rtc_lock, flags);
1584
1585 return err;
1586 }
1587
1588 static int mini_rtc_ioctl(struct inode *inode, struct file *file,
1589 unsigned int cmd, unsigned long arg)
1590 {
1591 struct rtc_time wtime;
1592 void __user *argp = (void __user *)arg;
1593
1594 switch (cmd) {
1595
1596 case RTC_PLL_GET:
1597 return -EINVAL;
1598
1599 case RTC_PLL_SET:
1600 return -EINVAL;
1601
1602 case RTC_UIE_OFF: /* disable ints from RTC updates. */
1603 return 0;
1604
1605 case RTC_UIE_ON: /* enable ints for RTC updates. */
1606 return -EINVAL;
1607
1608 case RTC_RD_TIME: /* Read the time/date from RTC */
1609 /* this doesn't get week-day, who cares */
1610 memset(&wtime, 0, sizeof(wtime));
1611 mini_get_rtc_time(&wtime);
1612
1613 return copy_to_user(argp, &wtime, sizeof(wtime)) ? -EFAULT : 0;
1614
1615 case RTC_SET_TIME: /* Set the RTC */
1616 {
1617 int year, days;
1618
1619 if (!capable(CAP_SYS_TIME))
1620 return -EACCES;
1621
1622 if (copy_from_user(&wtime, argp, sizeof(wtime)))
1623 return -EFAULT;
1624
1625 year = wtime.tm_year + 1900;
1626 days = month_days[wtime.tm_mon] +
1627 ((wtime.tm_mon == 1) && leapyear(year));
1628
1629 if ((wtime.tm_mon < 0 || wtime.tm_mon > 11) ||
1630 (wtime.tm_mday < 1))
1631 return -EINVAL;
1632
1633 if (wtime.tm_mday < 0 || wtime.tm_mday > days)
1634 return -EINVAL;
1635
1636 if (wtime.tm_hour < 0 || wtime.tm_hour >= 24 ||
1637 wtime.tm_min < 0 || wtime.tm_min >= 60 ||
1638 wtime.tm_sec < 0 || wtime.tm_sec >= 60)
1639 return -EINVAL;
1640
1641 return mini_set_rtc_time(&wtime);
1642 }
1643 }
1644
1645 return -EINVAL;
1646 }
1647
1648 static int mini_rtc_open(struct inode *inode, struct file *file)
1649 {
1650 if (mini_rtc_status & RTC_IS_OPEN)
1651 return -EBUSY;
1652
1653 mini_rtc_status |= RTC_IS_OPEN;
1654
1655 return 0;
1656 }
1657
1658 static int mini_rtc_release(struct inode *inode, struct file *file)
1659 {
1660 mini_rtc_status &= ~RTC_IS_OPEN;
1661 return 0;
1662 }
1663
1664
1665 static const struct file_operations mini_rtc_fops = {
1666 .owner = THIS_MODULE,
1667 .ioctl = mini_rtc_ioctl,
1668 .open = mini_rtc_open,
1669 .release = mini_rtc_release,
1670 };
1671
1672 static struct miscdevice rtc_mini_dev =
1673 {
1674 .minor = RTC_MINOR,
1675 .name = "rtc",
1676 .fops = &mini_rtc_fops,
1677 };
1678
1679 static int __init rtc_mini_init(void)
1680 {
1681 int retval;
1682
1683 if (tlb_type == hypervisor)
1684 mini_rtc_ops = &hypervisor_rtc_ops;
1685 else if (this_is_starfire)
1686 mini_rtc_ops = &starfire_rtc_ops;
1687 #ifdef CONFIG_PCI
1688 else if (bq4802_regs)
1689 mini_rtc_ops = &bq4802_rtc_ops;
1690 else if (ds1287_regs)
1691 mini_rtc_ops = &cmos_rtc_ops;
1692 #endif /* CONFIG_PCI */
1693 else if (mstk48t02_regs)
1694 mini_rtc_ops = &mostek_rtc_ops;
1695 else
1696 return -ENODEV;
1697
1698 printk(KERN_INFO "Mini RTC Driver\n");
1699
1700 retval = misc_register(&rtc_mini_dev);
1701 if (retval < 0)
1702 return retval;
1703
1704 return 0;
1705 }
1706
1707 static void __exit rtc_mini_exit(void)
1708 {
1709 misc_deregister(&rtc_mini_dev);
1710 }
1711
1712
1713 module_init(rtc_mini_init);
1714 module_exit(rtc_mini_exit);
This page took 0.114736 seconds and 6 git commands to generate.