[SPARC64]: Add a secondary TSB for hugepage mappings.
[deliverable/linux.git] / arch / sparc64 / mm / init.c
1 /* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 #include <linux/config.h>
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/string.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mm.h>
16 #include <linux/hugetlb.h>
17 #include <linux/slab.h>
18 #include <linux/initrd.h>
19 #include <linux/swap.h>
20 #include <linux/pagemap.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26
27 #include <asm/head.h>
28 #include <asm/system.h>
29 #include <asm/page.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/oplib.h>
33 #include <asm/iommu.h>
34 #include <asm/io.h>
35 #include <asm/uaccess.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
38 #include <asm/dma.h>
39 #include <asm/starfire.h>
40 #include <asm/tlb.h>
41 #include <asm/spitfire.h>
42 #include <asm/sections.h>
43 #include <asm/tsb.h>
44 #include <asm/hypervisor.h>
45
46 extern void device_scan(void);
47
48 #define MAX_PHYS_ADDRESS (1UL << 42UL)
49 #define KPTE_BITMAP_CHUNK_SZ (256UL * 1024UL * 1024UL)
50 #define KPTE_BITMAP_BYTES \
51 ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
52
53 unsigned long kern_linear_pte_xor[2] __read_mostly;
54
55 /* A bitmap, one bit for every 256MB of physical memory. If the bit
56 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
57 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
58 */
59 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
60
61 /* A special kernel TSB for 4MB and 256MB linear mappings. */
62 struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
63
64 #define MAX_BANKS 32
65
66 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
67 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
68 static int pavail_ents __initdata;
69 static int pavail_rescan_ents __initdata;
70
71 static int cmp_p64(const void *a, const void *b)
72 {
73 const struct linux_prom64_registers *x = a, *y = b;
74
75 if (x->phys_addr > y->phys_addr)
76 return 1;
77 if (x->phys_addr < y->phys_addr)
78 return -1;
79 return 0;
80 }
81
82 static void __init read_obp_memory(const char *property,
83 struct linux_prom64_registers *regs,
84 int *num_ents)
85 {
86 int node = prom_finddevice("/memory");
87 int prop_size = prom_getproplen(node, property);
88 int ents, ret, i;
89
90 ents = prop_size / sizeof(struct linux_prom64_registers);
91 if (ents > MAX_BANKS) {
92 prom_printf("The machine has more %s property entries than "
93 "this kernel can support (%d).\n",
94 property, MAX_BANKS);
95 prom_halt();
96 }
97
98 ret = prom_getproperty(node, property, (char *) regs, prop_size);
99 if (ret == -1) {
100 prom_printf("Couldn't get %s property from /memory.\n");
101 prom_halt();
102 }
103
104 *num_ents = ents;
105
106 /* Sanitize what we got from the firmware, by page aligning
107 * everything.
108 */
109 for (i = 0; i < ents; i++) {
110 unsigned long base, size;
111
112 base = regs[i].phys_addr;
113 size = regs[i].reg_size;
114
115 size &= PAGE_MASK;
116 if (base & ~PAGE_MASK) {
117 unsigned long new_base = PAGE_ALIGN(base);
118
119 size -= new_base - base;
120 if ((long) size < 0L)
121 size = 0UL;
122 base = new_base;
123 }
124 regs[i].phys_addr = base;
125 regs[i].reg_size = size;
126 }
127 sort(regs, ents, sizeof(struct linux_prom64_registers),
128 cmp_p64, NULL);
129 }
130
131 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
132
133 /* Kernel physical address base and size in bytes. */
134 unsigned long kern_base __read_mostly;
135 unsigned long kern_size __read_mostly;
136
137 /* get_new_mmu_context() uses "cache + 1". */
138 DEFINE_SPINLOCK(ctx_alloc_lock);
139 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
140 #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
141 unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
142
143 /* References to special section boundaries */
144 extern char _start[], _end[];
145
146 /* Initial ramdisk setup */
147 extern unsigned long sparc_ramdisk_image64;
148 extern unsigned int sparc_ramdisk_image;
149 extern unsigned int sparc_ramdisk_size;
150
151 struct page *mem_map_zero __read_mostly;
152
153 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
154
155 unsigned long sparc64_kern_pri_context __read_mostly;
156 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
157 unsigned long sparc64_kern_sec_context __read_mostly;
158
159 int bigkernel = 0;
160
161 kmem_cache_t *pgtable_cache __read_mostly;
162
163 static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
164 {
165 clear_page(addr);
166 }
167
168 extern void tsb_cache_init(void);
169
170 void pgtable_cache_init(void)
171 {
172 pgtable_cache = kmem_cache_create("pgtable_cache",
173 PAGE_SIZE, PAGE_SIZE,
174 SLAB_HWCACHE_ALIGN |
175 SLAB_MUST_HWCACHE_ALIGN,
176 zero_ctor,
177 NULL);
178 if (!pgtable_cache) {
179 prom_printf("Could not create pgtable_cache\n");
180 prom_halt();
181 }
182 tsb_cache_init();
183 }
184
185 #ifdef CONFIG_DEBUG_DCFLUSH
186 atomic_t dcpage_flushes = ATOMIC_INIT(0);
187 #ifdef CONFIG_SMP
188 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
189 #endif
190 #endif
191
192 inline void flush_dcache_page_impl(struct page *page)
193 {
194 BUG_ON(tlb_type == hypervisor);
195 #ifdef CONFIG_DEBUG_DCFLUSH
196 atomic_inc(&dcpage_flushes);
197 #endif
198
199 #ifdef DCACHE_ALIASING_POSSIBLE
200 __flush_dcache_page(page_address(page),
201 ((tlb_type == spitfire) &&
202 page_mapping(page) != NULL));
203 #else
204 if (page_mapping(page) != NULL &&
205 tlb_type == spitfire)
206 __flush_icache_page(__pa(page_address(page)));
207 #endif
208 }
209
210 #define PG_dcache_dirty PG_arch_1
211 #define PG_dcache_cpu_shift 24UL
212 #define PG_dcache_cpu_mask (256UL - 1UL)
213
214 #if NR_CPUS > 256
215 #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
216 #endif
217
218 #define dcache_dirty_cpu(page) \
219 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
220
221 static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
222 {
223 unsigned long mask = this_cpu;
224 unsigned long non_cpu_bits;
225
226 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
227 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
228
229 __asm__ __volatile__("1:\n\t"
230 "ldx [%2], %%g7\n\t"
231 "and %%g7, %1, %%g1\n\t"
232 "or %%g1, %0, %%g1\n\t"
233 "casx [%2], %%g7, %%g1\n\t"
234 "cmp %%g7, %%g1\n\t"
235 "membar #StoreLoad | #StoreStore\n\t"
236 "bne,pn %%xcc, 1b\n\t"
237 " nop"
238 : /* no outputs */
239 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
240 : "g1", "g7");
241 }
242
243 static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
244 {
245 unsigned long mask = (1UL << PG_dcache_dirty);
246
247 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
248 "1:\n\t"
249 "ldx [%2], %%g7\n\t"
250 "srlx %%g7, %4, %%g1\n\t"
251 "and %%g1, %3, %%g1\n\t"
252 "cmp %%g1, %0\n\t"
253 "bne,pn %%icc, 2f\n\t"
254 " andn %%g7, %1, %%g1\n\t"
255 "casx [%2], %%g7, %%g1\n\t"
256 "cmp %%g7, %%g1\n\t"
257 "membar #StoreLoad | #StoreStore\n\t"
258 "bne,pn %%xcc, 1b\n\t"
259 " nop\n"
260 "2:"
261 : /* no outputs */
262 : "r" (cpu), "r" (mask), "r" (&page->flags),
263 "i" (PG_dcache_cpu_mask),
264 "i" (PG_dcache_cpu_shift)
265 : "g1", "g7");
266 }
267
268 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
269 {
270 unsigned long tsb_addr = (unsigned long) ent;
271
272 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
273 tsb_addr = __pa(tsb_addr);
274
275 __tsb_insert(tsb_addr, tag, pte);
276 }
277
278 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
279 unsigned long _PAGE_SZBITS __read_mostly;
280
281 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
282 {
283 struct mm_struct *mm;
284 struct tsb *tsb;
285 unsigned long tag, flags;
286 unsigned long tsb_index, tsb_hash_shift;
287
288 if (tlb_type != hypervisor) {
289 unsigned long pfn = pte_pfn(pte);
290 unsigned long pg_flags;
291 struct page *page;
292
293 if (pfn_valid(pfn) &&
294 (page = pfn_to_page(pfn), page_mapping(page)) &&
295 ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
296 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
297 PG_dcache_cpu_mask);
298 int this_cpu = get_cpu();
299
300 /* This is just to optimize away some function calls
301 * in the SMP case.
302 */
303 if (cpu == this_cpu)
304 flush_dcache_page_impl(page);
305 else
306 smp_flush_dcache_page_impl(page, cpu);
307
308 clear_dcache_dirty_cpu(page, cpu);
309
310 put_cpu();
311 }
312 }
313
314 mm = vma->vm_mm;
315
316 tsb_index = MM_TSB_BASE;
317 tsb_hash_shift = PAGE_SHIFT;
318
319 spin_lock_irqsave(&mm->context.lock, flags);
320
321 #ifdef CONFIG_HUGETLB_PAGE
322 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
323 if ((tlb_type == hypervisor &&
324 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
325 (tlb_type != hypervisor &&
326 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
327 tsb_index = MM_TSB_HUGE;
328 tsb_hash_shift = HPAGE_SHIFT;
329 }
330 }
331 #endif
332
333 tsb = mm->context.tsb_block[tsb_index].tsb;
334 tsb += ((address >> tsb_hash_shift) &
335 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
336 tag = (address >> 22UL);
337 tsb_insert(tsb, tag, pte_val(pte));
338
339 spin_unlock_irqrestore(&mm->context.lock, flags);
340 }
341
342 void flush_dcache_page(struct page *page)
343 {
344 struct address_space *mapping;
345 int this_cpu;
346
347 if (tlb_type == hypervisor)
348 return;
349
350 /* Do not bother with the expensive D-cache flush if it
351 * is merely the zero page. The 'bigcore' testcase in GDB
352 * causes this case to run millions of times.
353 */
354 if (page == ZERO_PAGE(0))
355 return;
356
357 this_cpu = get_cpu();
358
359 mapping = page_mapping(page);
360 if (mapping && !mapping_mapped(mapping)) {
361 int dirty = test_bit(PG_dcache_dirty, &page->flags);
362 if (dirty) {
363 int dirty_cpu = dcache_dirty_cpu(page);
364
365 if (dirty_cpu == this_cpu)
366 goto out;
367 smp_flush_dcache_page_impl(page, dirty_cpu);
368 }
369 set_dcache_dirty(page, this_cpu);
370 } else {
371 /* We could delay the flush for the !page_mapping
372 * case too. But that case is for exec env/arg
373 * pages and those are %99 certainly going to get
374 * faulted into the tlb (and thus flushed) anyways.
375 */
376 flush_dcache_page_impl(page);
377 }
378
379 out:
380 put_cpu();
381 }
382
383 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
384 {
385 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
386 if (tlb_type == spitfire) {
387 unsigned long kaddr;
388
389 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
390 __flush_icache_page(__get_phys(kaddr));
391 }
392 }
393
394 void show_mem(void)
395 {
396 printk("Mem-info:\n");
397 show_free_areas();
398 printk("Free swap: %6ldkB\n",
399 nr_swap_pages << (PAGE_SHIFT-10));
400 printk("%ld pages of RAM\n", num_physpages);
401 printk("%d free pages\n", nr_free_pages());
402 }
403
404 void mmu_info(struct seq_file *m)
405 {
406 if (tlb_type == cheetah)
407 seq_printf(m, "MMU Type\t: Cheetah\n");
408 else if (tlb_type == cheetah_plus)
409 seq_printf(m, "MMU Type\t: Cheetah+\n");
410 else if (tlb_type == spitfire)
411 seq_printf(m, "MMU Type\t: Spitfire\n");
412 else if (tlb_type == hypervisor)
413 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
414 else
415 seq_printf(m, "MMU Type\t: ???\n");
416
417 #ifdef CONFIG_DEBUG_DCFLUSH
418 seq_printf(m, "DCPageFlushes\t: %d\n",
419 atomic_read(&dcpage_flushes));
420 #ifdef CONFIG_SMP
421 seq_printf(m, "DCPageFlushesXC\t: %d\n",
422 atomic_read(&dcpage_flushes_xcall));
423 #endif /* CONFIG_SMP */
424 #endif /* CONFIG_DEBUG_DCFLUSH */
425 }
426
427 struct linux_prom_translation {
428 unsigned long virt;
429 unsigned long size;
430 unsigned long data;
431 };
432
433 /* Exported for kernel TLB miss handling in ktlb.S */
434 struct linux_prom_translation prom_trans[512] __read_mostly;
435 unsigned int prom_trans_ents __read_mostly;
436
437 /* Exported for SMP bootup purposes. */
438 unsigned long kern_locked_tte_data;
439
440 /* The obp translations are saved based on 8k pagesize, since obp can
441 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
442 * HI_OBP_ADDRESS range are handled in ktlb.S.
443 */
444 static inline int in_obp_range(unsigned long vaddr)
445 {
446 return (vaddr >= LOW_OBP_ADDRESS &&
447 vaddr < HI_OBP_ADDRESS);
448 }
449
450 static int cmp_ptrans(const void *a, const void *b)
451 {
452 const struct linux_prom_translation *x = a, *y = b;
453
454 if (x->virt > y->virt)
455 return 1;
456 if (x->virt < y->virt)
457 return -1;
458 return 0;
459 }
460
461 /* Read OBP translations property into 'prom_trans[]'. */
462 static void __init read_obp_translations(void)
463 {
464 int n, node, ents, first, last, i;
465
466 node = prom_finddevice("/virtual-memory");
467 n = prom_getproplen(node, "translations");
468 if (unlikely(n == 0 || n == -1)) {
469 prom_printf("prom_mappings: Couldn't get size.\n");
470 prom_halt();
471 }
472 if (unlikely(n > sizeof(prom_trans))) {
473 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
474 prom_halt();
475 }
476
477 if ((n = prom_getproperty(node, "translations",
478 (char *)&prom_trans[0],
479 sizeof(prom_trans))) == -1) {
480 prom_printf("prom_mappings: Couldn't get property.\n");
481 prom_halt();
482 }
483
484 n = n / sizeof(struct linux_prom_translation);
485
486 ents = n;
487
488 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
489 cmp_ptrans, NULL);
490
491 /* Now kick out all the non-OBP entries. */
492 for (i = 0; i < ents; i++) {
493 if (in_obp_range(prom_trans[i].virt))
494 break;
495 }
496 first = i;
497 for (; i < ents; i++) {
498 if (!in_obp_range(prom_trans[i].virt))
499 break;
500 }
501 last = i;
502
503 for (i = 0; i < (last - first); i++) {
504 struct linux_prom_translation *src = &prom_trans[i + first];
505 struct linux_prom_translation *dest = &prom_trans[i];
506
507 *dest = *src;
508 }
509 for (; i < ents; i++) {
510 struct linux_prom_translation *dest = &prom_trans[i];
511 dest->virt = dest->size = dest->data = 0x0UL;
512 }
513
514 prom_trans_ents = last - first;
515
516 if (tlb_type == spitfire) {
517 /* Clear diag TTE bits. */
518 for (i = 0; i < prom_trans_ents; i++)
519 prom_trans[i].data &= ~0x0003fe0000000000UL;
520 }
521 }
522
523 static void __init hypervisor_tlb_lock(unsigned long vaddr,
524 unsigned long pte,
525 unsigned long mmu)
526 {
527 register unsigned long func asm("%o5");
528 register unsigned long arg0 asm("%o0");
529 register unsigned long arg1 asm("%o1");
530 register unsigned long arg2 asm("%o2");
531 register unsigned long arg3 asm("%o3");
532
533 func = HV_FAST_MMU_MAP_PERM_ADDR;
534 arg0 = vaddr;
535 arg1 = 0;
536 arg2 = pte;
537 arg3 = mmu;
538 __asm__ __volatile__("ta 0x80"
539 : "=&r" (func), "=&r" (arg0),
540 "=&r" (arg1), "=&r" (arg2),
541 "=&r" (arg3)
542 : "0" (func), "1" (arg0), "2" (arg1),
543 "3" (arg2), "4" (arg3));
544 if (arg0 != 0) {
545 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
546 "errors with %lx\n", vaddr, 0, pte, mmu, arg0);
547 prom_halt();
548 }
549 }
550
551 static unsigned long kern_large_tte(unsigned long paddr);
552
553 static void __init remap_kernel(void)
554 {
555 unsigned long phys_page, tte_vaddr, tte_data;
556 int tlb_ent = sparc64_highest_locked_tlbent();
557
558 tte_vaddr = (unsigned long) KERNBASE;
559 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
560 tte_data = kern_large_tte(phys_page);
561
562 kern_locked_tte_data = tte_data;
563
564 /* Now lock us into the TLBs via Hypervisor or OBP. */
565 if (tlb_type == hypervisor) {
566 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
567 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
568 if (bigkernel) {
569 tte_vaddr += 0x400000;
570 tte_data += 0x400000;
571 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
572 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
573 }
574 } else {
575 prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
576 prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
577 if (bigkernel) {
578 tlb_ent -= 1;
579 prom_dtlb_load(tlb_ent,
580 tte_data + 0x400000,
581 tte_vaddr + 0x400000);
582 prom_itlb_load(tlb_ent,
583 tte_data + 0x400000,
584 tte_vaddr + 0x400000);
585 }
586 sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
587 }
588 if (tlb_type == cheetah_plus) {
589 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
590 CTX_CHEETAH_PLUS_NUC);
591 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
592 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
593 }
594 }
595
596
597 static void __init inherit_prom_mappings(void)
598 {
599 read_obp_translations();
600
601 /* Now fixup OBP's idea about where we really are mapped. */
602 prom_printf("Remapping the kernel... ");
603 remap_kernel();
604 prom_printf("done.\n");
605 }
606
607 void prom_world(int enter)
608 {
609 if (!enter)
610 set_fs((mm_segment_t) { get_thread_current_ds() });
611
612 __asm__ __volatile__("flushw");
613 }
614
615 #ifdef DCACHE_ALIASING_POSSIBLE
616 void __flush_dcache_range(unsigned long start, unsigned long end)
617 {
618 unsigned long va;
619
620 if (tlb_type == spitfire) {
621 int n = 0;
622
623 for (va = start; va < end; va += 32) {
624 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
625 if (++n >= 512)
626 break;
627 }
628 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
629 start = __pa(start);
630 end = __pa(end);
631 for (va = start; va < end; va += 32)
632 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
633 "membar #Sync"
634 : /* no outputs */
635 : "r" (va),
636 "i" (ASI_DCACHE_INVALIDATE));
637 }
638 }
639 #endif /* DCACHE_ALIASING_POSSIBLE */
640
641 /* Caller does TLB context flushing on local CPU if necessary.
642 * The caller also ensures that CTX_VALID(mm->context) is false.
643 *
644 * We must be careful about boundary cases so that we never
645 * let the user have CTX 0 (nucleus) or we ever use a CTX
646 * version of zero (and thus NO_CONTEXT would not be caught
647 * by version mis-match tests in mmu_context.h).
648 *
649 * Always invoked with interrupts disabled.
650 */
651 void get_new_mmu_context(struct mm_struct *mm)
652 {
653 unsigned long ctx, new_ctx;
654 unsigned long orig_pgsz_bits;
655 unsigned long flags;
656 int new_version;
657
658 spin_lock_irqsave(&ctx_alloc_lock, flags);
659 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
660 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
661 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
662 new_version = 0;
663 if (new_ctx >= (1 << CTX_NR_BITS)) {
664 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
665 if (new_ctx >= ctx) {
666 int i;
667 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
668 CTX_FIRST_VERSION;
669 if (new_ctx == 1)
670 new_ctx = CTX_FIRST_VERSION;
671
672 /* Don't call memset, for 16 entries that's just
673 * plain silly...
674 */
675 mmu_context_bmap[0] = 3;
676 mmu_context_bmap[1] = 0;
677 mmu_context_bmap[2] = 0;
678 mmu_context_bmap[3] = 0;
679 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
680 mmu_context_bmap[i + 0] = 0;
681 mmu_context_bmap[i + 1] = 0;
682 mmu_context_bmap[i + 2] = 0;
683 mmu_context_bmap[i + 3] = 0;
684 }
685 new_version = 1;
686 goto out;
687 }
688 }
689 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
690 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
691 out:
692 tlb_context_cache = new_ctx;
693 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
694 spin_unlock_irqrestore(&ctx_alloc_lock, flags);
695
696 if (unlikely(new_version))
697 smp_new_mmu_context_version();
698 }
699
700 void sparc_ultra_dump_itlb(void)
701 {
702 int slot;
703
704 if (tlb_type == spitfire) {
705 printk ("Contents of itlb: ");
706 for (slot = 0; slot < 14; slot++) printk (" ");
707 printk ("%2x:%016lx,%016lx\n",
708 0,
709 spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
710 for (slot = 1; slot < 64; slot+=3) {
711 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
712 slot,
713 spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
714 slot+1,
715 spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
716 slot+2,
717 spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
718 }
719 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
720 printk ("Contents of itlb0:\n");
721 for (slot = 0; slot < 16; slot+=2) {
722 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
723 slot,
724 cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
725 slot+1,
726 cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
727 }
728 printk ("Contents of itlb2:\n");
729 for (slot = 0; slot < 128; slot+=2) {
730 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
731 slot,
732 cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
733 slot+1,
734 cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
735 }
736 }
737 }
738
739 void sparc_ultra_dump_dtlb(void)
740 {
741 int slot;
742
743 if (tlb_type == spitfire) {
744 printk ("Contents of dtlb: ");
745 for (slot = 0; slot < 14; slot++) printk (" ");
746 printk ("%2x:%016lx,%016lx\n", 0,
747 spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
748 for (slot = 1; slot < 64; slot+=3) {
749 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
750 slot,
751 spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
752 slot+1,
753 spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
754 slot+2,
755 spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
756 }
757 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
758 printk ("Contents of dtlb0:\n");
759 for (slot = 0; slot < 16; slot+=2) {
760 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
761 slot,
762 cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
763 slot+1,
764 cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
765 }
766 printk ("Contents of dtlb2:\n");
767 for (slot = 0; slot < 512; slot+=2) {
768 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
769 slot,
770 cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
771 slot+1,
772 cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
773 }
774 if (tlb_type == cheetah_plus) {
775 printk ("Contents of dtlb3:\n");
776 for (slot = 0; slot < 512; slot+=2) {
777 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
778 slot,
779 cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
780 slot+1,
781 cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
782 }
783 }
784 }
785 }
786
787 extern unsigned long cmdline_memory_size;
788
789 /* Find a free area for the bootmem map, avoiding the kernel image
790 * and the initial ramdisk.
791 */
792 static unsigned long __init choose_bootmap_pfn(unsigned long start_pfn,
793 unsigned long end_pfn)
794 {
795 unsigned long avoid_start, avoid_end, bootmap_size;
796 int i;
797
798 bootmap_size = ((end_pfn - start_pfn) + 7) / 8;
799 bootmap_size = ALIGN(bootmap_size, sizeof(long));
800
801 avoid_start = avoid_end = 0;
802 #ifdef CONFIG_BLK_DEV_INITRD
803 avoid_start = initrd_start;
804 avoid_end = PAGE_ALIGN(initrd_end);
805 #endif
806
807 #ifdef CONFIG_DEBUG_BOOTMEM
808 prom_printf("choose_bootmap_pfn: kern[%lx:%lx] avoid[%lx:%lx]\n",
809 kern_base, PAGE_ALIGN(kern_base + kern_size),
810 avoid_start, avoid_end);
811 #endif
812 for (i = 0; i < pavail_ents; i++) {
813 unsigned long start, end;
814
815 start = pavail[i].phys_addr;
816 end = start + pavail[i].reg_size;
817
818 while (start < end) {
819 if (start >= kern_base &&
820 start < PAGE_ALIGN(kern_base + kern_size)) {
821 start = PAGE_ALIGN(kern_base + kern_size);
822 continue;
823 }
824 if (start >= avoid_start && start < avoid_end) {
825 start = avoid_end;
826 continue;
827 }
828
829 if ((end - start) < bootmap_size)
830 break;
831
832 if (start < kern_base &&
833 (start + bootmap_size) > kern_base) {
834 start = PAGE_ALIGN(kern_base + kern_size);
835 continue;
836 }
837
838 if (start < avoid_start &&
839 (start + bootmap_size) > avoid_start) {
840 start = avoid_end;
841 continue;
842 }
843
844 /* OK, it doesn't overlap anything, use it. */
845 #ifdef CONFIG_DEBUG_BOOTMEM
846 prom_printf("choose_bootmap_pfn: Using %lx [%lx]\n",
847 start >> PAGE_SHIFT, start);
848 #endif
849 return start >> PAGE_SHIFT;
850 }
851 }
852
853 prom_printf("Cannot find free area for bootmap, aborting.\n");
854 prom_halt();
855 }
856
857 static unsigned long __init bootmem_init(unsigned long *pages_avail,
858 unsigned long phys_base)
859 {
860 unsigned long bootmap_size, end_pfn;
861 unsigned long end_of_phys_memory = 0UL;
862 unsigned long bootmap_pfn, bytes_avail, size;
863 int i;
864
865 #ifdef CONFIG_DEBUG_BOOTMEM
866 prom_printf("bootmem_init: Scan pavail, ");
867 #endif
868
869 bytes_avail = 0UL;
870 for (i = 0; i < pavail_ents; i++) {
871 end_of_phys_memory = pavail[i].phys_addr +
872 pavail[i].reg_size;
873 bytes_avail += pavail[i].reg_size;
874 if (cmdline_memory_size) {
875 if (bytes_avail > cmdline_memory_size) {
876 unsigned long slack = bytes_avail - cmdline_memory_size;
877
878 bytes_avail -= slack;
879 end_of_phys_memory -= slack;
880
881 pavail[i].reg_size -= slack;
882 if ((long)pavail[i].reg_size <= 0L) {
883 pavail[i].phys_addr = 0xdeadbeefUL;
884 pavail[i].reg_size = 0UL;
885 pavail_ents = i;
886 } else {
887 pavail[i+1].reg_size = 0Ul;
888 pavail[i+1].phys_addr = 0xdeadbeefUL;
889 pavail_ents = i + 1;
890 }
891 break;
892 }
893 }
894 }
895
896 *pages_avail = bytes_avail >> PAGE_SHIFT;
897
898 end_pfn = end_of_phys_memory >> PAGE_SHIFT;
899
900 #ifdef CONFIG_BLK_DEV_INITRD
901 /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
902 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
903 unsigned long ramdisk_image = sparc_ramdisk_image ?
904 sparc_ramdisk_image : sparc_ramdisk_image64;
905 if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE)
906 ramdisk_image -= KERNBASE;
907 initrd_start = ramdisk_image + phys_base;
908 initrd_end = initrd_start + sparc_ramdisk_size;
909 if (initrd_end > end_of_phys_memory) {
910 printk(KERN_CRIT "initrd extends beyond end of memory "
911 "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
912 initrd_end, end_of_phys_memory);
913 initrd_start = 0;
914 initrd_end = 0;
915 }
916 }
917 #endif
918 /* Initialize the boot-time allocator. */
919 max_pfn = max_low_pfn = end_pfn;
920 min_low_pfn = (phys_base >> PAGE_SHIFT);
921
922 bootmap_pfn = choose_bootmap_pfn(min_low_pfn, end_pfn);
923
924 #ifdef CONFIG_DEBUG_BOOTMEM
925 prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
926 min_low_pfn, bootmap_pfn, max_low_pfn);
927 #endif
928 bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn,
929 min_low_pfn, end_pfn);
930
931 /* Now register the available physical memory with the
932 * allocator.
933 */
934 for (i = 0; i < pavail_ents; i++) {
935 #ifdef CONFIG_DEBUG_BOOTMEM
936 prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
937 i, pavail[i].phys_addr, pavail[i].reg_size);
938 #endif
939 free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
940 }
941
942 #ifdef CONFIG_BLK_DEV_INITRD
943 if (initrd_start) {
944 size = initrd_end - initrd_start;
945
946 /* Resert the initrd image area. */
947 #ifdef CONFIG_DEBUG_BOOTMEM
948 prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
949 initrd_start, initrd_end);
950 #endif
951 reserve_bootmem(initrd_start, size);
952 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
953
954 initrd_start += PAGE_OFFSET;
955 initrd_end += PAGE_OFFSET;
956 }
957 #endif
958 /* Reserve the kernel text/data/bss. */
959 #ifdef CONFIG_DEBUG_BOOTMEM
960 prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
961 #endif
962 reserve_bootmem(kern_base, kern_size);
963 *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
964
965 /* Reserve the bootmem map. We do not account for it
966 * in pages_avail because we will release that memory
967 * in free_all_bootmem.
968 */
969 size = bootmap_size;
970 #ifdef CONFIG_DEBUG_BOOTMEM
971 prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
972 (bootmap_pfn << PAGE_SHIFT), size);
973 #endif
974 reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
975 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
976
977 for (i = 0; i < pavail_ents; i++) {
978 unsigned long start_pfn, end_pfn;
979
980 start_pfn = pavail[i].phys_addr >> PAGE_SHIFT;
981 end_pfn = (start_pfn + (pavail[i].reg_size >> PAGE_SHIFT));
982 #ifdef CONFIG_DEBUG_BOOTMEM
983 prom_printf("memory_present(0, %lx, %lx)\n",
984 start_pfn, end_pfn);
985 #endif
986 memory_present(0, start_pfn, end_pfn);
987 }
988
989 sparse_init();
990
991 return end_pfn;
992 }
993
994 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
995 static int pall_ents __initdata;
996
997 #ifdef CONFIG_DEBUG_PAGEALLOC
998 static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
999 {
1000 unsigned long vstart = PAGE_OFFSET + pstart;
1001 unsigned long vend = PAGE_OFFSET + pend;
1002 unsigned long alloc_bytes = 0UL;
1003
1004 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1005 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1006 vstart, vend);
1007 prom_halt();
1008 }
1009
1010 while (vstart < vend) {
1011 unsigned long this_end, paddr = __pa(vstart);
1012 pgd_t *pgd = pgd_offset_k(vstart);
1013 pud_t *pud;
1014 pmd_t *pmd;
1015 pte_t *pte;
1016
1017 pud = pud_offset(pgd, vstart);
1018 if (pud_none(*pud)) {
1019 pmd_t *new;
1020
1021 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1022 alloc_bytes += PAGE_SIZE;
1023 pud_populate(&init_mm, pud, new);
1024 }
1025
1026 pmd = pmd_offset(pud, vstart);
1027 if (!pmd_present(*pmd)) {
1028 pte_t *new;
1029
1030 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1031 alloc_bytes += PAGE_SIZE;
1032 pmd_populate_kernel(&init_mm, pmd, new);
1033 }
1034
1035 pte = pte_offset_kernel(pmd, vstart);
1036 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1037 if (this_end > vend)
1038 this_end = vend;
1039
1040 while (vstart < this_end) {
1041 pte_val(*pte) = (paddr | pgprot_val(prot));
1042
1043 vstart += PAGE_SIZE;
1044 paddr += PAGE_SIZE;
1045 pte++;
1046 }
1047 }
1048
1049 return alloc_bytes;
1050 }
1051
1052 extern unsigned int kvmap_linear_patch[1];
1053 #endif /* CONFIG_DEBUG_PAGEALLOC */
1054
1055 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1056 {
1057 const unsigned long shift_256MB = 28;
1058 const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1059 const unsigned long size_256MB = (1UL << shift_256MB);
1060
1061 while (start < end) {
1062 long remains;
1063
1064 remains = end - start;
1065 if (remains < size_256MB)
1066 break;
1067
1068 if (start & mask_256MB) {
1069 start = (start + size_256MB) & ~mask_256MB;
1070 continue;
1071 }
1072
1073 while (remains >= size_256MB) {
1074 unsigned long index = start >> shift_256MB;
1075
1076 __set_bit(index, kpte_linear_bitmap);
1077
1078 start += size_256MB;
1079 remains -= size_256MB;
1080 }
1081 }
1082 }
1083
1084 static void __init kernel_physical_mapping_init(void)
1085 {
1086 unsigned long i;
1087 #ifdef CONFIG_DEBUG_PAGEALLOC
1088 unsigned long mem_alloced = 0UL;
1089 #endif
1090
1091 read_obp_memory("reg", &pall[0], &pall_ents);
1092
1093 for (i = 0; i < pall_ents; i++) {
1094 unsigned long phys_start, phys_end;
1095
1096 phys_start = pall[i].phys_addr;
1097 phys_end = phys_start + pall[i].reg_size;
1098
1099 mark_kpte_bitmap(phys_start, phys_end);
1100
1101 #ifdef CONFIG_DEBUG_PAGEALLOC
1102 mem_alloced += kernel_map_range(phys_start, phys_end,
1103 PAGE_KERNEL);
1104 #endif
1105 }
1106
1107 #ifdef CONFIG_DEBUG_PAGEALLOC
1108 printk("Allocated %ld bytes for kernel page tables.\n",
1109 mem_alloced);
1110
1111 kvmap_linear_patch[0] = 0x01000000; /* nop */
1112 flushi(&kvmap_linear_patch[0]);
1113
1114 __flush_tlb_all();
1115 #endif
1116 }
1117
1118 #ifdef CONFIG_DEBUG_PAGEALLOC
1119 void kernel_map_pages(struct page *page, int numpages, int enable)
1120 {
1121 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1122 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1123
1124 kernel_map_range(phys_start, phys_end,
1125 (enable ? PAGE_KERNEL : __pgprot(0)));
1126
1127 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1128 PAGE_OFFSET + phys_end);
1129
1130 /* we should perform an IPI and flush all tlbs,
1131 * but that can deadlock->flush only current cpu.
1132 */
1133 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1134 PAGE_OFFSET + phys_end);
1135 }
1136 #endif
1137
1138 unsigned long __init find_ecache_flush_span(unsigned long size)
1139 {
1140 int i;
1141
1142 for (i = 0; i < pavail_ents; i++) {
1143 if (pavail[i].reg_size >= size)
1144 return pavail[i].phys_addr;
1145 }
1146
1147 return ~0UL;
1148 }
1149
1150 static void __init tsb_phys_patch(void)
1151 {
1152 struct tsb_ldquad_phys_patch_entry *pquad;
1153 struct tsb_phys_patch_entry *p;
1154
1155 pquad = &__tsb_ldquad_phys_patch;
1156 while (pquad < &__tsb_ldquad_phys_patch_end) {
1157 unsigned long addr = pquad->addr;
1158
1159 if (tlb_type == hypervisor)
1160 *(unsigned int *) addr = pquad->sun4v_insn;
1161 else
1162 *(unsigned int *) addr = pquad->sun4u_insn;
1163 wmb();
1164 __asm__ __volatile__("flush %0"
1165 : /* no outputs */
1166 : "r" (addr));
1167
1168 pquad++;
1169 }
1170
1171 p = &__tsb_phys_patch;
1172 while (p < &__tsb_phys_patch_end) {
1173 unsigned long addr = p->addr;
1174
1175 *(unsigned int *) addr = p->insn;
1176 wmb();
1177 __asm__ __volatile__("flush %0"
1178 : /* no outputs */
1179 : "r" (addr));
1180
1181 p++;
1182 }
1183 }
1184
1185 /* Don't mark as init, we give this to the Hypervisor. */
1186 static struct hv_tsb_descr ktsb_descr[2];
1187 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1188
1189 static void __init sun4v_ktsb_init(void)
1190 {
1191 unsigned long ktsb_pa;
1192
1193 /* First KTSB for PAGE_SIZE mappings. */
1194 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1195
1196 switch (PAGE_SIZE) {
1197 case 8 * 1024:
1198 default:
1199 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1200 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1201 break;
1202
1203 case 64 * 1024:
1204 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1205 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1206 break;
1207
1208 case 512 * 1024:
1209 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1210 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1211 break;
1212
1213 case 4 * 1024 * 1024:
1214 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1215 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1216 break;
1217 };
1218
1219 ktsb_descr[0].assoc = 1;
1220 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1221 ktsb_descr[0].ctx_idx = 0;
1222 ktsb_descr[0].tsb_base = ktsb_pa;
1223 ktsb_descr[0].resv = 0;
1224
1225 /* Second KTSB for 4MB/256MB mappings. */
1226 ktsb_pa = (kern_base +
1227 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1228
1229 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1230 ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1231 HV_PGSZ_MASK_256MB);
1232 ktsb_descr[1].assoc = 1;
1233 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1234 ktsb_descr[1].ctx_idx = 0;
1235 ktsb_descr[1].tsb_base = ktsb_pa;
1236 ktsb_descr[1].resv = 0;
1237 }
1238
1239 void __cpuinit sun4v_ktsb_register(void)
1240 {
1241 register unsigned long func asm("%o5");
1242 register unsigned long arg0 asm("%o0");
1243 register unsigned long arg1 asm("%o1");
1244 unsigned long pa;
1245
1246 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1247
1248 func = HV_FAST_MMU_TSB_CTX0;
1249 arg0 = 2;
1250 arg1 = pa;
1251 __asm__ __volatile__("ta %6"
1252 : "=&r" (func), "=&r" (arg0), "=&r" (arg1)
1253 : "0" (func), "1" (arg0), "2" (arg1),
1254 "i" (HV_FAST_TRAP));
1255 }
1256
1257 /* paging_init() sets up the page tables */
1258
1259 extern void cheetah_ecache_flush_init(void);
1260 extern void sun4v_patch_tlb_handlers(void);
1261
1262 static unsigned long last_valid_pfn;
1263 pgd_t swapper_pg_dir[2048];
1264
1265 static void sun4u_pgprot_init(void);
1266 static void sun4v_pgprot_init(void);
1267
1268 void __init paging_init(void)
1269 {
1270 unsigned long end_pfn, pages_avail, shift, phys_base;
1271 unsigned long real_end, i;
1272
1273 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1274 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1275
1276 /* Invalidate both kernel TSBs. */
1277 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1278 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1279
1280 if (tlb_type == hypervisor)
1281 sun4v_pgprot_init();
1282 else
1283 sun4u_pgprot_init();
1284
1285 if (tlb_type == cheetah_plus ||
1286 tlb_type == hypervisor)
1287 tsb_phys_patch();
1288
1289 if (tlb_type == hypervisor) {
1290 sun4v_patch_tlb_handlers();
1291 sun4v_ktsb_init();
1292 }
1293
1294 /* Find available physical memory... */
1295 read_obp_memory("available", &pavail[0], &pavail_ents);
1296
1297 phys_base = 0xffffffffffffffffUL;
1298 for (i = 0; i < pavail_ents; i++)
1299 phys_base = min(phys_base, pavail[i].phys_addr);
1300
1301 set_bit(0, mmu_context_bmap);
1302
1303 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1304
1305 real_end = (unsigned long)_end;
1306 if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
1307 bigkernel = 1;
1308 if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
1309 prom_printf("paging_init: Kernel > 8MB, too large.\n");
1310 prom_halt();
1311 }
1312
1313 /* Set kernel pgd to upper alias so physical page computations
1314 * work.
1315 */
1316 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1317
1318 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1319
1320 /* Now can init the kernel/bad page tables. */
1321 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1322 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1323
1324 inherit_prom_mappings();
1325
1326 /* Ok, we can use our TLB miss and window trap handlers safely. */
1327 setup_tba();
1328
1329 __flush_tlb_all();
1330
1331 if (tlb_type == hypervisor)
1332 sun4v_ktsb_register();
1333
1334 /* Setup bootmem... */
1335 pages_avail = 0;
1336 last_valid_pfn = end_pfn = bootmem_init(&pages_avail, phys_base);
1337
1338 max_mapnr = last_valid_pfn;
1339
1340 kernel_physical_mapping_init();
1341
1342 {
1343 unsigned long zones_size[MAX_NR_ZONES];
1344 unsigned long zholes_size[MAX_NR_ZONES];
1345 int znum;
1346
1347 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1348 zones_size[znum] = zholes_size[znum] = 0;
1349
1350 zones_size[ZONE_DMA] = end_pfn;
1351 zholes_size[ZONE_DMA] = end_pfn - pages_avail;
1352
1353 free_area_init_node(0, &contig_page_data, zones_size,
1354 __pa(PAGE_OFFSET) >> PAGE_SHIFT,
1355 zholes_size);
1356 }
1357
1358 device_scan();
1359 }
1360
1361 static void __init taint_real_pages(void)
1362 {
1363 int i;
1364
1365 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1366
1367 /* Find changes discovered in the physmem available rescan and
1368 * reserve the lost portions in the bootmem maps.
1369 */
1370 for (i = 0; i < pavail_ents; i++) {
1371 unsigned long old_start, old_end;
1372
1373 old_start = pavail[i].phys_addr;
1374 old_end = old_start +
1375 pavail[i].reg_size;
1376 while (old_start < old_end) {
1377 int n;
1378
1379 for (n = 0; pavail_rescan_ents; n++) {
1380 unsigned long new_start, new_end;
1381
1382 new_start = pavail_rescan[n].phys_addr;
1383 new_end = new_start +
1384 pavail_rescan[n].reg_size;
1385
1386 if (new_start <= old_start &&
1387 new_end >= (old_start + PAGE_SIZE)) {
1388 set_bit(old_start >> 22,
1389 sparc64_valid_addr_bitmap);
1390 goto do_next_page;
1391 }
1392 }
1393 reserve_bootmem(old_start, PAGE_SIZE);
1394
1395 do_next_page:
1396 old_start += PAGE_SIZE;
1397 }
1398 }
1399 }
1400
1401 void __init mem_init(void)
1402 {
1403 unsigned long codepages, datapages, initpages;
1404 unsigned long addr, last;
1405 int i;
1406
1407 i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1408 i += 1;
1409 sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1410 if (sparc64_valid_addr_bitmap == NULL) {
1411 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1412 prom_halt();
1413 }
1414 memset(sparc64_valid_addr_bitmap, 0, i << 3);
1415
1416 addr = PAGE_OFFSET + kern_base;
1417 last = PAGE_ALIGN(kern_size) + addr;
1418 while (addr < last) {
1419 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1420 addr += PAGE_SIZE;
1421 }
1422
1423 taint_real_pages();
1424
1425 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1426
1427 #ifdef CONFIG_DEBUG_BOOTMEM
1428 prom_printf("mem_init: Calling free_all_bootmem().\n");
1429 #endif
1430 totalram_pages = num_physpages = free_all_bootmem() - 1;
1431
1432 /*
1433 * Set up the zero page, mark it reserved, so that page count
1434 * is not manipulated when freeing the page from user ptes.
1435 */
1436 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1437 if (mem_map_zero == NULL) {
1438 prom_printf("paging_init: Cannot alloc zero page.\n");
1439 prom_halt();
1440 }
1441 SetPageReserved(mem_map_zero);
1442
1443 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1444 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1445 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1446 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1447 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1448 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1449
1450 printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1451 nr_free_pages() << (PAGE_SHIFT-10),
1452 codepages << (PAGE_SHIFT-10),
1453 datapages << (PAGE_SHIFT-10),
1454 initpages << (PAGE_SHIFT-10),
1455 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1456
1457 if (tlb_type == cheetah || tlb_type == cheetah_plus)
1458 cheetah_ecache_flush_init();
1459 }
1460
1461 void free_initmem(void)
1462 {
1463 unsigned long addr, initend;
1464
1465 /*
1466 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1467 */
1468 addr = PAGE_ALIGN((unsigned long)(__init_begin));
1469 initend = (unsigned long)(__init_end) & PAGE_MASK;
1470 for (; addr < initend; addr += PAGE_SIZE) {
1471 unsigned long page;
1472 struct page *p;
1473
1474 page = (addr +
1475 ((unsigned long) __va(kern_base)) -
1476 ((unsigned long) KERNBASE));
1477 memset((void *)addr, 0xcc, PAGE_SIZE);
1478 p = virt_to_page(page);
1479
1480 ClearPageReserved(p);
1481 set_page_count(p, 1);
1482 __free_page(p);
1483 num_physpages++;
1484 totalram_pages++;
1485 }
1486 }
1487
1488 #ifdef CONFIG_BLK_DEV_INITRD
1489 void free_initrd_mem(unsigned long start, unsigned long end)
1490 {
1491 if (start < end)
1492 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1493 for (; start < end; start += PAGE_SIZE) {
1494 struct page *p = virt_to_page(start);
1495
1496 ClearPageReserved(p);
1497 set_page_count(p, 1);
1498 __free_page(p);
1499 num_physpages++;
1500 totalram_pages++;
1501 }
1502 }
1503 #endif
1504
1505 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
1506 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
1507 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
1508 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
1509 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
1510 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
1511
1512 pgprot_t PAGE_KERNEL __read_mostly;
1513 EXPORT_SYMBOL(PAGE_KERNEL);
1514
1515 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
1516 pgprot_t PAGE_COPY __read_mostly;
1517
1518 pgprot_t PAGE_SHARED __read_mostly;
1519 EXPORT_SYMBOL(PAGE_SHARED);
1520
1521 pgprot_t PAGE_EXEC __read_mostly;
1522 unsigned long pg_iobits __read_mostly;
1523
1524 unsigned long _PAGE_IE __read_mostly;
1525
1526 unsigned long _PAGE_E __read_mostly;
1527 EXPORT_SYMBOL(_PAGE_E);
1528
1529 unsigned long _PAGE_CACHE __read_mostly;
1530 EXPORT_SYMBOL(_PAGE_CACHE);
1531
1532 static void prot_init_common(unsigned long page_none,
1533 unsigned long page_shared,
1534 unsigned long page_copy,
1535 unsigned long page_readonly,
1536 unsigned long page_exec_bit)
1537 {
1538 PAGE_COPY = __pgprot(page_copy);
1539 PAGE_SHARED = __pgprot(page_shared);
1540
1541 protection_map[0x0] = __pgprot(page_none);
1542 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
1543 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
1544 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
1545 protection_map[0x4] = __pgprot(page_readonly);
1546 protection_map[0x5] = __pgprot(page_readonly);
1547 protection_map[0x6] = __pgprot(page_copy);
1548 protection_map[0x7] = __pgprot(page_copy);
1549 protection_map[0x8] = __pgprot(page_none);
1550 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
1551 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
1552 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
1553 protection_map[0xc] = __pgprot(page_readonly);
1554 protection_map[0xd] = __pgprot(page_readonly);
1555 protection_map[0xe] = __pgprot(page_shared);
1556 protection_map[0xf] = __pgprot(page_shared);
1557 }
1558
1559 static void __init sun4u_pgprot_init(void)
1560 {
1561 unsigned long page_none, page_shared, page_copy, page_readonly;
1562 unsigned long page_exec_bit;
1563
1564 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1565 _PAGE_CACHE_4U | _PAGE_P_4U |
1566 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1567 _PAGE_EXEC_4U);
1568 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
1569 _PAGE_CACHE_4U | _PAGE_P_4U |
1570 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
1571 _PAGE_EXEC_4U | _PAGE_L_4U);
1572 PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
1573
1574 _PAGE_IE = _PAGE_IE_4U;
1575 _PAGE_E = _PAGE_E_4U;
1576 _PAGE_CACHE = _PAGE_CACHE_4U;
1577
1578 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
1579 __ACCESS_BITS_4U | _PAGE_E_4U);
1580
1581 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
1582 0xfffff80000000000;
1583 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
1584 _PAGE_P_4U | _PAGE_W_4U);
1585
1586 /* XXX Should use 256MB on Panther. XXX */
1587 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1588
1589 _PAGE_SZBITS = _PAGE_SZBITS_4U;
1590 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
1591 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
1592 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
1593
1594
1595 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
1596 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1597 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
1598 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1599 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1600 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
1601 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
1602
1603 page_exec_bit = _PAGE_EXEC_4U;
1604
1605 prot_init_common(page_none, page_shared, page_copy, page_readonly,
1606 page_exec_bit);
1607 }
1608
1609 static void __init sun4v_pgprot_init(void)
1610 {
1611 unsigned long page_none, page_shared, page_copy, page_readonly;
1612 unsigned long page_exec_bit;
1613
1614 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
1615 _PAGE_CACHE_4V | _PAGE_P_4V |
1616 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
1617 _PAGE_EXEC_4V);
1618 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
1619 PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
1620
1621 _PAGE_IE = _PAGE_IE_4V;
1622 _PAGE_E = _PAGE_E_4V;
1623 _PAGE_CACHE = _PAGE_CACHE_4V;
1624
1625 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
1626 0xfffff80000000000;
1627 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1628 _PAGE_P_4V | _PAGE_W_4V);
1629
1630 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1631 0xfffff80000000000;
1632 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1633 _PAGE_P_4V | _PAGE_W_4V);
1634
1635 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
1636 __ACCESS_BITS_4V | _PAGE_E_4V);
1637
1638 _PAGE_SZBITS = _PAGE_SZBITS_4V;
1639 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
1640 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
1641 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
1642 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
1643
1644 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
1645 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1646 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
1647 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1648 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1649 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
1650 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
1651
1652 page_exec_bit = _PAGE_EXEC_4V;
1653
1654 prot_init_common(page_none, page_shared, page_copy, page_readonly,
1655 page_exec_bit);
1656 }
1657
1658 unsigned long pte_sz_bits(unsigned long sz)
1659 {
1660 if (tlb_type == hypervisor) {
1661 switch (sz) {
1662 case 8 * 1024:
1663 default:
1664 return _PAGE_SZ8K_4V;
1665 case 64 * 1024:
1666 return _PAGE_SZ64K_4V;
1667 case 512 * 1024:
1668 return _PAGE_SZ512K_4V;
1669 case 4 * 1024 * 1024:
1670 return _PAGE_SZ4MB_4V;
1671 };
1672 } else {
1673 switch (sz) {
1674 case 8 * 1024:
1675 default:
1676 return _PAGE_SZ8K_4U;
1677 case 64 * 1024:
1678 return _PAGE_SZ64K_4U;
1679 case 512 * 1024:
1680 return _PAGE_SZ512K_4U;
1681 case 4 * 1024 * 1024:
1682 return _PAGE_SZ4MB_4U;
1683 };
1684 }
1685 }
1686
1687 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
1688 {
1689 pte_t pte;
1690
1691 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
1692 pte_val(pte) |= (((unsigned long)space) << 32);
1693 pte_val(pte) |= pte_sz_bits(page_size);
1694
1695 return pte;
1696 }
1697
1698 static unsigned long kern_large_tte(unsigned long paddr)
1699 {
1700 unsigned long val;
1701
1702 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
1703 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
1704 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
1705 if (tlb_type == hypervisor)
1706 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
1707 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
1708 _PAGE_EXEC_4V | _PAGE_W_4V);
1709
1710 return val | paddr;
1711 }
1712
1713 /*
1714 * Translate PROM's mapping we capture at boot time into physical address.
1715 * The second parameter is only set from prom_callback() invocations.
1716 */
1717 unsigned long prom_virt_to_phys(unsigned long promva, int *error)
1718 {
1719 unsigned long mask;
1720 int i;
1721
1722 mask = _PAGE_PADDR_4U;
1723 if (tlb_type == hypervisor)
1724 mask = _PAGE_PADDR_4V;
1725
1726 for (i = 0; i < prom_trans_ents; i++) {
1727 struct linux_prom_translation *p = &prom_trans[i];
1728
1729 if (promva >= p->virt &&
1730 promva < (p->virt + p->size)) {
1731 unsigned long base = p->data & mask;
1732
1733 if (error)
1734 *error = 0;
1735 return base + (promva & (8192 - 1));
1736 }
1737 }
1738 if (error)
1739 *error = 1;
1740 return 0UL;
1741 }
1742
1743 /* XXX We should kill off this ugly thing at so me point. XXX */
1744 unsigned long sun4u_get_pte(unsigned long addr)
1745 {
1746 pgd_t *pgdp;
1747 pud_t *pudp;
1748 pmd_t *pmdp;
1749 pte_t *ptep;
1750 unsigned long mask = _PAGE_PADDR_4U;
1751
1752 if (tlb_type == hypervisor)
1753 mask = _PAGE_PADDR_4V;
1754
1755 if (addr >= PAGE_OFFSET)
1756 return addr & mask;
1757
1758 if ((addr >= LOW_OBP_ADDRESS) && (addr < HI_OBP_ADDRESS))
1759 return prom_virt_to_phys(addr, NULL);
1760
1761 pgdp = pgd_offset_k(addr);
1762 pudp = pud_offset(pgdp, addr);
1763 pmdp = pmd_offset(pudp, addr);
1764 ptep = pte_offset_kernel(pmdp, addr);
1765
1766 return pte_val(*ptep) & mask;
1767 }
1768
1769 /* If not locked, zap it. */
1770 void __flush_tlb_all(void)
1771 {
1772 unsigned long pstate;
1773 int i;
1774
1775 __asm__ __volatile__("flushw\n\t"
1776 "rdpr %%pstate, %0\n\t"
1777 "wrpr %0, %1, %%pstate"
1778 : "=r" (pstate)
1779 : "i" (PSTATE_IE));
1780 if (tlb_type == spitfire) {
1781 for (i = 0; i < 64; i++) {
1782 /* Spitfire Errata #32 workaround */
1783 /* NOTE: Always runs on spitfire, so no
1784 * cheetah+ page size encodings.
1785 */
1786 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
1787 "flush %%g6"
1788 : /* No outputs */
1789 : "r" (0),
1790 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1791
1792 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
1793 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1794 "membar #Sync"
1795 : /* no outputs */
1796 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
1797 spitfire_put_dtlb_data(i, 0x0UL);
1798 }
1799
1800 /* Spitfire Errata #32 workaround */
1801 /* NOTE: Always runs on spitfire, so no
1802 * cheetah+ page size encodings.
1803 */
1804 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
1805 "flush %%g6"
1806 : /* No outputs */
1807 : "r" (0),
1808 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
1809
1810 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
1811 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
1812 "membar #Sync"
1813 : /* no outputs */
1814 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
1815 spitfire_put_itlb_data(i, 0x0UL);
1816 }
1817 }
1818 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1819 cheetah_flush_dtlb_all();
1820 cheetah_flush_itlb_all();
1821 }
1822 __asm__ __volatile__("wrpr %0, 0, %%pstate"
1823 : : "r" (pstate));
1824 }
1825
1826 #ifdef CONFIG_MEMORY_HOTPLUG
1827
1828 void online_page(struct page *page)
1829 {
1830 ClearPageReserved(page);
1831 set_page_count(page, 0);
1832 free_cold_page(page);
1833 totalram_pages++;
1834 num_physpages++;
1835 }
1836
1837 int remove_memory(u64 start, u64 size)
1838 {
1839 return -EINVAL;
1840 }
1841
1842 #endif /* CONFIG_MEMORY_HOTPLUG */
This page took 0.07925 seconds and 5 git commands to generate.