mm: move bootmem descriptors definition to a single place
[deliverable/linux.git] / arch / sparc64 / mm / init.c
1 /*
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/percpu.h>
27 #include <linux/lmb.h>
28 #include <linux/mmzone.h>
29
30 #include <asm/head.h>
31 #include <asm/system.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <asm/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/sstate.h>
50 #include <asm/mdesc.h>
51 #include <asm/cpudata.h>
52
53 #define MAX_PHYS_ADDRESS (1UL << 42UL)
54 #define KPTE_BITMAP_CHUNK_SZ (256UL * 1024UL * 1024UL)
55 #define KPTE_BITMAP_BYTES \
56 ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
57
58 unsigned long kern_linear_pte_xor[2] __read_mostly;
59
60 /* A bitmap, one bit for every 256MB of physical memory. If the bit
61 * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
62 * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
63 */
64 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
65
66 #ifndef CONFIG_DEBUG_PAGEALLOC
67 /* A special kernel TSB for 4MB and 256MB linear mappings.
68 * Space is allocated for this right after the trap table
69 * in arch/sparc64/kernel/head.S
70 */
71 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
72 #endif
73
74 #define MAX_BANKS 32
75
76 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
77 static int pavail_ents __initdata;
78
79 static int cmp_p64(const void *a, const void *b)
80 {
81 const struct linux_prom64_registers *x = a, *y = b;
82
83 if (x->phys_addr > y->phys_addr)
84 return 1;
85 if (x->phys_addr < y->phys_addr)
86 return -1;
87 return 0;
88 }
89
90 static void __init read_obp_memory(const char *property,
91 struct linux_prom64_registers *regs,
92 int *num_ents)
93 {
94 int node = prom_finddevice("/memory");
95 int prop_size = prom_getproplen(node, property);
96 int ents, ret, i;
97
98 ents = prop_size / sizeof(struct linux_prom64_registers);
99 if (ents > MAX_BANKS) {
100 prom_printf("The machine has more %s property entries than "
101 "this kernel can support (%d).\n",
102 property, MAX_BANKS);
103 prom_halt();
104 }
105
106 ret = prom_getproperty(node, property, (char *) regs, prop_size);
107 if (ret == -1) {
108 prom_printf("Couldn't get %s property from /memory.\n");
109 prom_halt();
110 }
111
112 /* Sanitize what we got from the firmware, by page aligning
113 * everything.
114 */
115 for (i = 0; i < ents; i++) {
116 unsigned long base, size;
117
118 base = regs[i].phys_addr;
119 size = regs[i].reg_size;
120
121 size &= PAGE_MASK;
122 if (base & ~PAGE_MASK) {
123 unsigned long new_base = PAGE_ALIGN(base);
124
125 size -= new_base - base;
126 if ((long) size < 0L)
127 size = 0UL;
128 base = new_base;
129 }
130 if (size == 0UL) {
131 /* If it is empty, simply get rid of it.
132 * This simplifies the logic of the other
133 * functions that process these arrays.
134 */
135 memmove(&regs[i], &regs[i + 1],
136 (ents - i - 1) * sizeof(regs[0]));
137 i--;
138 ents--;
139 continue;
140 }
141 regs[i].phys_addr = base;
142 regs[i].reg_size = size;
143 }
144
145 *num_ents = ents;
146
147 sort(regs, ents, sizeof(struct linux_prom64_registers),
148 cmp_p64, NULL);
149 }
150
151 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
152
153 /* Kernel physical address base and size in bytes. */
154 unsigned long kern_base __read_mostly;
155 unsigned long kern_size __read_mostly;
156
157 /* Initial ramdisk setup */
158 extern unsigned long sparc_ramdisk_image64;
159 extern unsigned int sparc_ramdisk_image;
160 extern unsigned int sparc_ramdisk_size;
161
162 struct page *mem_map_zero __read_mostly;
163 EXPORT_SYMBOL(mem_map_zero);
164
165 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
166
167 unsigned long sparc64_kern_pri_context __read_mostly;
168 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
169 unsigned long sparc64_kern_sec_context __read_mostly;
170
171 int num_kernel_image_mappings;
172
173 #ifdef CONFIG_DEBUG_DCFLUSH
174 atomic_t dcpage_flushes = ATOMIC_INIT(0);
175 #ifdef CONFIG_SMP
176 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
177 #endif
178 #endif
179
180 inline void flush_dcache_page_impl(struct page *page)
181 {
182 BUG_ON(tlb_type == hypervisor);
183 #ifdef CONFIG_DEBUG_DCFLUSH
184 atomic_inc(&dcpage_flushes);
185 #endif
186
187 #ifdef DCACHE_ALIASING_POSSIBLE
188 __flush_dcache_page(page_address(page),
189 ((tlb_type == spitfire) &&
190 page_mapping(page) != NULL));
191 #else
192 if (page_mapping(page) != NULL &&
193 tlb_type == spitfire)
194 __flush_icache_page(__pa(page_address(page)));
195 #endif
196 }
197
198 #define PG_dcache_dirty PG_arch_1
199 #define PG_dcache_cpu_shift 32UL
200 #define PG_dcache_cpu_mask \
201 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
202
203 #define dcache_dirty_cpu(page) \
204 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
205
206 static inline void set_dcache_dirty(struct page *page, int this_cpu)
207 {
208 unsigned long mask = this_cpu;
209 unsigned long non_cpu_bits;
210
211 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
212 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
213
214 __asm__ __volatile__("1:\n\t"
215 "ldx [%2], %%g7\n\t"
216 "and %%g7, %1, %%g1\n\t"
217 "or %%g1, %0, %%g1\n\t"
218 "casx [%2], %%g7, %%g1\n\t"
219 "cmp %%g7, %%g1\n\t"
220 "membar #StoreLoad | #StoreStore\n\t"
221 "bne,pn %%xcc, 1b\n\t"
222 " nop"
223 : /* no outputs */
224 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
225 : "g1", "g7");
226 }
227
228 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
229 {
230 unsigned long mask = (1UL << PG_dcache_dirty);
231
232 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
233 "1:\n\t"
234 "ldx [%2], %%g7\n\t"
235 "srlx %%g7, %4, %%g1\n\t"
236 "and %%g1, %3, %%g1\n\t"
237 "cmp %%g1, %0\n\t"
238 "bne,pn %%icc, 2f\n\t"
239 " andn %%g7, %1, %%g1\n\t"
240 "casx [%2], %%g7, %%g1\n\t"
241 "cmp %%g7, %%g1\n\t"
242 "membar #StoreLoad | #StoreStore\n\t"
243 "bne,pn %%xcc, 1b\n\t"
244 " nop\n"
245 "2:"
246 : /* no outputs */
247 : "r" (cpu), "r" (mask), "r" (&page->flags),
248 "i" (PG_dcache_cpu_mask),
249 "i" (PG_dcache_cpu_shift)
250 : "g1", "g7");
251 }
252
253 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
254 {
255 unsigned long tsb_addr = (unsigned long) ent;
256
257 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
258 tsb_addr = __pa(tsb_addr);
259
260 __tsb_insert(tsb_addr, tag, pte);
261 }
262
263 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
264 unsigned long _PAGE_SZBITS __read_mostly;
265
266 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
267 {
268 struct mm_struct *mm;
269 struct tsb *tsb;
270 unsigned long tag, flags;
271 unsigned long tsb_index, tsb_hash_shift;
272
273 if (tlb_type != hypervisor) {
274 unsigned long pfn = pte_pfn(pte);
275 unsigned long pg_flags;
276 struct page *page;
277
278 if (pfn_valid(pfn) &&
279 (page = pfn_to_page(pfn), page_mapping(page)) &&
280 ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
281 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
282 PG_dcache_cpu_mask);
283 int this_cpu = get_cpu();
284
285 /* This is just to optimize away some function calls
286 * in the SMP case.
287 */
288 if (cpu == this_cpu)
289 flush_dcache_page_impl(page);
290 else
291 smp_flush_dcache_page_impl(page, cpu);
292
293 clear_dcache_dirty_cpu(page, cpu);
294
295 put_cpu();
296 }
297 }
298
299 mm = vma->vm_mm;
300
301 tsb_index = MM_TSB_BASE;
302 tsb_hash_shift = PAGE_SHIFT;
303
304 spin_lock_irqsave(&mm->context.lock, flags);
305
306 #ifdef CONFIG_HUGETLB_PAGE
307 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
308 if ((tlb_type == hypervisor &&
309 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
310 (tlb_type != hypervisor &&
311 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
312 tsb_index = MM_TSB_HUGE;
313 tsb_hash_shift = HPAGE_SHIFT;
314 }
315 }
316 #endif
317
318 tsb = mm->context.tsb_block[tsb_index].tsb;
319 tsb += ((address >> tsb_hash_shift) &
320 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
321 tag = (address >> 22UL);
322 tsb_insert(tsb, tag, pte_val(pte));
323
324 spin_unlock_irqrestore(&mm->context.lock, flags);
325 }
326
327 void flush_dcache_page(struct page *page)
328 {
329 struct address_space *mapping;
330 int this_cpu;
331
332 if (tlb_type == hypervisor)
333 return;
334
335 /* Do not bother with the expensive D-cache flush if it
336 * is merely the zero page. The 'bigcore' testcase in GDB
337 * causes this case to run millions of times.
338 */
339 if (page == ZERO_PAGE(0))
340 return;
341
342 this_cpu = get_cpu();
343
344 mapping = page_mapping(page);
345 if (mapping && !mapping_mapped(mapping)) {
346 int dirty = test_bit(PG_dcache_dirty, &page->flags);
347 if (dirty) {
348 int dirty_cpu = dcache_dirty_cpu(page);
349
350 if (dirty_cpu == this_cpu)
351 goto out;
352 smp_flush_dcache_page_impl(page, dirty_cpu);
353 }
354 set_dcache_dirty(page, this_cpu);
355 } else {
356 /* We could delay the flush for the !page_mapping
357 * case too. But that case is for exec env/arg
358 * pages and those are %99 certainly going to get
359 * faulted into the tlb (and thus flushed) anyways.
360 */
361 flush_dcache_page_impl(page);
362 }
363
364 out:
365 put_cpu();
366 }
367
368 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
369 {
370 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
371 if (tlb_type == spitfire) {
372 unsigned long kaddr;
373
374 /* This code only runs on Spitfire cpus so this is
375 * why we can assume _PAGE_PADDR_4U.
376 */
377 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
378 unsigned long paddr, mask = _PAGE_PADDR_4U;
379
380 if (kaddr >= PAGE_OFFSET)
381 paddr = kaddr & mask;
382 else {
383 pgd_t *pgdp = pgd_offset_k(kaddr);
384 pud_t *pudp = pud_offset(pgdp, kaddr);
385 pmd_t *pmdp = pmd_offset(pudp, kaddr);
386 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
387
388 paddr = pte_val(*ptep) & mask;
389 }
390 __flush_icache_page(paddr);
391 }
392 }
393 }
394
395 void show_mem(void)
396 {
397 unsigned long total = 0, reserved = 0;
398 unsigned long shared = 0, cached = 0;
399 pg_data_t *pgdat;
400
401 printk(KERN_INFO "Mem-info:\n");
402 show_free_areas();
403 printk(KERN_INFO "Free swap: %6ldkB\n",
404 nr_swap_pages << (PAGE_SHIFT-10));
405 for_each_online_pgdat(pgdat) {
406 unsigned long i, flags;
407
408 pgdat_resize_lock(pgdat, &flags);
409 for (i = 0; i < pgdat->node_spanned_pages; i++) {
410 struct page *page = pgdat_page_nr(pgdat, i);
411 total++;
412 if (PageReserved(page))
413 reserved++;
414 else if (PageSwapCache(page))
415 cached++;
416 else if (page_count(page))
417 shared += page_count(page) - 1;
418 }
419 pgdat_resize_unlock(pgdat, &flags);
420 }
421
422 printk(KERN_INFO "%lu pages of RAM\n", total);
423 printk(KERN_INFO "%lu reserved pages\n", reserved);
424 printk(KERN_INFO "%lu pages shared\n", shared);
425 printk(KERN_INFO "%lu pages swap cached\n", cached);
426
427 printk(KERN_INFO "%lu pages dirty\n",
428 global_page_state(NR_FILE_DIRTY));
429 printk(KERN_INFO "%lu pages writeback\n",
430 global_page_state(NR_WRITEBACK));
431 printk(KERN_INFO "%lu pages mapped\n",
432 global_page_state(NR_FILE_MAPPED));
433 printk(KERN_INFO "%lu pages slab\n",
434 global_page_state(NR_SLAB_RECLAIMABLE) +
435 global_page_state(NR_SLAB_UNRECLAIMABLE));
436 printk(KERN_INFO "%lu pages pagetables\n",
437 global_page_state(NR_PAGETABLE));
438 }
439
440 void mmu_info(struct seq_file *m)
441 {
442 if (tlb_type == cheetah)
443 seq_printf(m, "MMU Type\t: Cheetah\n");
444 else if (tlb_type == cheetah_plus)
445 seq_printf(m, "MMU Type\t: Cheetah+\n");
446 else if (tlb_type == spitfire)
447 seq_printf(m, "MMU Type\t: Spitfire\n");
448 else if (tlb_type == hypervisor)
449 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
450 else
451 seq_printf(m, "MMU Type\t: ???\n");
452
453 #ifdef CONFIG_DEBUG_DCFLUSH
454 seq_printf(m, "DCPageFlushes\t: %d\n",
455 atomic_read(&dcpage_flushes));
456 #ifdef CONFIG_SMP
457 seq_printf(m, "DCPageFlushesXC\t: %d\n",
458 atomic_read(&dcpage_flushes_xcall));
459 #endif /* CONFIG_SMP */
460 #endif /* CONFIG_DEBUG_DCFLUSH */
461 }
462
463 struct linux_prom_translation {
464 unsigned long virt;
465 unsigned long size;
466 unsigned long data;
467 };
468
469 /* Exported for kernel TLB miss handling in ktlb.S */
470 struct linux_prom_translation prom_trans[512] __read_mostly;
471 unsigned int prom_trans_ents __read_mostly;
472
473 /* Exported for SMP bootup purposes. */
474 unsigned long kern_locked_tte_data;
475
476 /* The obp translations are saved based on 8k pagesize, since obp can
477 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
478 * HI_OBP_ADDRESS range are handled in ktlb.S.
479 */
480 static inline int in_obp_range(unsigned long vaddr)
481 {
482 return (vaddr >= LOW_OBP_ADDRESS &&
483 vaddr < HI_OBP_ADDRESS);
484 }
485
486 static int cmp_ptrans(const void *a, const void *b)
487 {
488 const struct linux_prom_translation *x = a, *y = b;
489
490 if (x->virt > y->virt)
491 return 1;
492 if (x->virt < y->virt)
493 return -1;
494 return 0;
495 }
496
497 /* Read OBP translations property into 'prom_trans[]'. */
498 static void __init read_obp_translations(void)
499 {
500 int n, node, ents, first, last, i;
501
502 node = prom_finddevice("/virtual-memory");
503 n = prom_getproplen(node, "translations");
504 if (unlikely(n == 0 || n == -1)) {
505 prom_printf("prom_mappings: Couldn't get size.\n");
506 prom_halt();
507 }
508 if (unlikely(n > sizeof(prom_trans))) {
509 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
510 prom_halt();
511 }
512
513 if ((n = prom_getproperty(node, "translations",
514 (char *)&prom_trans[0],
515 sizeof(prom_trans))) == -1) {
516 prom_printf("prom_mappings: Couldn't get property.\n");
517 prom_halt();
518 }
519
520 n = n / sizeof(struct linux_prom_translation);
521
522 ents = n;
523
524 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
525 cmp_ptrans, NULL);
526
527 /* Now kick out all the non-OBP entries. */
528 for (i = 0; i < ents; i++) {
529 if (in_obp_range(prom_trans[i].virt))
530 break;
531 }
532 first = i;
533 for (; i < ents; i++) {
534 if (!in_obp_range(prom_trans[i].virt))
535 break;
536 }
537 last = i;
538
539 for (i = 0; i < (last - first); i++) {
540 struct linux_prom_translation *src = &prom_trans[i + first];
541 struct linux_prom_translation *dest = &prom_trans[i];
542
543 *dest = *src;
544 }
545 for (; i < ents; i++) {
546 struct linux_prom_translation *dest = &prom_trans[i];
547 dest->virt = dest->size = dest->data = 0x0UL;
548 }
549
550 prom_trans_ents = last - first;
551
552 if (tlb_type == spitfire) {
553 /* Clear diag TTE bits. */
554 for (i = 0; i < prom_trans_ents; i++)
555 prom_trans[i].data &= ~0x0003fe0000000000UL;
556 }
557 }
558
559 static void __init hypervisor_tlb_lock(unsigned long vaddr,
560 unsigned long pte,
561 unsigned long mmu)
562 {
563 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
564
565 if (ret != 0) {
566 prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
567 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
568 prom_halt();
569 }
570 }
571
572 static unsigned long kern_large_tte(unsigned long paddr);
573
574 static void __init remap_kernel(void)
575 {
576 unsigned long phys_page, tte_vaddr, tte_data;
577 int i, tlb_ent = sparc64_highest_locked_tlbent();
578
579 tte_vaddr = (unsigned long) KERNBASE;
580 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
581 tte_data = kern_large_tte(phys_page);
582
583 kern_locked_tte_data = tte_data;
584
585 /* Now lock us into the TLBs via Hypervisor or OBP. */
586 if (tlb_type == hypervisor) {
587 for (i = 0; i < num_kernel_image_mappings; i++) {
588 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
589 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
590 tte_vaddr += 0x400000;
591 tte_data += 0x400000;
592 }
593 } else {
594 for (i = 0; i < num_kernel_image_mappings; i++) {
595 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
596 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
597 tte_vaddr += 0x400000;
598 tte_data += 0x400000;
599 }
600 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
601 }
602 if (tlb_type == cheetah_plus) {
603 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
604 CTX_CHEETAH_PLUS_NUC);
605 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
606 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
607 }
608 }
609
610
611 static void __init inherit_prom_mappings(void)
612 {
613 /* Now fixup OBP's idea about where we really are mapped. */
614 printk("Remapping the kernel... ");
615 remap_kernel();
616 printk("done.\n");
617 }
618
619 void prom_world(int enter)
620 {
621 if (!enter)
622 set_fs((mm_segment_t) { get_thread_current_ds() });
623
624 __asm__ __volatile__("flushw");
625 }
626
627 void __flush_dcache_range(unsigned long start, unsigned long end)
628 {
629 unsigned long va;
630
631 if (tlb_type == spitfire) {
632 int n = 0;
633
634 for (va = start; va < end; va += 32) {
635 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
636 if (++n >= 512)
637 break;
638 }
639 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
640 start = __pa(start);
641 end = __pa(end);
642 for (va = start; va < end; va += 32)
643 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
644 "membar #Sync"
645 : /* no outputs */
646 : "r" (va),
647 "i" (ASI_DCACHE_INVALIDATE));
648 }
649 }
650
651 /* get_new_mmu_context() uses "cache + 1". */
652 DEFINE_SPINLOCK(ctx_alloc_lock);
653 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
654 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
655 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
656 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
657
658 /* Caller does TLB context flushing on local CPU if necessary.
659 * The caller also ensures that CTX_VALID(mm->context) is false.
660 *
661 * We must be careful about boundary cases so that we never
662 * let the user have CTX 0 (nucleus) or we ever use a CTX
663 * version of zero (and thus NO_CONTEXT would not be caught
664 * by version mis-match tests in mmu_context.h).
665 *
666 * Always invoked with interrupts disabled.
667 */
668 void get_new_mmu_context(struct mm_struct *mm)
669 {
670 unsigned long ctx, new_ctx;
671 unsigned long orig_pgsz_bits;
672 unsigned long flags;
673 int new_version;
674
675 spin_lock_irqsave(&ctx_alloc_lock, flags);
676 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
677 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
678 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
679 new_version = 0;
680 if (new_ctx >= (1 << CTX_NR_BITS)) {
681 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
682 if (new_ctx >= ctx) {
683 int i;
684 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
685 CTX_FIRST_VERSION;
686 if (new_ctx == 1)
687 new_ctx = CTX_FIRST_VERSION;
688
689 /* Don't call memset, for 16 entries that's just
690 * plain silly...
691 */
692 mmu_context_bmap[0] = 3;
693 mmu_context_bmap[1] = 0;
694 mmu_context_bmap[2] = 0;
695 mmu_context_bmap[3] = 0;
696 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
697 mmu_context_bmap[i + 0] = 0;
698 mmu_context_bmap[i + 1] = 0;
699 mmu_context_bmap[i + 2] = 0;
700 mmu_context_bmap[i + 3] = 0;
701 }
702 new_version = 1;
703 goto out;
704 }
705 }
706 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
707 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
708 out:
709 tlb_context_cache = new_ctx;
710 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
711 spin_unlock_irqrestore(&ctx_alloc_lock, flags);
712
713 if (unlikely(new_version))
714 smp_new_mmu_context_version();
715 }
716
717 static int numa_enabled = 1;
718 static int numa_debug;
719
720 static int __init early_numa(char *p)
721 {
722 if (!p)
723 return 0;
724
725 if (strstr(p, "off"))
726 numa_enabled = 0;
727
728 if (strstr(p, "debug"))
729 numa_debug = 1;
730
731 return 0;
732 }
733 early_param("numa", early_numa);
734
735 #define numadbg(f, a...) \
736 do { if (numa_debug) \
737 printk(KERN_INFO f, ## a); \
738 } while (0)
739
740 static void __init find_ramdisk(unsigned long phys_base)
741 {
742 #ifdef CONFIG_BLK_DEV_INITRD
743 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
744 unsigned long ramdisk_image;
745
746 /* Older versions of the bootloader only supported a
747 * 32-bit physical address for the ramdisk image
748 * location, stored at sparc_ramdisk_image. Newer
749 * SILO versions set sparc_ramdisk_image to zero and
750 * provide a full 64-bit physical address at
751 * sparc_ramdisk_image64.
752 */
753 ramdisk_image = sparc_ramdisk_image;
754 if (!ramdisk_image)
755 ramdisk_image = sparc_ramdisk_image64;
756
757 /* Another bootloader quirk. The bootloader normalizes
758 * the physical address to KERNBASE, so we have to
759 * factor that back out and add in the lowest valid
760 * physical page address to get the true physical address.
761 */
762 ramdisk_image -= KERNBASE;
763 ramdisk_image += phys_base;
764
765 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
766 ramdisk_image, sparc_ramdisk_size);
767
768 initrd_start = ramdisk_image;
769 initrd_end = ramdisk_image + sparc_ramdisk_size;
770
771 lmb_reserve(initrd_start, sparc_ramdisk_size);
772
773 initrd_start += PAGE_OFFSET;
774 initrd_end += PAGE_OFFSET;
775 }
776 #endif
777 }
778
779 struct node_mem_mask {
780 unsigned long mask;
781 unsigned long val;
782 unsigned long bootmem_paddr;
783 };
784 static struct node_mem_mask node_masks[MAX_NUMNODES];
785 static int num_node_masks;
786
787 int numa_cpu_lookup_table[NR_CPUS];
788 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
789
790 #ifdef CONFIG_NEED_MULTIPLE_NODES
791
792 struct mdesc_mblock {
793 u64 base;
794 u64 size;
795 u64 offset; /* RA-to-PA */
796 };
797 static struct mdesc_mblock *mblocks;
798 static int num_mblocks;
799
800 static unsigned long ra_to_pa(unsigned long addr)
801 {
802 int i;
803
804 for (i = 0; i < num_mblocks; i++) {
805 struct mdesc_mblock *m = &mblocks[i];
806
807 if (addr >= m->base &&
808 addr < (m->base + m->size)) {
809 addr += m->offset;
810 break;
811 }
812 }
813 return addr;
814 }
815
816 static int find_node(unsigned long addr)
817 {
818 int i;
819
820 addr = ra_to_pa(addr);
821 for (i = 0; i < num_node_masks; i++) {
822 struct node_mem_mask *p = &node_masks[i];
823
824 if ((addr & p->mask) == p->val)
825 return i;
826 }
827 return -1;
828 }
829
830 static unsigned long nid_range(unsigned long start, unsigned long end,
831 int *nid)
832 {
833 *nid = find_node(start);
834 start += PAGE_SIZE;
835 while (start < end) {
836 int n = find_node(start);
837
838 if (n != *nid)
839 break;
840 start += PAGE_SIZE;
841 }
842
843 return start;
844 }
845 #else
846 static unsigned long nid_range(unsigned long start, unsigned long end,
847 int *nid)
848 {
849 *nid = 0;
850 return end;
851 }
852 #endif
853
854 /* This must be invoked after performing all of the necessary
855 * add_active_range() calls for 'nid'. We need to be able to get
856 * correct data from get_pfn_range_for_nid().
857 */
858 static void __init allocate_node_data(int nid)
859 {
860 unsigned long paddr, num_pages, start_pfn, end_pfn;
861 struct pglist_data *p;
862
863 #ifdef CONFIG_NEED_MULTIPLE_NODES
864 paddr = lmb_alloc_nid(sizeof(struct pglist_data),
865 SMP_CACHE_BYTES, nid, nid_range);
866 if (!paddr) {
867 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
868 prom_halt();
869 }
870 NODE_DATA(nid) = __va(paddr);
871 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
872
873 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
874 #endif
875
876 p = NODE_DATA(nid);
877
878 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
879 p->node_start_pfn = start_pfn;
880 p->node_spanned_pages = end_pfn - start_pfn;
881
882 if (p->node_spanned_pages) {
883 num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
884
885 paddr = lmb_alloc_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid,
886 nid_range);
887 if (!paddr) {
888 prom_printf("Cannot allocate bootmap for nid[%d]\n",
889 nid);
890 prom_halt();
891 }
892 node_masks[nid].bootmem_paddr = paddr;
893 }
894 }
895
896 static void init_node_masks_nonnuma(void)
897 {
898 int i;
899
900 numadbg("Initializing tables for non-numa.\n");
901
902 node_masks[0].mask = node_masks[0].val = 0;
903 num_node_masks = 1;
904
905 for (i = 0; i < NR_CPUS; i++)
906 numa_cpu_lookup_table[i] = 0;
907
908 numa_cpumask_lookup_table[0] = CPU_MASK_ALL;
909 }
910
911 #ifdef CONFIG_NEED_MULTIPLE_NODES
912 struct pglist_data *node_data[MAX_NUMNODES];
913
914 EXPORT_SYMBOL(numa_cpu_lookup_table);
915 EXPORT_SYMBOL(numa_cpumask_lookup_table);
916 EXPORT_SYMBOL(node_data);
917
918 struct mdesc_mlgroup {
919 u64 node;
920 u64 latency;
921 u64 match;
922 u64 mask;
923 };
924 static struct mdesc_mlgroup *mlgroups;
925 static int num_mlgroups;
926
927 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
928 u32 cfg_handle)
929 {
930 u64 arc;
931
932 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
933 u64 target = mdesc_arc_target(md, arc);
934 const u64 *val;
935
936 val = mdesc_get_property(md, target,
937 "cfg-handle", NULL);
938 if (val && *val == cfg_handle)
939 return 0;
940 }
941 return -ENODEV;
942 }
943
944 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
945 u32 cfg_handle)
946 {
947 u64 arc, candidate, best_latency = ~(u64)0;
948
949 candidate = MDESC_NODE_NULL;
950 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
951 u64 target = mdesc_arc_target(md, arc);
952 const char *name = mdesc_node_name(md, target);
953 const u64 *val;
954
955 if (strcmp(name, "pio-latency-group"))
956 continue;
957
958 val = mdesc_get_property(md, target, "latency", NULL);
959 if (!val)
960 continue;
961
962 if (*val < best_latency) {
963 candidate = target;
964 best_latency = *val;
965 }
966 }
967
968 if (candidate == MDESC_NODE_NULL)
969 return -ENODEV;
970
971 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
972 }
973
974 int of_node_to_nid(struct device_node *dp)
975 {
976 const struct linux_prom64_registers *regs;
977 struct mdesc_handle *md;
978 u32 cfg_handle;
979 int count, nid;
980 u64 grp;
981
982 if (!mlgroups)
983 return -1;
984
985 regs = of_get_property(dp, "reg", NULL);
986 if (!regs)
987 return -1;
988
989 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
990
991 md = mdesc_grab();
992
993 count = 0;
994 nid = -1;
995 mdesc_for_each_node_by_name(md, grp, "group") {
996 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
997 nid = count;
998 break;
999 }
1000 count++;
1001 }
1002
1003 mdesc_release(md);
1004
1005 return nid;
1006 }
1007
1008 static void add_node_ranges(void)
1009 {
1010 int i;
1011
1012 for (i = 0; i < lmb.memory.cnt; i++) {
1013 unsigned long size = lmb_size_bytes(&lmb.memory, i);
1014 unsigned long start, end;
1015
1016 start = lmb.memory.region[i].base;
1017 end = start + size;
1018 while (start < end) {
1019 unsigned long this_end;
1020 int nid;
1021
1022 this_end = nid_range(start, end, &nid);
1023
1024 numadbg("Adding active range nid[%d] "
1025 "start[%lx] end[%lx]\n",
1026 nid, start, this_end);
1027
1028 add_active_range(nid,
1029 start >> PAGE_SHIFT,
1030 this_end >> PAGE_SHIFT);
1031
1032 start = this_end;
1033 }
1034 }
1035 }
1036
1037 static int __init grab_mlgroups(struct mdesc_handle *md)
1038 {
1039 unsigned long paddr;
1040 int count = 0;
1041 u64 node;
1042
1043 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1044 count++;
1045 if (!count)
1046 return -ENOENT;
1047
1048 paddr = lmb_alloc(count * sizeof(struct mdesc_mlgroup),
1049 SMP_CACHE_BYTES);
1050 if (!paddr)
1051 return -ENOMEM;
1052
1053 mlgroups = __va(paddr);
1054 num_mlgroups = count;
1055
1056 count = 0;
1057 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1058 struct mdesc_mlgroup *m = &mlgroups[count++];
1059 const u64 *val;
1060
1061 m->node = node;
1062
1063 val = mdesc_get_property(md, node, "latency", NULL);
1064 m->latency = *val;
1065 val = mdesc_get_property(md, node, "address-match", NULL);
1066 m->match = *val;
1067 val = mdesc_get_property(md, node, "address-mask", NULL);
1068 m->mask = *val;
1069
1070 numadbg("MLGROUP[%d]: node[%lx] latency[%lx] "
1071 "match[%lx] mask[%lx]\n",
1072 count - 1, m->node, m->latency, m->match, m->mask);
1073 }
1074
1075 return 0;
1076 }
1077
1078 static int __init grab_mblocks(struct mdesc_handle *md)
1079 {
1080 unsigned long paddr;
1081 int count = 0;
1082 u64 node;
1083
1084 mdesc_for_each_node_by_name(md, node, "mblock")
1085 count++;
1086 if (!count)
1087 return -ENOENT;
1088
1089 paddr = lmb_alloc(count * sizeof(struct mdesc_mblock),
1090 SMP_CACHE_BYTES);
1091 if (!paddr)
1092 return -ENOMEM;
1093
1094 mblocks = __va(paddr);
1095 num_mblocks = count;
1096
1097 count = 0;
1098 mdesc_for_each_node_by_name(md, node, "mblock") {
1099 struct mdesc_mblock *m = &mblocks[count++];
1100 const u64 *val;
1101
1102 val = mdesc_get_property(md, node, "base", NULL);
1103 m->base = *val;
1104 val = mdesc_get_property(md, node, "size", NULL);
1105 m->size = *val;
1106 val = mdesc_get_property(md, node,
1107 "address-congruence-offset", NULL);
1108 m->offset = *val;
1109
1110 numadbg("MBLOCK[%d]: base[%lx] size[%lx] offset[%lx]\n",
1111 count - 1, m->base, m->size, m->offset);
1112 }
1113
1114 return 0;
1115 }
1116
1117 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1118 u64 grp, cpumask_t *mask)
1119 {
1120 u64 arc;
1121
1122 cpus_clear(*mask);
1123
1124 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1125 u64 target = mdesc_arc_target(md, arc);
1126 const char *name = mdesc_node_name(md, target);
1127 const u64 *id;
1128
1129 if (strcmp(name, "cpu"))
1130 continue;
1131 id = mdesc_get_property(md, target, "id", NULL);
1132 if (*id < NR_CPUS)
1133 cpu_set(*id, *mask);
1134 }
1135 }
1136
1137 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1138 {
1139 int i;
1140
1141 for (i = 0; i < num_mlgroups; i++) {
1142 struct mdesc_mlgroup *m = &mlgroups[i];
1143 if (m->node == node)
1144 return m;
1145 }
1146 return NULL;
1147 }
1148
1149 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1150 int index)
1151 {
1152 struct mdesc_mlgroup *candidate = NULL;
1153 u64 arc, best_latency = ~(u64)0;
1154 struct node_mem_mask *n;
1155
1156 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1157 u64 target = mdesc_arc_target(md, arc);
1158 struct mdesc_mlgroup *m = find_mlgroup(target);
1159 if (!m)
1160 continue;
1161 if (m->latency < best_latency) {
1162 candidate = m;
1163 best_latency = m->latency;
1164 }
1165 }
1166 if (!candidate)
1167 return -ENOENT;
1168
1169 if (num_node_masks != index) {
1170 printk(KERN_ERR "Inconsistent NUMA state, "
1171 "index[%d] != num_node_masks[%d]\n",
1172 index, num_node_masks);
1173 return -EINVAL;
1174 }
1175
1176 n = &node_masks[num_node_masks++];
1177
1178 n->mask = candidate->mask;
1179 n->val = candidate->match;
1180
1181 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%lx])\n",
1182 index, n->mask, n->val, candidate->latency);
1183
1184 return 0;
1185 }
1186
1187 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1188 int index)
1189 {
1190 cpumask_t mask;
1191 int cpu;
1192
1193 numa_parse_mdesc_group_cpus(md, grp, &mask);
1194
1195 for_each_cpu_mask(cpu, mask)
1196 numa_cpu_lookup_table[cpu] = index;
1197 numa_cpumask_lookup_table[index] = mask;
1198
1199 if (numa_debug) {
1200 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1201 for_each_cpu_mask(cpu, mask)
1202 printk("%d ", cpu);
1203 printk("]\n");
1204 }
1205
1206 return numa_attach_mlgroup(md, grp, index);
1207 }
1208
1209 static int __init numa_parse_mdesc(void)
1210 {
1211 struct mdesc_handle *md = mdesc_grab();
1212 int i, err, count;
1213 u64 node;
1214
1215 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1216 if (node == MDESC_NODE_NULL) {
1217 mdesc_release(md);
1218 return -ENOENT;
1219 }
1220
1221 err = grab_mblocks(md);
1222 if (err < 0)
1223 goto out;
1224
1225 err = grab_mlgroups(md);
1226 if (err < 0)
1227 goto out;
1228
1229 count = 0;
1230 mdesc_for_each_node_by_name(md, node, "group") {
1231 err = numa_parse_mdesc_group(md, node, count);
1232 if (err < 0)
1233 break;
1234 count++;
1235 }
1236
1237 add_node_ranges();
1238
1239 for (i = 0; i < num_node_masks; i++) {
1240 allocate_node_data(i);
1241 node_set_online(i);
1242 }
1243
1244 err = 0;
1245 out:
1246 mdesc_release(md);
1247 return err;
1248 }
1249
1250 static int __init numa_parse_sun4u(void)
1251 {
1252 return -1;
1253 }
1254
1255 static int __init bootmem_init_numa(void)
1256 {
1257 int err = -1;
1258
1259 numadbg("bootmem_init_numa()\n");
1260
1261 if (numa_enabled) {
1262 if (tlb_type == hypervisor)
1263 err = numa_parse_mdesc();
1264 else
1265 err = numa_parse_sun4u();
1266 }
1267 return err;
1268 }
1269
1270 #else
1271
1272 static int bootmem_init_numa(void)
1273 {
1274 return -1;
1275 }
1276
1277 #endif
1278
1279 static void __init bootmem_init_nonnuma(void)
1280 {
1281 unsigned long top_of_ram = lmb_end_of_DRAM();
1282 unsigned long total_ram = lmb_phys_mem_size();
1283 unsigned int i;
1284
1285 numadbg("bootmem_init_nonnuma()\n");
1286
1287 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1288 top_of_ram, total_ram);
1289 printk(KERN_INFO "Memory hole size: %ldMB\n",
1290 (top_of_ram - total_ram) >> 20);
1291
1292 init_node_masks_nonnuma();
1293
1294 for (i = 0; i < lmb.memory.cnt; i++) {
1295 unsigned long size = lmb_size_bytes(&lmb.memory, i);
1296 unsigned long start_pfn, end_pfn;
1297
1298 if (!size)
1299 continue;
1300
1301 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
1302 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
1303 add_active_range(0, start_pfn, end_pfn);
1304 }
1305
1306 allocate_node_data(0);
1307
1308 node_set_online(0);
1309 }
1310
1311 static void __init reserve_range_in_node(int nid, unsigned long start,
1312 unsigned long end)
1313 {
1314 numadbg(" reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
1315 nid, start, end);
1316 while (start < end) {
1317 unsigned long this_end;
1318 int n;
1319
1320 this_end = nid_range(start, end, &n);
1321 if (n == nid) {
1322 numadbg(" MATCH reserving range [%lx:%lx]\n",
1323 start, this_end);
1324 reserve_bootmem_node(NODE_DATA(nid), start,
1325 (this_end - start), BOOTMEM_DEFAULT);
1326 } else
1327 numadbg(" NO MATCH, advancing start to %lx\n",
1328 this_end);
1329
1330 start = this_end;
1331 }
1332 }
1333
1334 static void __init trim_reserved_in_node(int nid)
1335 {
1336 int i;
1337
1338 numadbg(" trim_reserved_in_node(%d)\n", nid);
1339
1340 for (i = 0; i < lmb.reserved.cnt; i++) {
1341 unsigned long start = lmb.reserved.region[i].base;
1342 unsigned long size = lmb_size_bytes(&lmb.reserved, i);
1343 unsigned long end = start + size;
1344
1345 reserve_range_in_node(nid, start, end);
1346 }
1347 }
1348
1349 static void __init bootmem_init_one_node(int nid)
1350 {
1351 struct pglist_data *p;
1352
1353 numadbg("bootmem_init_one_node(%d)\n", nid);
1354
1355 p = NODE_DATA(nid);
1356
1357 if (p->node_spanned_pages) {
1358 unsigned long paddr = node_masks[nid].bootmem_paddr;
1359 unsigned long end_pfn;
1360
1361 end_pfn = p->node_start_pfn + p->node_spanned_pages;
1362
1363 numadbg(" init_bootmem_node(%d, %lx, %lx, %lx)\n",
1364 nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
1365
1366 init_bootmem_node(p, paddr >> PAGE_SHIFT,
1367 p->node_start_pfn, end_pfn);
1368
1369 numadbg(" free_bootmem_with_active_regions(%d, %lx)\n",
1370 nid, end_pfn);
1371 free_bootmem_with_active_regions(nid, end_pfn);
1372
1373 trim_reserved_in_node(nid);
1374
1375 numadbg(" sparse_memory_present_with_active_regions(%d)\n",
1376 nid);
1377 sparse_memory_present_with_active_regions(nid);
1378 }
1379 }
1380
1381 static unsigned long __init bootmem_init(unsigned long phys_base)
1382 {
1383 unsigned long end_pfn;
1384 int nid;
1385
1386 end_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
1387 max_pfn = max_low_pfn = end_pfn;
1388 min_low_pfn = (phys_base >> PAGE_SHIFT);
1389
1390 if (bootmem_init_numa() < 0)
1391 bootmem_init_nonnuma();
1392
1393 /* XXX cpu notifier XXX */
1394
1395 for_each_online_node(nid)
1396 bootmem_init_one_node(nid);
1397
1398 sparse_init();
1399
1400 return end_pfn;
1401 }
1402
1403 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1404 static int pall_ents __initdata;
1405
1406 #ifdef CONFIG_DEBUG_PAGEALLOC
1407 static unsigned long __ref kernel_map_range(unsigned long pstart,
1408 unsigned long pend, pgprot_t prot)
1409 {
1410 unsigned long vstart = PAGE_OFFSET + pstart;
1411 unsigned long vend = PAGE_OFFSET + pend;
1412 unsigned long alloc_bytes = 0UL;
1413
1414 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1415 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1416 vstart, vend);
1417 prom_halt();
1418 }
1419
1420 while (vstart < vend) {
1421 unsigned long this_end, paddr = __pa(vstart);
1422 pgd_t *pgd = pgd_offset_k(vstart);
1423 pud_t *pud;
1424 pmd_t *pmd;
1425 pte_t *pte;
1426
1427 pud = pud_offset(pgd, vstart);
1428 if (pud_none(*pud)) {
1429 pmd_t *new;
1430
1431 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1432 alloc_bytes += PAGE_SIZE;
1433 pud_populate(&init_mm, pud, new);
1434 }
1435
1436 pmd = pmd_offset(pud, vstart);
1437 if (!pmd_present(*pmd)) {
1438 pte_t *new;
1439
1440 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1441 alloc_bytes += PAGE_SIZE;
1442 pmd_populate_kernel(&init_mm, pmd, new);
1443 }
1444
1445 pte = pte_offset_kernel(pmd, vstart);
1446 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1447 if (this_end > vend)
1448 this_end = vend;
1449
1450 while (vstart < this_end) {
1451 pte_val(*pte) = (paddr | pgprot_val(prot));
1452
1453 vstart += PAGE_SIZE;
1454 paddr += PAGE_SIZE;
1455 pte++;
1456 }
1457 }
1458
1459 return alloc_bytes;
1460 }
1461
1462 extern unsigned int kvmap_linear_patch[1];
1463 #endif /* CONFIG_DEBUG_PAGEALLOC */
1464
1465 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1466 {
1467 const unsigned long shift_256MB = 28;
1468 const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
1469 const unsigned long size_256MB = (1UL << shift_256MB);
1470
1471 while (start < end) {
1472 long remains;
1473
1474 remains = end - start;
1475 if (remains < size_256MB)
1476 break;
1477
1478 if (start & mask_256MB) {
1479 start = (start + size_256MB) & ~mask_256MB;
1480 continue;
1481 }
1482
1483 while (remains >= size_256MB) {
1484 unsigned long index = start >> shift_256MB;
1485
1486 __set_bit(index, kpte_linear_bitmap);
1487
1488 start += size_256MB;
1489 remains -= size_256MB;
1490 }
1491 }
1492 }
1493
1494 static void __init init_kpte_bitmap(void)
1495 {
1496 unsigned long i;
1497
1498 for (i = 0; i < pall_ents; i++) {
1499 unsigned long phys_start, phys_end;
1500
1501 phys_start = pall[i].phys_addr;
1502 phys_end = phys_start + pall[i].reg_size;
1503
1504 mark_kpte_bitmap(phys_start, phys_end);
1505 }
1506 }
1507
1508 static void __init kernel_physical_mapping_init(void)
1509 {
1510 #ifdef CONFIG_DEBUG_PAGEALLOC
1511 unsigned long i, mem_alloced = 0UL;
1512
1513 for (i = 0; i < pall_ents; i++) {
1514 unsigned long phys_start, phys_end;
1515
1516 phys_start = pall[i].phys_addr;
1517 phys_end = phys_start + pall[i].reg_size;
1518
1519 mem_alloced += kernel_map_range(phys_start, phys_end,
1520 PAGE_KERNEL);
1521 }
1522
1523 printk("Allocated %ld bytes for kernel page tables.\n",
1524 mem_alloced);
1525
1526 kvmap_linear_patch[0] = 0x01000000; /* nop */
1527 flushi(&kvmap_linear_patch[0]);
1528
1529 __flush_tlb_all();
1530 #endif
1531 }
1532
1533 #ifdef CONFIG_DEBUG_PAGEALLOC
1534 void kernel_map_pages(struct page *page, int numpages, int enable)
1535 {
1536 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1537 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1538
1539 kernel_map_range(phys_start, phys_end,
1540 (enable ? PAGE_KERNEL : __pgprot(0)));
1541
1542 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1543 PAGE_OFFSET + phys_end);
1544
1545 /* we should perform an IPI and flush all tlbs,
1546 * but that can deadlock->flush only current cpu.
1547 */
1548 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1549 PAGE_OFFSET + phys_end);
1550 }
1551 #endif
1552
1553 unsigned long __init find_ecache_flush_span(unsigned long size)
1554 {
1555 int i;
1556
1557 for (i = 0; i < pavail_ents; i++) {
1558 if (pavail[i].reg_size >= size)
1559 return pavail[i].phys_addr;
1560 }
1561
1562 return ~0UL;
1563 }
1564
1565 static void __init tsb_phys_patch(void)
1566 {
1567 struct tsb_ldquad_phys_patch_entry *pquad;
1568 struct tsb_phys_patch_entry *p;
1569
1570 pquad = &__tsb_ldquad_phys_patch;
1571 while (pquad < &__tsb_ldquad_phys_patch_end) {
1572 unsigned long addr = pquad->addr;
1573
1574 if (tlb_type == hypervisor)
1575 *(unsigned int *) addr = pquad->sun4v_insn;
1576 else
1577 *(unsigned int *) addr = pquad->sun4u_insn;
1578 wmb();
1579 __asm__ __volatile__("flush %0"
1580 : /* no outputs */
1581 : "r" (addr));
1582
1583 pquad++;
1584 }
1585
1586 p = &__tsb_phys_patch;
1587 while (p < &__tsb_phys_patch_end) {
1588 unsigned long addr = p->addr;
1589
1590 *(unsigned int *) addr = p->insn;
1591 wmb();
1592 __asm__ __volatile__("flush %0"
1593 : /* no outputs */
1594 : "r" (addr));
1595
1596 p++;
1597 }
1598 }
1599
1600 /* Don't mark as init, we give this to the Hypervisor. */
1601 #ifndef CONFIG_DEBUG_PAGEALLOC
1602 #define NUM_KTSB_DESCR 2
1603 #else
1604 #define NUM_KTSB_DESCR 1
1605 #endif
1606 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1607 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1608
1609 static void __init sun4v_ktsb_init(void)
1610 {
1611 unsigned long ktsb_pa;
1612
1613 /* First KTSB for PAGE_SIZE mappings. */
1614 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1615
1616 switch (PAGE_SIZE) {
1617 case 8 * 1024:
1618 default:
1619 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1620 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1621 break;
1622
1623 case 64 * 1024:
1624 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1625 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1626 break;
1627
1628 case 512 * 1024:
1629 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1630 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1631 break;
1632
1633 case 4 * 1024 * 1024:
1634 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1635 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1636 break;
1637 };
1638
1639 ktsb_descr[0].assoc = 1;
1640 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1641 ktsb_descr[0].ctx_idx = 0;
1642 ktsb_descr[0].tsb_base = ktsb_pa;
1643 ktsb_descr[0].resv = 0;
1644
1645 #ifndef CONFIG_DEBUG_PAGEALLOC
1646 /* Second KTSB for 4MB/256MB mappings. */
1647 ktsb_pa = (kern_base +
1648 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1649
1650 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1651 ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
1652 HV_PGSZ_MASK_256MB);
1653 ktsb_descr[1].assoc = 1;
1654 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1655 ktsb_descr[1].ctx_idx = 0;
1656 ktsb_descr[1].tsb_base = ktsb_pa;
1657 ktsb_descr[1].resv = 0;
1658 #endif
1659 }
1660
1661 void __cpuinit sun4v_ktsb_register(void)
1662 {
1663 unsigned long pa, ret;
1664
1665 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1666
1667 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1668 if (ret != 0) {
1669 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1670 "errors with %lx\n", pa, ret);
1671 prom_halt();
1672 }
1673 }
1674
1675 /* paging_init() sets up the page tables */
1676
1677 extern void central_probe(void);
1678
1679 static unsigned long last_valid_pfn;
1680 pgd_t swapper_pg_dir[2048];
1681
1682 static void sun4u_pgprot_init(void);
1683 static void sun4v_pgprot_init(void);
1684
1685 /* Dummy function */
1686 void __init setup_per_cpu_areas(void)
1687 {
1688 }
1689
1690 void __init paging_init(void)
1691 {
1692 unsigned long end_pfn, shift, phys_base;
1693 unsigned long real_end, i;
1694
1695 /* These build time checkes make sure that the dcache_dirty_cpu()
1696 * page->flags usage will work.
1697 *
1698 * When a page gets marked as dcache-dirty, we store the
1699 * cpu number starting at bit 32 in the page->flags. Also,
1700 * functions like clear_dcache_dirty_cpu use the cpu mask
1701 * in 13-bit signed-immediate instruction fields.
1702 */
1703
1704 /*
1705 * Page flags must not reach into upper 32 bits that are used
1706 * for the cpu number
1707 */
1708 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1709
1710 /*
1711 * The bit fields placed in the high range must not reach below
1712 * the 32 bit boundary. Otherwise we cannot place the cpu field
1713 * at the 32 bit boundary.
1714 */
1715 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1716 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1717
1718 BUILD_BUG_ON(NR_CPUS > 4096);
1719
1720 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1721 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1722
1723 sstate_booting();
1724
1725 /* Invalidate both kernel TSBs. */
1726 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1727 #ifndef CONFIG_DEBUG_PAGEALLOC
1728 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1729 #endif
1730
1731 if (tlb_type == hypervisor)
1732 sun4v_pgprot_init();
1733 else
1734 sun4u_pgprot_init();
1735
1736 if (tlb_type == cheetah_plus ||
1737 tlb_type == hypervisor)
1738 tsb_phys_patch();
1739
1740 if (tlb_type == hypervisor) {
1741 sun4v_patch_tlb_handlers();
1742 sun4v_ktsb_init();
1743 }
1744
1745 lmb_init();
1746
1747 /* Find available physical memory...
1748 *
1749 * Read it twice in order to work around a bug in openfirmware.
1750 * The call to grab this table itself can cause openfirmware to
1751 * allocate memory, which in turn can take away some space from
1752 * the list of available memory. Reading it twice makes sure
1753 * we really do get the final value.
1754 */
1755 read_obp_translations();
1756 read_obp_memory("reg", &pall[0], &pall_ents);
1757 read_obp_memory("available", &pavail[0], &pavail_ents);
1758 read_obp_memory("available", &pavail[0], &pavail_ents);
1759
1760 phys_base = 0xffffffffffffffffUL;
1761 for (i = 0; i < pavail_ents; i++) {
1762 phys_base = min(phys_base, pavail[i].phys_addr);
1763 lmb_add(pavail[i].phys_addr, pavail[i].reg_size);
1764 }
1765
1766 lmb_reserve(kern_base, kern_size);
1767
1768 find_ramdisk(phys_base);
1769
1770 if (cmdline_memory_size)
1771 lmb_enforce_memory_limit(phys_base + cmdline_memory_size);
1772
1773 lmb_analyze();
1774 lmb_dump_all();
1775
1776 set_bit(0, mmu_context_bmap);
1777
1778 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1779
1780 real_end = (unsigned long)_end;
1781 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1782 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1783 num_kernel_image_mappings);
1784
1785 /* Set kernel pgd to upper alias so physical page computations
1786 * work.
1787 */
1788 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1789
1790 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1791
1792 /* Now can init the kernel/bad page tables. */
1793 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1794 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1795
1796 inherit_prom_mappings();
1797
1798 init_kpte_bitmap();
1799
1800 /* Ok, we can use our TLB miss and window trap handlers safely. */
1801 setup_tba();
1802
1803 __flush_tlb_all();
1804
1805 if (tlb_type == hypervisor)
1806 sun4v_ktsb_register();
1807
1808 /* We must setup the per-cpu areas before we pull in the
1809 * PROM and the MDESC. The code there fills in cpu and
1810 * other information into per-cpu data structures.
1811 */
1812 real_setup_per_cpu_areas();
1813
1814 prom_build_devicetree();
1815
1816 if (tlb_type == hypervisor)
1817 sun4v_mdesc_init();
1818
1819 /* Setup bootmem... */
1820 last_valid_pfn = end_pfn = bootmem_init(phys_base);
1821
1822 #ifndef CONFIG_NEED_MULTIPLE_NODES
1823 max_mapnr = last_valid_pfn;
1824 #endif
1825 kernel_physical_mapping_init();
1826
1827 {
1828 unsigned long max_zone_pfns[MAX_NR_ZONES];
1829
1830 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1831
1832 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1833
1834 free_area_init_nodes(max_zone_pfns);
1835 }
1836
1837 printk("Booting Linux...\n");
1838
1839 central_probe();
1840 cpu_probe();
1841 }
1842
1843 int __init page_in_phys_avail(unsigned long paddr)
1844 {
1845 int i;
1846
1847 paddr &= PAGE_MASK;
1848
1849 for (i = 0; i < pavail_ents; i++) {
1850 unsigned long start, end;
1851
1852 start = pavail[i].phys_addr;
1853 end = start + pavail[i].reg_size;
1854
1855 if (paddr >= start && paddr < end)
1856 return 1;
1857 }
1858 if (paddr >= kern_base && paddr < (kern_base + kern_size))
1859 return 1;
1860 #ifdef CONFIG_BLK_DEV_INITRD
1861 if (paddr >= __pa(initrd_start) &&
1862 paddr < __pa(PAGE_ALIGN(initrd_end)))
1863 return 1;
1864 #endif
1865
1866 return 0;
1867 }
1868
1869 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1870 static int pavail_rescan_ents __initdata;
1871
1872 /* Certain OBP calls, such as fetching "available" properties, can
1873 * claim physical memory. So, along with initializing the valid
1874 * address bitmap, what we do here is refetch the physical available
1875 * memory list again, and make sure it provides at least as much
1876 * memory as 'pavail' does.
1877 */
1878 static void setup_valid_addr_bitmap_from_pavail(void)
1879 {
1880 int i;
1881
1882 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1883
1884 for (i = 0; i < pavail_ents; i++) {
1885 unsigned long old_start, old_end;
1886
1887 old_start = pavail[i].phys_addr;
1888 old_end = old_start + pavail[i].reg_size;
1889 while (old_start < old_end) {
1890 int n;
1891
1892 for (n = 0; n < pavail_rescan_ents; n++) {
1893 unsigned long new_start, new_end;
1894
1895 new_start = pavail_rescan[n].phys_addr;
1896 new_end = new_start +
1897 pavail_rescan[n].reg_size;
1898
1899 if (new_start <= old_start &&
1900 new_end >= (old_start + PAGE_SIZE)) {
1901 set_bit(old_start >> 22,
1902 sparc64_valid_addr_bitmap);
1903 goto do_next_page;
1904 }
1905 }
1906
1907 prom_printf("mem_init: Lost memory in pavail\n");
1908 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
1909 pavail[i].phys_addr,
1910 pavail[i].reg_size);
1911 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
1912 pavail_rescan[i].phys_addr,
1913 pavail_rescan[i].reg_size);
1914 prom_printf("mem_init: Cannot continue, aborting.\n");
1915 prom_halt();
1916
1917 do_next_page:
1918 old_start += PAGE_SIZE;
1919 }
1920 }
1921 }
1922
1923 void __init mem_init(void)
1924 {
1925 unsigned long codepages, datapages, initpages;
1926 unsigned long addr, last;
1927 int i;
1928
1929 i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1930 i += 1;
1931 sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1932 if (sparc64_valid_addr_bitmap == NULL) {
1933 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1934 prom_halt();
1935 }
1936 memset(sparc64_valid_addr_bitmap, 0, i << 3);
1937
1938 addr = PAGE_OFFSET + kern_base;
1939 last = PAGE_ALIGN(kern_size) + addr;
1940 while (addr < last) {
1941 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1942 addr += PAGE_SIZE;
1943 }
1944
1945 setup_valid_addr_bitmap_from_pavail();
1946
1947 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1948
1949 #ifdef CONFIG_NEED_MULTIPLE_NODES
1950 for_each_online_node(i) {
1951 if (NODE_DATA(i)->node_spanned_pages != 0) {
1952 totalram_pages +=
1953 free_all_bootmem_node(NODE_DATA(i));
1954 }
1955 }
1956 #else
1957 totalram_pages = free_all_bootmem();
1958 #endif
1959
1960 /* We subtract one to account for the mem_map_zero page
1961 * allocated below.
1962 */
1963 totalram_pages -= 1;
1964 num_physpages = totalram_pages;
1965
1966 /*
1967 * Set up the zero page, mark it reserved, so that page count
1968 * is not manipulated when freeing the page from user ptes.
1969 */
1970 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1971 if (mem_map_zero == NULL) {
1972 prom_printf("paging_init: Cannot alloc zero page.\n");
1973 prom_halt();
1974 }
1975 SetPageReserved(mem_map_zero);
1976
1977 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1978 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1979 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1980 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1981 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1982 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1983
1984 printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1985 nr_free_pages() << (PAGE_SHIFT-10),
1986 codepages << (PAGE_SHIFT-10),
1987 datapages << (PAGE_SHIFT-10),
1988 initpages << (PAGE_SHIFT-10),
1989 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1990
1991 if (tlb_type == cheetah || tlb_type == cheetah_plus)
1992 cheetah_ecache_flush_init();
1993 }
1994
1995 void free_initmem(void)
1996 {
1997 unsigned long addr, initend;
1998
1999 /*
2000 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2001 */
2002 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2003 initend = (unsigned long)(__init_end) & PAGE_MASK;
2004 for (; addr < initend; addr += PAGE_SIZE) {
2005 unsigned long page;
2006 struct page *p;
2007
2008 page = (addr +
2009 ((unsigned long) __va(kern_base)) -
2010 ((unsigned long) KERNBASE));
2011 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2012 p = virt_to_page(page);
2013
2014 ClearPageReserved(p);
2015 init_page_count(p);
2016 __free_page(p);
2017 num_physpages++;
2018 totalram_pages++;
2019 }
2020 }
2021
2022 #ifdef CONFIG_BLK_DEV_INITRD
2023 void free_initrd_mem(unsigned long start, unsigned long end)
2024 {
2025 if (start < end)
2026 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
2027 for (; start < end; start += PAGE_SIZE) {
2028 struct page *p = virt_to_page(start);
2029
2030 ClearPageReserved(p);
2031 init_page_count(p);
2032 __free_page(p);
2033 num_physpages++;
2034 totalram_pages++;
2035 }
2036 }
2037 #endif
2038
2039 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2040 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2041 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2042 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2043 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2044 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2045
2046 pgprot_t PAGE_KERNEL __read_mostly;
2047 EXPORT_SYMBOL(PAGE_KERNEL);
2048
2049 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2050 pgprot_t PAGE_COPY __read_mostly;
2051
2052 pgprot_t PAGE_SHARED __read_mostly;
2053 EXPORT_SYMBOL(PAGE_SHARED);
2054
2055 pgprot_t PAGE_EXEC __read_mostly;
2056 unsigned long pg_iobits __read_mostly;
2057
2058 unsigned long _PAGE_IE __read_mostly;
2059 EXPORT_SYMBOL(_PAGE_IE);
2060
2061 unsigned long _PAGE_E __read_mostly;
2062 EXPORT_SYMBOL(_PAGE_E);
2063
2064 unsigned long _PAGE_CACHE __read_mostly;
2065 EXPORT_SYMBOL(_PAGE_CACHE);
2066
2067 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2068
2069 #define VMEMMAP_CHUNK_SHIFT 22
2070 #define VMEMMAP_CHUNK (1UL << VMEMMAP_CHUNK_SHIFT)
2071 #define VMEMMAP_CHUNK_MASK ~(VMEMMAP_CHUNK - 1UL)
2072 #define VMEMMAP_ALIGN(x) (((x)+VMEMMAP_CHUNK-1UL)&VMEMMAP_CHUNK_MASK)
2073
2074 #define VMEMMAP_SIZE ((((1UL << MAX_PHYSADDR_BITS) >> PAGE_SHIFT) * \
2075 sizeof(struct page *)) >> VMEMMAP_CHUNK_SHIFT)
2076 unsigned long vmemmap_table[VMEMMAP_SIZE];
2077
2078 int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
2079 {
2080 unsigned long vstart = (unsigned long) start;
2081 unsigned long vend = (unsigned long) (start + nr);
2082 unsigned long phys_start = (vstart - VMEMMAP_BASE);
2083 unsigned long phys_end = (vend - VMEMMAP_BASE);
2084 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2085 unsigned long end = VMEMMAP_ALIGN(phys_end);
2086 unsigned long pte_base;
2087
2088 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2089 _PAGE_CP_4U | _PAGE_CV_4U |
2090 _PAGE_P_4U | _PAGE_W_4U);
2091 if (tlb_type == hypervisor)
2092 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2093 _PAGE_CP_4V | _PAGE_CV_4V |
2094 _PAGE_P_4V | _PAGE_W_4V);
2095
2096 for (; addr < end; addr += VMEMMAP_CHUNK) {
2097 unsigned long *vmem_pp =
2098 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2099 void *block;
2100
2101 if (!(*vmem_pp & _PAGE_VALID)) {
2102 block = vmemmap_alloc_block(1UL << 22, node);
2103 if (!block)
2104 return -ENOMEM;
2105
2106 *vmem_pp = pte_base | __pa(block);
2107
2108 printk(KERN_INFO "[%p-%p] page_structs=%lu "
2109 "node=%d entry=%lu/%lu\n", start, block, nr,
2110 node,
2111 addr >> VMEMMAP_CHUNK_SHIFT,
2112 VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
2113 }
2114 }
2115 return 0;
2116 }
2117 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2118
2119 static void prot_init_common(unsigned long page_none,
2120 unsigned long page_shared,
2121 unsigned long page_copy,
2122 unsigned long page_readonly,
2123 unsigned long page_exec_bit)
2124 {
2125 PAGE_COPY = __pgprot(page_copy);
2126 PAGE_SHARED = __pgprot(page_shared);
2127
2128 protection_map[0x0] = __pgprot(page_none);
2129 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2130 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2131 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2132 protection_map[0x4] = __pgprot(page_readonly);
2133 protection_map[0x5] = __pgprot(page_readonly);
2134 protection_map[0x6] = __pgprot(page_copy);
2135 protection_map[0x7] = __pgprot(page_copy);
2136 protection_map[0x8] = __pgprot(page_none);
2137 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2138 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2139 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2140 protection_map[0xc] = __pgprot(page_readonly);
2141 protection_map[0xd] = __pgprot(page_readonly);
2142 protection_map[0xe] = __pgprot(page_shared);
2143 protection_map[0xf] = __pgprot(page_shared);
2144 }
2145
2146 static void __init sun4u_pgprot_init(void)
2147 {
2148 unsigned long page_none, page_shared, page_copy, page_readonly;
2149 unsigned long page_exec_bit;
2150
2151 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2152 _PAGE_CACHE_4U | _PAGE_P_4U |
2153 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2154 _PAGE_EXEC_4U);
2155 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2156 _PAGE_CACHE_4U | _PAGE_P_4U |
2157 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2158 _PAGE_EXEC_4U | _PAGE_L_4U);
2159 PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
2160
2161 _PAGE_IE = _PAGE_IE_4U;
2162 _PAGE_E = _PAGE_E_4U;
2163 _PAGE_CACHE = _PAGE_CACHE_4U;
2164
2165 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2166 __ACCESS_BITS_4U | _PAGE_E_4U);
2167
2168 #ifdef CONFIG_DEBUG_PAGEALLOC
2169 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
2170 0xfffff80000000000;
2171 #else
2172 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2173 0xfffff80000000000;
2174 #endif
2175 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2176 _PAGE_P_4U | _PAGE_W_4U);
2177
2178 /* XXX Should use 256MB on Panther. XXX */
2179 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2180
2181 _PAGE_SZBITS = _PAGE_SZBITS_4U;
2182 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2183 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2184 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2185
2186
2187 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2188 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2189 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2190 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2191 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2192 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2193 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2194
2195 page_exec_bit = _PAGE_EXEC_4U;
2196
2197 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2198 page_exec_bit);
2199 }
2200
2201 static void __init sun4v_pgprot_init(void)
2202 {
2203 unsigned long page_none, page_shared, page_copy, page_readonly;
2204 unsigned long page_exec_bit;
2205
2206 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2207 _PAGE_CACHE_4V | _PAGE_P_4V |
2208 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2209 _PAGE_EXEC_4V);
2210 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2211 PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
2212
2213 _PAGE_IE = _PAGE_IE_4V;
2214 _PAGE_E = _PAGE_E_4V;
2215 _PAGE_CACHE = _PAGE_CACHE_4V;
2216
2217 #ifdef CONFIG_DEBUG_PAGEALLOC
2218 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2219 0xfffff80000000000;
2220 #else
2221 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2222 0xfffff80000000000;
2223 #endif
2224 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2225 _PAGE_P_4V | _PAGE_W_4V);
2226
2227 #ifdef CONFIG_DEBUG_PAGEALLOC
2228 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
2229 0xfffff80000000000;
2230 #else
2231 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2232 0xfffff80000000000;
2233 #endif
2234 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2235 _PAGE_P_4V | _PAGE_W_4V);
2236
2237 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2238 __ACCESS_BITS_4V | _PAGE_E_4V);
2239
2240 _PAGE_SZBITS = _PAGE_SZBITS_4V;
2241 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2242 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2243 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2244 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2245
2246 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2247 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2248 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2249 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2250 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2251 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2252 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2253
2254 page_exec_bit = _PAGE_EXEC_4V;
2255
2256 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2257 page_exec_bit);
2258 }
2259
2260 unsigned long pte_sz_bits(unsigned long sz)
2261 {
2262 if (tlb_type == hypervisor) {
2263 switch (sz) {
2264 case 8 * 1024:
2265 default:
2266 return _PAGE_SZ8K_4V;
2267 case 64 * 1024:
2268 return _PAGE_SZ64K_4V;
2269 case 512 * 1024:
2270 return _PAGE_SZ512K_4V;
2271 case 4 * 1024 * 1024:
2272 return _PAGE_SZ4MB_4V;
2273 };
2274 } else {
2275 switch (sz) {
2276 case 8 * 1024:
2277 default:
2278 return _PAGE_SZ8K_4U;
2279 case 64 * 1024:
2280 return _PAGE_SZ64K_4U;
2281 case 512 * 1024:
2282 return _PAGE_SZ512K_4U;
2283 case 4 * 1024 * 1024:
2284 return _PAGE_SZ4MB_4U;
2285 };
2286 }
2287 }
2288
2289 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2290 {
2291 pte_t pte;
2292
2293 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2294 pte_val(pte) |= (((unsigned long)space) << 32);
2295 pte_val(pte) |= pte_sz_bits(page_size);
2296
2297 return pte;
2298 }
2299
2300 static unsigned long kern_large_tte(unsigned long paddr)
2301 {
2302 unsigned long val;
2303
2304 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2305 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2306 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2307 if (tlb_type == hypervisor)
2308 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2309 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2310 _PAGE_EXEC_4V | _PAGE_W_4V);
2311
2312 return val | paddr;
2313 }
2314
2315 /* If not locked, zap it. */
2316 void __flush_tlb_all(void)
2317 {
2318 unsigned long pstate;
2319 int i;
2320
2321 __asm__ __volatile__("flushw\n\t"
2322 "rdpr %%pstate, %0\n\t"
2323 "wrpr %0, %1, %%pstate"
2324 : "=r" (pstate)
2325 : "i" (PSTATE_IE));
2326 if (tlb_type == hypervisor) {
2327 sun4v_mmu_demap_all();
2328 } else if (tlb_type == spitfire) {
2329 for (i = 0; i < 64; i++) {
2330 /* Spitfire Errata #32 workaround */
2331 /* NOTE: Always runs on spitfire, so no
2332 * cheetah+ page size encodings.
2333 */
2334 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2335 "flush %%g6"
2336 : /* No outputs */
2337 : "r" (0),
2338 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2339
2340 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2341 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2342 "membar #Sync"
2343 : /* no outputs */
2344 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2345 spitfire_put_dtlb_data(i, 0x0UL);
2346 }
2347
2348 /* Spitfire Errata #32 workaround */
2349 /* NOTE: Always runs on spitfire, so no
2350 * cheetah+ page size encodings.
2351 */
2352 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2353 "flush %%g6"
2354 : /* No outputs */
2355 : "r" (0),
2356 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2357
2358 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2359 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2360 "membar #Sync"
2361 : /* no outputs */
2362 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2363 spitfire_put_itlb_data(i, 0x0UL);
2364 }
2365 }
2366 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2367 cheetah_flush_dtlb_all();
2368 cheetah_flush_itlb_all();
2369 }
2370 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2371 : : "r" (pstate));
2372 }
This page took 0.127703 seconds and 5 git commands to generate.