[SPARC64]: Register kernel TSB with hypervisor.
[deliverable/linux.git] / arch / sparc64 / mm / init.c
1 /* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
8 #include <linux/config.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/slab.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25
26 #include <asm/head.h>
27 #include <asm/system.h>
28 #include <asm/page.h>
29 #include <asm/pgalloc.h>
30 #include <asm/pgtable.h>
31 #include <asm/oplib.h>
32 #include <asm/iommu.h>
33 #include <asm/io.h>
34 #include <asm/uaccess.h>
35 #include <asm/mmu_context.h>
36 #include <asm/tlbflush.h>
37 #include <asm/dma.h>
38 #include <asm/starfire.h>
39 #include <asm/tlb.h>
40 #include <asm/spitfire.h>
41 #include <asm/sections.h>
42 #include <asm/tsb.h>
43 #include <asm/hypervisor.h>
44
45 extern void device_scan(void);
46
47 #define MAX_BANKS 32
48
49 static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
50 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
51 static int pavail_ents __initdata;
52 static int pavail_rescan_ents __initdata;
53
54 static int cmp_p64(const void *a, const void *b)
55 {
56 const struct linux_prom64_registers *x = a, *y = b;
57
58 if (x->phys_addr > y->phys_addr)
59 return 1;
60 if (x->phys_addr < y->phys_addr)
61 return -1;
62 return 0;
63 }
64
65 static void __init read_obp_memory(const char *property,
66 struct linux_prom64_registers *regs,
67 int *num_ents)
68 {
69 int node = prom_finddevice("/memory");
70 int prop_size = prom_getproplen(node, property);
71 int ents, ret, i;
72
73 ents = prop_size / sizeof(struct linux_prom64_registers);
74 if (ents > MAX_BANKS) {
75 prom_printf("The machine has more %s property entries than "
76 "this kernel can support (%d).\n",
77 property, MAX_BANKS);
78 prom_halt();
79 }
80
81 ret = prom_getproperty(node, property, (char *) regs, prop_size);
82 if (ret == -1) {
83 prom_printf("Couldn't get %s property from /memory.\n");
84 prom_halt();
85 }
86
87 *num_ents = ents;
88
89 /* Sanitize what we got from the firmware, by page aligning
90 * everything.
91 */
92 for (i = 0; i < ents; i++) {
93 unsigned long base, size;
94
95 base = regs[i].phys_addr;
96 size = regs[i].reg_size;
97
98 size &= PAGE_MASK;
99 if (base & ~PAGE_MASK) {
100 unsigned long new_base = PAGE_ALIGN(base);
101
102 size -= new_base - base;
103 if ((long) size < 0L)
104 size = 0UL;
105 base = new_base;
106 }
107 regs[i].phys_addr = base;
108 regs[i].reg_size = size;
109 }
110 sort(regs, ents, sizeof(struct linux_prom64_registers),
111 cmp_p64, NULL);
112 }
113
114 unsigned long *sparc64_valid_addr_bitmap __read_mostly;
115
116 /* Ugly, but necessary... -DaveM */
117 unsigned long phys_base __read_mostly;
118 unsigned long kern_base __read_mostly;
119 unsigned long kern_size __read_mostly;
120 unsigned long pfn_base __read_mostly;
121
122 /* get_new_mmu_context() uses "cache + 1". */
123 DEFINE_SPINLOCK(ctx_alloc_lock);
124 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
125 #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
126 unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
127
128 /* References to special section boundaries */
129 extern char _start[], _end[];
130
131 /* Initial ramdisk setup */
132 extern unsigned long sparc_ramdisk_image64;
133 extern unsigned int sparc_ramdisk_image;
134 extern unsigned int sparc_ramdisk_size;
135
136 struct page *mem_map_zero __read_mostly;
137
138 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
139
140 unsigned long sparc64_kern_pri_context __read_mostly;
141 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
142 unsigned long sparc64_kern_sec_context __read_mostly;
143
144 int bigkernel = 0;
145
146 kmem_cache_t *pgtable_cache __read_mostly;
147
148 static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
149 {
150 clear_page(addr);
151 }
152
153 void pgtable_cache_init(void)
154 {
155 pgtable_cache = kmem_cache_create("pgtable_cache",
156 PAGE_SIZE, PAGE_SIZE,
157 SLAB_HWCACHE_ALIGN |
158 SLAB_MUST_HWCACHE_ALIGN,
159 zero_ctor,
160 NULL);
161 if (!pgtable_cache) {
162 prom_printf("pgtable_cache_init(): Could not create!\n");
163 prom_halt();
164 }
165 }
166
167 #ifdef CONFIG_DEBUG_DCFLUSH
168 atomic_t dcpage_flushes = ATOMIC_INIT(0);
169 #ifdef CONFIG_SMP
170 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
171 #endif
172 #endif
173
174 __inline__ void flush_dcache_page_impl(struct page *page)
175 {
176 #ifdef CONFIG_DEBUG_DCFLUSH
177 atomic_inc(&dcpage_flushes);
178 #endif
179
180 #ifdef DCACHE_ALIASING_POSSIBLE
181 __flush_dcache_page(page_address(page),
182 ((tlb_type == spitfire) &&
183 page_mapping(page) != NULL));
184 #else
185 if (page_mapping(page) != NULL &&
186 tlb_type == spitfire)
187 __flush_icache_page(__pa(page_address(page)));
188 #endif
189 }
190
191 #define PG_dcache_dirty PG_arch_1
192 #define PG_dcache_cpu_shift 24
193 #define PG_dcache_cpu_mask (256 - 1)
194
195 #if NR_CPUS > 256
196 #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
197 #endif
198
199 #define dcache_dirty_cpu(page) \
200 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
201
202 static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
203 {
204 unsigned long mask = this_cpu;
205 unsigned long non_cpu_bits;
206
207 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
208 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
209
210 __asm__ __volatile__("1:\n\t"
211 "ldx [%2], %%g7\n\t"
212 "and %%g7, %1, %%g1\n\t"
213 "or %%g1, %0, %%g1\n\t"
214 "casx [%2], %%g7, %%g1\n\t"
215 "cmp %%g7, %%g1\n\t"
216 "membar #StoreLoad | #StoreStore\n\t"
217 "bne,pn %%xcc, 1b\n\t"
218 " nop"
219 : /* no outputs */
220 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
221 : "g1", "g7");
222 }
223
224 static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
225 {
226 unsigned long mask = (1UL << PG_dcache_dirty);
227
228 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
229 "1:\n\t"
230 "ldx [%2], %%g7\n\t"
231 "srlx %%g7, %4, %%g1\n\t"
232 "and %%g1, %3, %%g1\n\t"
233 "cmp %%g1, %0\n\t"
234 "bne,pn %%icc, 2f\n\t"
235 " andn %%g7, %1, %%g1\n\t"
236 "casx [%2], %%g7, %%g1\n\t"
237 "cmp %%g7, %%g1\n\t"
238 "membar #StoreLoad | #StoreStore\n\t"
239 "bne,pn %%xcc, 1b\n\t"
240 " nop\n"
241 "2:"
242 : /* no outputs */
243 : "r" (cpu), "r" (mask), "r" (&page->flags),
244 "i" (PG_dcache_cpu_mask),
245 "i" (PG_dcache_cpu_shift)
246 : "g1", "g7");
247 }
248
249 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
250 {
251 unsigned long tsb_addr = (unsigned long) ent;
252
253 if (tlb_type == cheetah_plus)
254 tsb_addr = __pa(tsb_addr);
255
256 __tsb_insert(tsb_addr, tag, pte);
257 }
258
259 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
260 {
261 struct mm_struct *mm;
262 struct page *page;
263 unsigned long pfn;
264 unsigned long pg_flags;
265
266 pfn = pte_pfn(pte);
267 if (pfn_valid(pfn) &&
268 (page = pfn_to_page(pfn), page_mapping(page)) &&
269 ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
270 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
271 PG_dcache_cpu_mask);
272 int this_cpu = get_cpu();
273
274 /* This is just to optimize away some function calls
275 * in the SMP case.
276 */
277 if (cpu == this_cpu)
278 flush_dcache_page_impl(page);
279 else
280 smp_flush_dcache_page_impl(page, cpu);
281
282 clear_dcache_dirty_cpu(page, cpu);
283
284 put_cpu();
285 }
286
287 mm = vma->vm_mm;
288 if ((pte_val(pte) & _PAGE_ALL_SZ_BITS) == _PAGE_SZBITS) {
289 struct tsb *tsb;
290 unsigned long tag;
291
292 tsb = &mm->context.tsb[(address >> PAGE_SHIFT) &
293 (mm->context.tsb_nentries - 1UL)];
294 tag = (address >> 22UL) | CTX_HWBITS(mm->context) << 48UL;
295 tsb_insert(tsb, tag, pte_val(pte));
296 }
297 }
298
299 void flush_dcache_page(struct page *page)
300 {
301 struct address_space *mapping;
302 int this_cpu;
303
304 /* Do not bother with the expensive D-cache flush if it
305 * is merely the zero page. The 'bigcore' testcase in GDB
306 * causes this case to run millions of times.
307 */
308 if (page == ZERO_PAGE(0))
309 return;
310
311 this_cpu = get_cpu();
312
313 mapping = page_mapping(page);
314 if (mapping && !mapping_mapped(mapping)) {
315 int dirty = test_bit(PG_dcache_dirty, &page->flags);
316 if (dirty) {
317 int dirty_cpu = dcache_dirty_cpu(page);
318
319 if (dirty_cpu == this_cpu)
320 goto out;
321 smp_flush_dcache_page_impl(page, dirty_cpu);
322 }
323 set_dcache_dirty(page, this_cpu);
324 } else {
325 /* We could delay the flush for the !page_mapping
326 * case too. But that case is for exec env/arg
327 * pages and those are %99 certainly going to get
328 * faulted into the tlb (and thus flushed) anyways.
329 */
330 flush_dcache_page_impl(page);
331 }
332
333 out:
334 put_cpu();
335 }
336
337 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
338 {
339 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
340 if (tlb_type == spitfire) {
341 unsigned long kaddr;
342
343 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
344 __flush_icache_page(__get_phys(kaddr));
345 }
346 }
347
348 unsigned long page_to_pfn(struct page *page)
349 {
350 return (unsigned long) ((page - mem_map) + pfn_base);
351 }
352
353 struct page *pfn_to_page(unsigned long pfn)
354 {
355 return (mem_map + (pfn - pfn_base));
356 }
357
358 void show_mem(void)
359 {
360 printk("Mem-info:\n");
361 show_free_areas();
362 printk("Free swap: %6ldkB\n",
363 nr_swap_pages << (PAGE_SHIFT-10));
364 printk("%ld pages of RAM\n", num_physpages);
365 printk("%d free pages\n", nr_free_pages());
366 }
367
368 void mmu_info(struct seq_file *m)
369 {
370 if (tlb_type == cheetah)
371 seq_printf(m, "MMU Type\t: Cheetah\n");
372 else if (tlb_type == cheetah_plus)
373 seq_printf(m, "MMU Type\t: Cheetah+\n");
374 else if (tlb_type == spitfire)
375 seq_printf(m, "MMU Type\t: Spitfire\n");
376 else if (tlb_type == hypervisor)
377 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
378 else
379 seq_printf(m, "MMU Type\t: ???\n");
380
381 #ifdef CONFIG_DEBUG_DCFLUSH
382 seq_printf(m, "DCPageFlushes\t: %d\n",
383 atomic_read(&dcpage_flushes));
384 #ifdef CONFIG_SMP
385 seq_printf(m, "DCPageFlushesXC\t: %d\n",
386 atomic_read(&dcpage_flushes_xcall));
387 #endif /* CONFIG_SMP */
388 #endif /* CONFIG_DEBUG_DCFLUSH */
389 }
390
391 struct linux_prom_translation {
392 unsigned long virt;
393 unsigned long size;
394 unsigned long data;
395 };
396
397 /* Exported for kernel TLB miss handling in ktlb.S */
398 struct linux_prom_translation prom_trans[512] __read_mostly;
399 unsigned int prom_trans_ents __read_mostly;
400
401 extern unsigned long prom_boot_page;
402 extern void prom_remap(unsigned long physpage, unsigned long virtpage, int mmu_ihandle);
403 extern int prom_get_mmu_ihandle(void);
404 extern void register_prom_callbacks(void);
405
406 /* Exported for SMP bootup purposes. */
407 unsigned long kern_locked_tte_data;
408
409 /*
410 * Translate PROM's mapping we capture at boot time into physical address.
411 * The second parameter is only set from prom_callback() invocations.
412 */
413 unsigned long prom_virt_to_phys(unsigned long promva, int *error)
414 {
415 int i;
416
417 for (i = 0; i < prom_trans_ents; i++) {
418 struct linux_prom_translation *p = &prom_trans[i];
419
420 if (promva >= p->virt &&
421 promva < (p->virt + p->size)) {
422 unsigned long base = p->data & _PAGE_PADDR;
423
424 if (error)
425 *error = 0;
426 return base + (promva & (8192 - 1));
427 }
428 }
429 if (error)
430 *error = 1;
431 return 0UL;
432 }
433
434 /* The obp translations are saved based on 8k pagesize, since obp can
435 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
436 * HI_OBP_ADDRESS range are handled in ktlb.S.
437 */
438 static inline int in_obp_range(unsigned long vaddr)
439 {
440 return (vaddr >= LOW_OBP_ADDRESS &&
441 vaddr < HI_OBP_ADDRESS);
442 }
443
444 static int cmp_ptrans(const void *a, const void *b)
445 {
446 const struct linux_prom_translation *x = a, *y = b;
447
448 if (x->virt > y->virt)
449 return 1;
450 if (x->virt < y->virt)
451 return -1;
452 return 0;
453 }
454
455 /* Read OBP translations property into 'prom_trans[]'. */
456 static void __init read_obp_translations(void)
457 {
458 int n, node, ents, first, last, i;
459
460 node = prom_finddevice("/virtual-memory");
461 n = prom_getproplen(node, "translations");
462 if (unlikely(n == 0 || n == -1)) {
463 prom_printf("prom_mappings: Couldn't get size.\n");
464 prom_halt();
465 }
466 if (unlikely(n > sizeof(prom_trans))) {
467 prom_printf("prom_mappings: Size %Zd is too big.\n", n);
468 prom_halt();
469 }
470
471 if ((n = prom_getproperty(node, "translations",
472 (char *)&prom_trans[0],
473 sizeof(prom_trans))) == -1) {
474 prom_printf("prom_mappings: Couldn't get property.\n");
475 prom_halt();
476 }
477
478 n = n / sizeof(struct linux_prom_translation);
479
480 ents = n;
481
482 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
483 cmp_ptrans, NULL);
484
485 /* Now kick out all the non-OBP entries. */
486 for (i = 0; i < ents; i++) {
487 if (in_obp_range(prom_trans[i].virt))
488 break;
489 }
490 first = i;
491 for (; i < ents; i++) {
492 if (!in_obp_range(prom_trans[i].virt))
493 break;
494 }
495 last = i;
496
497 for (i = 0; i < (last - first); i++) {
498 struct linux_prom_translation *src = &prom_trans[i + first];
499 struct linux_prom_translation *dest = &prom_trans[i];
500
501 *dest = *src;
502 }
503 for (; i < ents; i++) {
504 struct linux_prom_translation *dest = &prom_trans[i];
505 dest->virt = dest->size = dest->data = 0x0UL;
506 }
507
508 prom_trans_ents = last - first;
509
510 if (tlb_type == spitfire) {
511 /* Clear diag TTE bits. */
512 for (i = 0; i < prom_trans_ents; i++)
513 prom_trans[i].data &= ~0x0003fe0000000000UL;
514 }
515 }
516
517 static void __init hypervisor_tlb_lock(unsigned long vaddr,
518 unsigned long pte,
519 unsigned long mmu)
520 {
521 register unsigned long func asm("%o5");
522 register unsigned long arg0 asm("%o0");
523 register unsigned long arg1 asm("%o1");
524 register unsigned long arg2 asm("%o2");
525 register unsigned long arg3 asm("%o3");
526
527 func = HV_FAST_MMU_MAP_PERM_ADDR;
528 arg0 = vaddr;
529 arg1 = 0;
530 arg2 = pte;
531 arg3 = mmu;
532 __asm__ __volatile__("ta 0x80"
533 : "=&r" (func), "=&r" (arg0),
534 "=&r" (arg1), "=&r" (arg2),
535 "=&r" (arg3)
536 : "0" (func), "1" (arg0), "2" (arg1),
537 "3" (arg2), "4" (arg3));
538 }
539
540 static void __init remap_kernel(void)
541 {
542 unsigned long phys_page, tte_vaddr, tte_data;
543 int tlb_ent = sparc64_highest_locked_tlbent();
544
545 tte_vaddr = (unsigned long) KERNBASE;
546 phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
547 tte_data = (phys_page | (_PAGE_VALID | _PAGE_SZ4MB |
548 _PAGE_CP | _PAGE_CV | _PAGE_P |
549 _PAGE_L | _PAGE_W));
550
551 kern_locked_tte_data = tte_data;
552
553 /* Now lock us into the TLBs via Hypervisor or OBP. */
554 if (tlb_type == hypervisor) {
555 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
556 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
557 if (bigkernel) {
558 tte_vaddr += 0x400000;
559 tte_data += 0x400000;
560 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
561 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
562 }
563 } else {
564 prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
565 prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
566 if (bigkernel) {
567 tlb_ent -= 1;
568 prom_dtlb_load(tlb_ent,
569 tte_data + 0x400000,
570 tte_vaddr + 0x400000);
571 prom_itlb_load(tlb_ent,
572 tte_data + 0x400000,
573 tte_vaddr + 0x400000);
574 }
575 sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
576 }
577 if (tlb_type == cheetah_plus) {
578 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
579 CTX_CHEETAH_PLUS_NUC);
580 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
581 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
582 }
583 }
584
585
586 static void __init inherit_prom_mappings(void)
587 {
588 read_obp_translations();
589
590 /* Now fixup OBP's idea about where we really are mapped. */
591 prom_printf("Remapping the kernel... ");
592 remap_kernel();
593 prom_printf("done.\n");
594
595 prom_printf("Registering callbacks... ");
596 register_prom_callbacks();
597 prom_printf("done.\n");
598 }
599
600 void prom_world(int enter)
601 {
602 if (!enter)
603 set_fs((mm_segment_t) { get_thread_current_ds() });
604
605 __asm__ __volatile__("flushw");
606 }
607
608 #ifdef DCACHE_ALIASING_POSSIBLE
609 void __flush_dcache_range(unsigned long start, unsigned long end)
610 {
611 unsigned long va;
612
613 if (tlb_type == spitfire) {
614 int n = 0;
615
616 for (va = start; va < end; va += 32) {
617 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
618 if (++n >= 512)
619 break;
620 }
621 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
622 start = __pa(start);
623 end = __pa(end);
624 for (va = start; va < end; va += 32)
625 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
626 "membar #Sync"
627 : /* no outputs */
628 : "r" (va),
629 "i" (ASI_DCACHE_INVALIDATE));
630 }
631 }
632 #endif /* DCACHE_ALIASING_POSSIBLE */
633
634 /* If not locked, zap it. */
635 void __flush_tlb_all(void)
636 {
637 unsigned long pstate;
638 int i;
639
640 __asm__ __volatile__("flushw\n\t"
641 "rdpr %%pstate, %0\n\t"
642 "wrpr %0, %1, %%pstate"
643 : "=r" (pstate)
644 : "i" (PSTATE_IE));
645 if (tlb_type == spitfire) {
646 for (i = 0; i < 64; i++) {
647 /* Spitfire Errata #32 workaround */
648 /* NOTE: Always runs on spitfire, so no
649 * cheetah+ page size encodings.
650 */
651 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
652 "flush %%g6"
653 : /* No outputs */
654 : "r" (0),
655 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
656
657 if (!(spitfire_get_dtlb_data(i) & _PAGE_L)) {
658 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
659 "membar #Sync"
660 : /* no outputs */
661 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
662 spitfire_put_dtlb_data(i, 0x0UL);
663 }
664
665 /* Spitfire Errata #32 workaround */
666 /* NOTE: Always runs on spitfire, so no
667 * cheetah+ page size encodings.
668 */
669 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
670 "flush %%g6"
671 : /* No outputs */
672 : "r" (0),
673 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
674
675 if (!(spitfire_get_itlb_data(i) & _PAGE_L)) {
676 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
677 "membar #Sync"
678 : /* no outputs */
679 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
680 spitfire_put_itlb_data(i, 0x0UL);
681 }
682 }
683 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
684 cheetah_flush_dtlb_all();
685 cheetah_flush_itlb_all();
686 }
687 __asm__ __volatile__("wrpr %0, 0, %%pstate"
688 : : "r" (pstate));
689 }
690
691 /* Caller does TLB context flushing on local CPU if necessary.
692 * The caller also ensures that CTX_VALID(mm->context) is false.
693 *
694 * We must be careful about boundary cases so that we never
695 * let the user have CTX 0 (nucleus) or we ever use a CTX
696 * version of zero (and thus NO_CONTEXT would not be caught
697 * by version mis-match tests in mmu_context.h).
698 */
699 void get_new_mmu_context(struct mm_struct *mm)
700 {
701 unsigned long ctx, new_ctx;
702 unsigned long orig_pgsz_bits;
703
704
705 spin_lock(&ctx_alloc_lock);
706 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
707 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
708 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
709 if (new_ctx >= (1 << CTX_NR_BITS)) {
710 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
711 if (new_ctx >= ctx) {
712 int i;
713 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
714 CTX_FIRST_VERSION;
715 if (new_ctx == 1)
716 new_ctx = CTX_FIRST_VERSION;
717
718 /* Don't call memset, for 16 entries that's just
719 * plain silly...
720 */
721 mmu_context_bmap[0] = 3;
722 mmu_context_bmap[1] = 0;
723 mmu_context_bmap[2] = 0;
724 mmu_context_bmap[3] = 0;
725 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
726 mmu_context_bmap[i + 0] = 0;
727 mmu_context_bmap[i + 1] = 0;
728 mmu_context_bmap[i + 2] = 0;
729 mmu_context_bmap[i + 3] = 0;
730 }
731 goto out;
732 }
733 }
734 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
735 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
736 out:
737 tlb_context_cache = new_ctx;
738 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
739 spin_unlock(&ctx_alloc_lock);
740 }
741
742 void sparc_ultra_dump_itlb(void)
743 {
744 int slot;
745
746 if (tlb_type == spitfire) {
747 printk ("Contents of itlb: ");
748 for (slot = 0; slot < 14; slot++) printk (" ");
749 printk ("%2x:%016lx,%016lx\n",
750 0,
751 spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
752 for (slot = 1; slot < 64; slot+=3) {
753 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
754 slot,
755 spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
756 slot+1,
757 spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
758 slot+2,
759 spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
760 }
761 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
762 printk ("Contents of itlb0:\n");
763 for (slot = 0; slot < 16; slot+=2) {
764 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
765 slot,
766 cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
767 slot+1,
768 cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
769 }
770 printk ("Contents of itlb2:\n");
771 for (slot = 0; slot < 128; slot+=2) {
772 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
773 slot,
774 cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
775 slot+1,
776 cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
777 }
778 }
779 }
780
781 void sparc_ultra_dump_dtlb(void)
782 {
783 int slot;
784
785 if (tlb_type == spitfire) {
786 printk ("Contents of dtlb: ");
787 for (slot = 0; slot < 14; slot++) printk (" ");
788 printk ("%2x:%016lx,%016lx\n", 0,
789 spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
790 for (slot = 1; slot < 64; slot+=3) {
791 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
792 slot,
793 spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
794 slot+1,
795 spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
796 slot+2,
797 spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
798 }
799 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
800 printk ("Contents of dtlb0:\n");
801 for (slot = 0; slot < 16; slot+=2) {
802 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
803 slot,
804 cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
805 slot+1,
806 cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
807 }
808 printk ("Contents of dtlb2:\n");
809 for (slot = 0; slot < 512; slot+=2) {
810 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
811 slot,
812 cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
813 slot+1,
814 cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
815 }
816 if (tlb_type == cheetah_plus) {
817 printk ("Contents of dtlb3:\n");
818 for (slot = 0; slot < 512; slot+=2) {
819 printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
820 slot,
821 cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
822 slot+1,
823 cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
824 }
825 }
826 }
827 }
828
829 extern unsigned long cmdline_memory_size;
830
831 unsigned long __init bootmem_init(unsigned long *pages_avail)
832 {
833 unsigned long bootmap_size, start_pfn, end_pfn;
834 unsigned long end_of_phys_memory = 0UL;
835 unsigned long bootmap_pfn, bytes_avail, size;
836 int i;
837
838 #ifdef CONFIG_DEBUG_BOOTMEM
839 prom_printf("bootmem_init: Scan pavail, ");
840 #endif
841
842 bytes_avail = 0UL;
843 for (i = 0; i < pavail_ents; i++) {
844 end_of_phys_memory = pavail[i].phys_addr +
845 pavail[i].reg_size;
846 bytes_avail += pavail[i].reg_size;
847 if (cmdline_memory_size) {
848 if (bytes_avail > cmdline_memory_size) {
849 unsigned long slack = bytes_avail - cmdline_memory_size;
850
851 bytes_avail -= slack;
852 end_of_phys_memory -= slack;
853
854 pavail[i].reg_size -= slack;
855 if ((long)pavail[i].reg_size <= 0L) {
856 pavail[i].phys_addr = 0xdeadbeefUL;
857 pavail[i].reg_size = 0UL;
858 pavail_ents = i;
859 } else {
860 pavail[i+1].reg_size = 0Ul;
861 pavail[i+1].phys_addr = 0xdeadbeefUL;
862 pavail_ents = i + 1;
863 }
864 break;
865 }
866 }
867 }
868
869 *pages_avail = bytes_avail >> PAGE_SHIFT;
870
871 /* Start with page aligned address of last symbol in kernel
872 * image. The kernel is hard mapped below PAGE_OFFSET in a
873 * 4MB locked TLB translation.
874 */
875 start_pfn = PAGE_ALIGN(kern_base + kern_size) >> PAGE_SHIFT;
876
877 bootmap_pfn = start_pfn;
878
879 end_pfn = end_of_phys_memory >> PAGE_SHIFT;
880
881 #ifdef CONFIG_BLK_DEV_INITRD
882 /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
883 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
884 unsigned long ramdisk_image = sparc_ramdisk_image ?
885 sparc_ramdisk_image : sparc_ramdisk_image64;
886 if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE)
887 ramdisk_image -= KERNBASE;
888 initrd_start = ramdisk_image + phys_base;
889 initrd_end = initrd_start + sparc_ramdisk_size;
890 if (initrd_end > end_of_phys_memory) {
891 printk(KERN_CRIT "initrd extends beyond end of memory "
892 "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
893 initrd_end, end_of_phys_memory);
894 initrd_start = 0;
895 }
896 if (initrd_start) {
897 if (initrd_start >= (start_pfn << PAGE_SHIFT) &&
898 initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE)
899 bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT;
900 }
901 }
902 #endif
903 /* Initialize the boot-time allocator. */
904 max_pfn = max_low_pfn = end_pfn;
905 min_low_pfn = pfn_base;
906
907 #ifdef CONFIG_DEBUG_BOOTMEM
908 prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
909 min_low_pfn, bootmap_pfn, max_low_pfn);
910 #endif
911 bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base, end_pfn);
912
913 /* Now register the available physical memory with the
914 * allocator.
915 */
916 for (i = 0; i < pavail_ents; i++) {
917 #ifdef CONFIG_DEBUG_BOOTMEM
918 prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
919 i, pavail[i].phys_addr, pavail[i].reg_size);
920 #endif
921 free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
922 }
923
924 #ifdef CONFIG_BLK_DEV_INITRD
925 if (initrd_start) {
926 size = initrd_end - initrd_start;
927
928 /* Resert the initrd image area. */
929 #ifdef CONFIG_DEBUG_BOOTMEM
930 prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
931 initrd_start, initrd_end);
932 #endif
933 reserve_bootmem(initrd_start, size);
934 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
935
936 initrd_start += PAGE_OFFSET;
937 initrd_end += PAGE_OFFSET;
938 }
939 #endif
940 /* Reserve the kernel text/data/bss. */
941 #ifdef CONFIG_DEBUG_BOOTMEM
942 prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
943 #endif
944 reserve_bootmem(kern_base, kern_size);
945 *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
946
947 /* Reserve the bootmem map. We do not account for it
948 * in pages_avail because we will release that memory
949 * in free_all_bootmem.
950 */
951 size = bootmap_size;
952 #ifdef CONFIG_DEBUG_BOOTMEM
953 prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
954 (bootmap_pfn << PAGE_SHIFT), size);
955 #endif
956 reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
957 *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
958
959 return end_pfn;
960 }
961
962 #ifdef CONFIG_DEBUG_PAGEALLOC
963 static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
964 {
965 unsigned long vstart = PAGE_OFFSET + pstart;
966 unsigned long vend = PAGE_OFFSET + pend;
967 unsigned long alloc_bytes = 0UL;
968
969 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
970 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
971 vstart, vend);
972 prom_halt();
973 }
974
975 while (vstart < vend) {
976 unsigned long this_end, paddr = __pa(vstart);
977 pgd_t *pgd = pgd_offset_k(vstart);
978 pud_t *pud;
979 pmd_t *pmd;
980 pte_t *pte;
981
982 pud = pud_offset(pgd, vstart);
983 if (pud_none(*pud)) {
984 pmd_t *new;
985
986 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
987 alloc_bytes += PAGE_SIZE;
988 pud_populate(&init_mm, pud, new);
989 }
990
991 pmd = pmd_offset(pud, vstart);
992 if (!pmd_present(*pmd)) {
993 pte_t *new;
994
995 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
996 alloc_bytes += PAGE_SIZE;
997 pmd_populate_kernel(&init_mm, pmd, new);
998 }
999
1000 pte = pte_offset_kernel(pmd, vstart);
1001 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1002 if (this_end > vend)
1003 this_end = vend;
1004
1005 while (vstart < this_end) {
1006 pte_val(*pte) = (paddr | pgprot_val(prot));
1007
1008 vstart += PAGE_SIZE;
1009 paddr += PAGE_SIZE;
1010 pte++;
1011 }
1012 }
1013
1014 return alloc_bytes;
1015 }
1016
1017 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1018 static int pall_ents __initdata;
1019
1020 extern unsigned int kvmap_linear_patch[1];
1021
1022 static void __init kernel_physical_mapping_init(void)
1023 {
1024 unsigned long i, mem_alloced = 0UL;
1025
1026 read_obp_memory("reg", &pall[0], &pall_ents);
1027
1028 for (i = 0; i < pall_ents; i++) {
1029 unsigned long phys_start, phys_end;
1030
1031 phys_start = pall[i].phys_addr;
1032 phys_end = phys_start + pall[i].reg_size;
1033 mem_alloced += kernel_map_range(phys_start, phys_end,
1034 PAGE_KERNEL);
1035 }
1036
1037 printk("Allocated %ld bytes for kernel page tables.\n",
1038 mem_alloced);
1039
1040 kvmap_linear_patch[0] = 0x01000000; /* nop */
1041 flushi(&kvmap_linear_patch[0]);
1042
1043 __flush_tlb_all();
1044 }
1045
1046 void kernel_map_pages(struct page *page, int numpages, int enable)
1047 {
1048 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1049 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1050
1051 kernel_map_range(phys_start, phys_end,
1052 (enable ? PAGE_KERNEL : __pgprot(0)));
1053
1054 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1055 PAGE_OFFSET + phys_end);
1056
1057 /* we should perform an IPI and flush all tlbs,
1058 * but that can deadlock->flush only current cpu.
1059 */
1060 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1061 PAGE_OFFSET + phys_end);
1062 }
1063 #endif
1064
1065 unsigned long __init find_ecache_flush_span(unsigned long size)
1066 {
1067 int i;
1068
1069 for (i = 0; i < pavail_ents; i++) {
1070 if (pavail[i].reg_size >= size)
1071 return pavail[i].phys_addr;
1072 }
1073
1074 return ~0UL;
1075 }
1076
1077 static void __init tsb_phys_patch(void)
1078 {
1079 struct tsb_ldquad_phys_patch_entry *pquad;
1080 struct tsb_phys_patch_entry *p;
1081
1082 pquad = &__tsb_ldquad_phys_patch;
1083 while (pquad < &__tsb_ldquad_phys_patch_end) {
1084 unsigned long addr = pquad->addr;
1085
1086 if (tlb_type == hypervisor)
1087 *(unsigned int *) addr = pquad->sun4v_insn;
1088 else
1089 *(unsigned int *) addr = pquad->sun4u_insn;
1090 wmb();
1091 __asm__ __volatile__("flush %0"
1092 : /* no outputs */
1093 : "r" (addr));
1094
1095 pquad++;
1096 }
1097
1098 p = &__tsb_phys_patch;
1099 while (p < &__tsb_phys_patch_end) {
1100 unsigned long addr = p->addr;
1101
1102 *(unsigned int *) addr = p->insn;
1103 wmb();
1104 __asm__ __volatile__("flush %0"
1105 : /* no outputs */
1106 : "r" (addr));
1107
1108 p++;
1109 }
1110 }
1111
1112 /* Don't mark as init, we give this to the Hypervisor. */
1113 static struct hv_tsb_descr ktsb_descr[2];
1114 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1115
1116 static void __init sun4v_ktsb_init(void)
1117 {
1118 unsigned long ktsb_pa;
1119
1120 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1121
1122 switch (PAGE_SIZE) {
1123 case 8 * 1024:
1124 default:
1125 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1126 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1127 break;
1128
1129 case 64 * 1024:
1130 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1131 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1132 break;
1133
1134 case 512 * 1024:
1135 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1136 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1137 break;
1138
1139 case 4 * 1024 * 1024:
1140 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1141 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1142 break;
1143 };
1144
1145 ktsb_descr[0].assoc = 0;
1146 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1147 ktsb_descr[0].ctx_idx = 0;
1148 ktsb_descr[0].tsb_base = ktsb_pa;
1149 ktsb_descr[0].resv = 0;
1150
1151 /* XXX When we have a kernel large page size TSB, describe
1152 * XXX it in ktsb_descr[1] here.
1153 */
1154 }
1155
1156 void __cpuinit sun4v_ktsb_register(void)
1157 {
1158 register unsigned long func asm("%o5");
1159 register unsigned long arg0 asm("%o0");
1160 register unsigned long arg1 asm("%o1");
1161 unsigned long pa;
1162
1163 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1164
1165 func = HV_FAST_MMU_TSB_CTX0;
1166 /* XXX set arg0 to 2 when we use ktsb_descr[1], see above XXX */
1167 arg0 = 1;
1168 arg1 = pa;
1169 __asm__ __volatile__("ta %6"
1170 : "=&r" (func), "=&r" (arg0), "=&r" (arg1)
1171 : "0" (func), "1" (arg0), "2" (arg1),
1172 "i" (HV_FAST_TRAP));
1173 }
1174
1175 /* paging_init() sets up the page tables */
1176
1177 extern void cheetah_ecache_flush_init(void);
1178 extern void sun4v_patch_tlb_handlers(void);
1179
1180 static unsigned long last_valid_pfn;
1181 pgd_t swapper_pg_dir[2048];
1182
1183 void __init paging_init(void)
1184 {
1185 unsigned long end_pfn, pages_avail, shift;
1186 unsigned long real_end, i;
1187
1188 kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1189 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1190
1191 if (tlb_type == cheetah_plus ||
1192 tlb_type == hypervisor)
1193 tsb_phys_patch();
1194
1195 if (tlb_type == hypervisor) {
1196 sun4v_patch_tlb_handlers();
1197 sun4v_ktsb_init();
1198 }
1199
1200 /* Find available physical memory... */
1201 read_obp_memory("available", &pavail[0], &pavail_ents);
1202
1203 phys_base = 0xffffffffffffffffUL;
1204 for (i = 0; i < pavail_ents; i++)
1205 phys_base = min(phys_base, pavail[i].phys_addr);
1206
1207 pfn_base = phys_base >> PAGE_SHIFT;
1208
1209 set_bit(0, mmu_context_bmap);
1210
1211 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1212
1213 real_end = (unsigned long)_end;
1214 if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
1215 bigkernel = 1;
1216 if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
1217 prom_printf("paging_init: Kernel > 8MB, too large.\n");
1218 prom_halt();
1219 }
1220
1221 /* Set kernel pgd to upper alias so physical page computations
1222 * work.
1223 */
1224 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1225
1226 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1227
1228 /* Now can init the kernel/bad page tables. */
1229 pud_set(pud_offset(&swapper_pg_dir[0], 0),
1230 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1231
1232 inherit_prom_mappings();
1233
1234 /* Ok, we can use our TLB miss and window trap handlers safely. */
1235 setup_tba();
1236
1237 __flush_tlb_all();
1238
1239 if (tlb_type == hypervisor)
1240 sun4v_ktsb_register();
1241
1242 /* Setup bootmem... */
1243 pages_avail = 0;
1244 last_valid_pfn = end_pfn = bootmem_init(&pages_avail);
1245
1246 #ifdef CONFIG_DEBUG_PAGEALLOC
1247 kernel_physical_mapping_init();
1248 #endif
1249
1250 {
1251 unsigned long zones_size[MAX_NR_ZONES];
1252 unsigned long zholes_size[MAX_NR_ZONES];
1253 unsigned long npages;
1254 int znum;
1255
1256 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1257 zones_size[znum] = zholes_size[znum] = 0;
1258
1259 npages = end_pfn - pfn_base;
1260 zones_size[ZONE_DMA] = npages;
1261 zholes_size[ZONE_DMA] = npages - pages_avail;
1262
1263 free_area_init_node(0, &contig_page_data, zones_size,
1264 phys_base >> PAGE_SHIFT, zholes_size);
1265 }
1266
1267 device_scan();
1268 }
1269
1270 static void __init taint_real_pages(void)
1271 {
1272 int i;
1273
1274 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1275
1276 /* Find changes discovered in the physmem available rescan and
1277 * reserve the lost portions in the bootmem maps.
1278 */
1279 for (i = 0; i < pavail_ents; i++) {
1280 unsigned long old_start, old_end;
1281
1282 old_start = pavail[i].phys_addr;
1283 old_end = old_start +
1284 pavail[i].reg_size;
1285 while (old_start < old_end) {
1286 int n;
1287
1288 for (n = 0; pavail_rescan_ents; n++) {
1289 unsigned long new_start, new_end;
1290
1291 new_start = pavail_rescan[n].phys_addr;
1292 new_end = new_start +
1293 pavail_rescan[n].reg_size;
1294
1295 if (new_start <= old_start &&
1296 new_end >= (old_start + PAGE_SIZE)) {
1297 set_bit(old_start >> 22,
1298 sparc64_valid_addr_bitmap);
1299 goto do_next_page;
1300 }
1301 }
1302 reserve_bootmem(old_start, PAGE_SIZE);
1303
1304 do_next_page:
1305 old_start += PAGE_SIZE;
1306 }
1307 }
1308 }
1309
1310 void __init mem_init(void)
1311 {
1312 unsigned long codepages, datapages, initpages;
1313 unsigned long addr, last;
1314 int i;
1315
1316 i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
1317 i += 1;
1318 sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
1319 if (sparc64_valid_addr_bitmap == NULL) {
1320 prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
1321 prom_halt();
1322 }
1323 memset(sparc64_valid_addr_bitmap, 0, i << 3);
1324
1325 addr = PAGE_OFFSET + kern_base;
1326 last = PAGE_ALIGN(kern_size) + addr;
1327 while (addr < last) {
1328 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
1329 addr += PAGE_SIZE;
1330 }
1331
1332 taint_real_pages();
1333
1334 max_mapnr = last_valid_pfn - pfn_base;
1335 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
1336
1337 #ifdef CONFIG_DEBUG_BOOTMEM
1338 prom_printf("mem_init: Calling free_all_bootmem().\n");
1339 #endif
1340 totalram_pages = num_physpages = free_all_bootmem() - 1;
1341
1342 /*
1343 * Set up the zero page, mark it reserved, so that page count
1344 * is not manipulated when freeing the page from user ptes.
1345 */
1346 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
1347 if (mem_map_zero == NULL) {
1348 prom_printf("paging_init: Cannot alloc zero page.\n");
1349 prom_halt();
1350 }
1351 SetPageReserved(mem_map_zero);
1352
1353 codepages = (((unsigned long) _etext) - ((unsigned long) _start));
1354 codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
1355 datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
1356 datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
1357 initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
1358 initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
1359
1360 printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
1361 nr_free_pages() << (PAGE_SHIFT-10),
1362 codepages << (PAGE_SHIFT-10),
1363 datapages << (PAGE_SHIFT-10),
1364 initpages << (PAGE_SHIFT-10),
1365 PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
1366
1367 if (tlb_type == cheetah || tlb_type == cheetah_plus)
1368 cheetah_ecache_flush_init();
1369 }
1370
1371 void free_initmem(void)
1372 {
1373 unsigned long addr, initend;
1374
1375 /*
1376 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
1377 */
1378 addr = PAGE_ALIGN((unsigned long)(__init_begin));
1379 initend = (unsigned long)(__init_end) & PAGE_MASK;
1380 for (; addr < initend; addr += PAGE_SIZE) {
1381 unsigned long page;
1382 struct page *p;
1383
1384 page = (addr +
1385 ((unsigned long) __va(kern_base)) -
1386 ((unsigned long) KERNBASE));
1387 memset((void *)addr, 0xcc, PAGE_SIZE);
1388 p = virt_to_page(page);
1389
1390 ClearPageReserved(p);
1391 set_page_count(p, 1);
1392 __free_page(p);
1393 num_physpages++;
1394 totalram_pages++;
1395 }
1396 }
1397
1398 #ifdef CONFIG_BLK_DEV_INITRD
1399 void free_initrd_mem(unsigned long start, unsigned long end)
1400 {
1401 if (start < end)
1402 printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1403 for (; start < end; start += PAGE_SIZE) {
1404 struct page *p = virt_to_page(start);
1405
1406 ClearPageReserved(p);
1407 set_page_count(p, 1);
1408 __free_page(p);
1409 num_physpages++;
1410 totalram_pages++;
1411 }
1412 }
1413 #endif
This page took 0.191829 seconds and 5 git commands to generate.