Merge git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[deliverable/linux.git] / arch / sparc64 / mm / hugetlbpage.c
1 /*
2 * SPARC64 Huge TLB page support.
3 *
4 * Copyright (C) 2002, 2003, 2006 David S. Miller (davem@davemloft.net)
5 */
6
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/hugetlb.h>
12 #include <linux/pagemap.h>
13 #include <linux/smp_lock.h>
14 #include <linux/slab.h>
15 #include <linux/sysctl.h>
16
17 #include <asm/mman.h>
18 #include <asm/pgalloc.h>
19 #include <asm/tlb.h>
20 #include <asm/tlbflush.h>
21 #include <asm/cacheflush.h>
22 #include <asm/mmu_context.h>
23
24 /* Slightly simplified from the non-hugepage variant because by
25 * definition we don't have to worry about any page coloring stuff
26 */
27 #define VA_EXCLUDE_START (0x0000080000000000UL - (1UL << 32UL))
28 #define VA_EXCLUDE_END (0xfffff80000000000UL + (1UL << 32UL))
29
30 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *filp,
31 unsigned long addr,
32 unsigned long len,
33 unsigned long pgoff,
34 unsigned long flags)
35 {
36 struct mm_struct *mm = current->mm;
37 struct vm_area_struct * vma;
38 unsigned long task_size = TASK_SIZE;
39 unsigned long start_addr;
40
41 if (test_thread_flag(TIF_32BIT))
42 task_size = STACK_TOP32;
43 if (unlikely(len >= VA_EXCLUDE_START))
44 return -ENOMEM;
45
46 if (len > mm->cached_hole_size) {
47 start_addr = addr = mm->free_area_cache;
48 } else {
49 start_addr = addr = TASK_UNMAPPED_BASE;
50 mm->cached_hole_size = 0;
51 }
52
53 task_size -= len;
54
55 full_search:
56 addr = ALIGN(addr, HPAGE_SIZE);
57
58 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
59 /* At this point: (!vma || addr < vma->vm_end). */
60 if (addr < VA_EXCLUDE_START &&
61 (addr + len) >= VA_EXCLUDE_START) {
62 addr = VA_EXCLUDE_END;
63 vma = find_vma(mm, VA_EXCLUDE_END);
64 }
65 if (unlikely(task_size < addr)) {
66 if (start_addr != TASK_UNMAPPED_BASE) {
67 start_addr = addr = TASK_UNMAPPED_BASE;
68 mm->cached_hole_size = 0;
69 goto full_search;
70 }
71 return -ENOMEM;
72 }
73 if (likely(!vma || addr + len <= vma->vm_start)) {
74 /*
75 * Remember the place where we stopped the search:
76 */
77 mm->free_area_cache = addr + len;
78 return addr;
79 }
80 if (addr + mm->cached_hole_size < vma->vm_start)
81 mm->cached_hole_size = vma->vm_start - addr;
82
83 addr = ALIGN(vma->vm_end, HPAGE_SIZE);
84 }
85 }
86
87 static unsigned long
88 hugetlb_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
89 const unsigned long len,
90 const unsigned long pgoff,
91 const unsigned long flags)
92 {
93 struct vm_area_struct *vma;
94 struct mm_struct *mm = current->mm;
95 unsigned long addr = addr0;
96
97 /* This should only ever run for 32-bit processes. */
98 BUG_ON(!test_thread_flag(TIF_32BIT));
99
100 /* check if free_area_cache is useful for us */
101 if (len <= mm->cached_hole_size) {
102 mm->cached_hole_size = 0;
103 mm->free_area_cache = mm->mmap_base;
104 }
105
106 /* either no address requested or can't fit in requested address hole */
107 addr = mm->free_area_cache & HPAGE_MASK;
108
109 /* make sure it can fit in the remaining address space */
110 if (likely(addr > len)) {
111 vma = find_vma(mm, addr-len);
112 if (!vma || addr <= vma->vm_start) {
113 /* remember the address as a hint for next time */
114 return (mm->free_area_cache = addr-len);
115 }
116 }
117
118 if (unlikely(mm->mmap_base < len))
119 goto bottomup;
120
121 addr = (mm->mmap_base-len) & HPAGE_MASK;
122
123 do {
124 /*
125 * Lookup failure means no vma is above this address,
126 * else if new region fits below vma->vm_start,
127 * return with success:
128 */
129 vma = find_vma(mm, addr);
130 if (likely(!vma || addr+len <= vma->vm_start)) {
131 /* remember the address as a hint for next time */
132 return (mm->free_area_cache = addr);
133 }
134
135 /* remember the largest hole we saw so far */
136 if (addr + mm->cached_hole_size < vma->vm_start)
137 mm->cached_hole_size = vma->vm_start - addr;
138
139 /* try just below the current vma->vm_start */
140 addr = (vma->vm_start-len) & HPAGE_MASK;
141 } while (likely(len < vma->vm_start));
142
143 bottomup:
144 /*
145 * A failed mmap() very likely causes application failure,
146 * so fall back to the bottom-up function here. This scenario
147 * can happen with large stack limits and large mmap()
148 * allocations.
149 */
150 mm->cached_hole_size = ~0UL;
151 mm->free_area_cache = TASK_UNMAPPED_BASE;
152 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
153 /*
154 * Restore the topdown base:
155 */
156 mm->free_area_cache = mm->mmap_base;
157 mm->cached_hole_size = ~0UL;
158
159 return addr;
160 }
161
162 unsigned long
163 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
164 unsigned long len, unsigned long pgoff, unsigned long flags)
165 {
166 struct mm_struct *mm = current->mm;
167 struct vm_area_struct *vma;
168 unsigned long task_size = TASK_SIZE;
169
170 if (test_thread_flag(TIF_32BIT))
171 task_size = STACK_TOP32;
172
173 if (len & ~HPAGE_MASK)
174 return -EINVAL;
175 if (len > task_size)
176 return -ENOMEM;
177
178 if (flags & MAP_FIXED) {
179 if (prepare_hugepage_range(addr, len, pgoff))
180 return -EINVAL;
181 return addr;
182 }
183
184 if (addr) {
185 addr = ALIGN(addr, HPAGE_SIZE);
186 vma = find_vma(mm, addr);
187 if (task_size - len >= addr &&
188 (!vma || addr + len <= vma->vm_start))
189 return addr;
190 }
191 if (mm->get_unmapped_area == arch_get_unmapped_area)
192 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
193 pgoff, flags);
194 else
195 return hugetlb_get_unmapped_area_topdown(file, addr, len,
196 pgoff, flags);
197 }
198
199 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
200 {
201 pgd_t *pgd;
202 pud_t *pud;
203 pmd_t *pmd;
204 pte_t *pte = NULL;
205
206 /* We must align the address, because our caller will run
207 * set_huge_pte_at() on whatever we return, which writes out
208 * all of the sub-ptes for the hugepage range. So we have
209 * to give it the first such sub-pte.
210 */
211 addr &= HPAGE_MASK;
212
213 pgd = pgd_offset(mm, addr);
214 pud = pud_alloc(mm, pgd, addr);
215 if (pud) {
216 pmd = pmd_alloc(mm, pud, addr);
217 if (pmd)
218 pte = pte_alloc_map(mm, pmd, addr);
219 }
220 return pte;
221 }
222
223 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
224 {
225 pgd_t *pgd;
226 pud_t *pud;
227 pmd_t *pmd;
228 pte_t *pte = NULL;
229
230 addr &= HPAGE_MASK;
231
232 pgd = pgd_offset(mm, addr);
233 if (!pgd_none(*pgd)) {
234 pud = pud_offset(pgd, addr);
235 if (!pud_none(*pud)) {
236 pmd = pmd_offset(pud, addr);
237 if (!pmd_none(*pmd))
238 pte = pte_offset_map(pmd, addr);
239 }
240 }
241 return pte;
242 }
243
244 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
245 {
246 return 0;
247 }
248
249 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
250 pte_t *ptep, pte_t entry)
251 {
252 int i;
253
254 if (!pte_present(*ptep) && pte_present(entry))
255 mm->context.huge_pte_count++;
256
257 addr &= HPAGE_MASK;
258 for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
259 set_pte_at(mm, addr, ptep, entry);
260 ptep++;
261 addr += PAGE_SIZE;
262 pte_val(entry) += PAGE_SIZE;
263 }
264 }
265
266 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
267 pte_t *ptep)
268 {
269 pte_t entry;
270 int i;
271
272 entry = *ptep;
273 if (pte_present(entry))
274 mm->context.huge_pte_count--;
275
276 addr &= HPAGE_MASK;
277
278 for (i = 0; i < (1 << HUGETLB_PAGE_ORDER); i++) {
279 pte_clear(mm, addr, ptep);
280 addr += PAGE_SIZE;
281 ptep++;
282 }
283
284 return entry;
285 }
286
287 struct page *follow_huge_addr(struct mm_struct *mm,
288 unsigned long address, int write)
289 {
290 return ERR_PTR(-EINVAL);
291 }
292
293 int pmd_huge(pmd_t pmd)
294 {
295 return 0;
296 }
297
298 struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
299 pmd_t *pmd, int write)
300 {
301 return NULL;
302 }
303
304 static void context_reload(void *__data)
305 {
306 struct mm_struct *mm = __data;
307
308 if (mm == current->mm)
309 load_secondary_context(mm);
310 }
311
312 void hugetlb_prefault_arch_hook(struct mm_struct *mm)
313 {
314 struct tsb_config *tp = &mm->context.tsb_block[MM_TSB_HUGE];
315
316 if (likely(tp->tsb != NULL))
317 return;
318
319 tsb_grow(mm, MM_TSB_HUGE, 0);
320 tsb_context_switch(mm);
321 smp_tsb_sync(mm);
322
323 /* On UltraSPARC-III+ and later, configure the second half of
324 * the Data-TLB for huge pages.
325 */
326 if (tlb_type == cheetah_plus) {
327 unsigned long ctx;
328
329 spin_lock(&ctx_alloc_lock);
330 ctx = mm->context.sparc64_ctx_val;
331 ctx &= ~CTX_PGSZ_MASK;
332 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
333 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
334
335 if (ctx != mm->context.sparc64_ctx_val) {
336 /* When changing the page size fields, we
337 * must perform a context flush so that no
338 * stale entries match. This flush must
339 * occur with the original context register
340 * settings.
341 */
342 do_flush_tlb_mm(mm);
343
344 /* Reload the context register of all processors
345 * also executing in this address space.
346 */
347 mm->context.sparc64_ctx_val = ctx;
348 on_each_cpu(context_reload, mm, 0, 0);
349 }
350 spin_unlock(&ctx_alloc_lock);
351 }
352 }
This page took 0.147339 seconds and 6 git commands to generate.