regulator: da9063: Add missing initialization of da9063_reg_matches
[deliverable/linux.git] / arch / tile / kernel / intvec_64.S
1 /*
2 * Copyright 2011 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 *
14 * Linux interrupt vectors.
15 */
16
17 #include <linux/linkage.h>
18 #include <linux/errno.h>
19 #include <linux/unistd.h>
20 #include <linux/init.h>
21 #include <asm/ptrace.h>
22 #include <asm/thread_info.h>
23 #include <asm/irqflags.h>
24 #include <asm/asm-offsets.h>
25 #include <asm/types.h>
26 #include <asm/traps.h>
27 #include <asm/signal.h>
28 #include <hv/hypervisor.h>
29 #include <arch/abi.h>
30 #include <arch/interrupts.h>
31 #include <arch/spr_def.h>
32
33 #define PTREGS_PTR(reg, ptreg) addli reg, sp, C_ABI_SAVE_AREA_SIZE + (ptreg)
34
35 #define PTREGS_OFFSET_SYSCALL PTREGS_OFFSET_REG(TREG_SYSCALL_NR)
36
37 #if CONFIG_KERNEL_PL == 1 || CONFIG_KERNEL_PL == 2
38 /*
39 * Set "result" non-zero if ex1 holds the PL of the kernel
40 * (with or without ICS being set). Note this works only
41 * because we never find the PL at level 3.
42 */
43 # define IS_KERNEL_EX1(result, ex1) andi result, ex1, CONFIG_KERNEL_PL
44 #else
45 # error Recode IS_KERNEL_EX1 for CONFIG_KERNEL_PL
46 #endif
47
48 .macro push_reg reg, ptr=sp, delta=-8
49 {
50 st \ptr, \reg
51 addli \ptr, \ptr, \delta
52 }
53 .endm
54
55 .macro pop_reg reg, ptr=sp, delta=8
56 {
57 ld \reg, \ptr
58 addli \ptr, \ptr, \delta
59 }
60 .endm
61
62 .macro pop_reg_zero reg, zreg, ptr=sp, delta=8
63 {
64 move \zreg, zero
65 ld \reg, \ptr
66 addi \ptr, \ptr, \delta
67 }
68 .endm
69
70 .macro push_extra_callee_saves reg
71 PTREGS_PTR(\reg, PTREGS_OFFSET_REG(51))
72 push_reg r51, \reg
73 push_reg r50, \reg
74 push_reg r49, \reg
75 push_reg r48, \reg
76 push_reg r47, \reg
77 push_reg r46, \reg
78 push_reg r45, \reg
79 push_reg r44, \reg
80 push_reg r43, \reg
81 push_reg r42, \reg
82 push_reg r41, \reg
83 push_reg r40, \reg
84 push_reg r39, \reg
85 push_reg r38, \reg
86 push_reg r37, \reg
87 push_reg r36, \reg
88 push_reg r35, \reg
89 push_reg r34, \reg, PTREGS_OFFSET_BASE - PTREGS_OFFSET_REG(34)
90 .endm
91
92 .macro panic str
93 .pushsection .rodata, "a"
94 1:
95 .asciz "\str"
96 .popsection
97 {
98 moveli r0, hw2_last(1b)
99 }
100 {
101 shl16insli r0, r0, hw1(1b)
102 }
103 {
104 shl16insli r0, r0, hw0(1b)
105 jal panic
106 }
107 .endm
108
109 /*
110 * Unalign data exception fast handling: In order to handle
111 * unaligned data access, a fast JIT version is generated and stored
112 * in a specific area in user space. We first need to do a quick poke
113 * to see if the JIT is available. We use certain bits in the fault
114 * PC (3 to 9 is used for 16KB page size) as index to address the JIT
115 * code area. The first 64bit word is the fault PC, and the 2nd one is
116 * the fault bundle itself. If these 2 words both match, then we
117 * directly "iret" to JIT code. If not, a slow path is invoked to
118 * generate new JIT code. Note: the current JIT code WILL be
119 * overwritten if it existed. So, ideally we can handle 128 unalign
120 * fixups via JIT. For lookup efficiency and to effectively support
121 * tight loops with multiple unaligned reference, a simple
122 * direct-mapped cache is used.
123 *
124 * SPR_EX_CONTEXT_K_0 is modified to return to JIT code.
125 * SPR_EX_CONTEXT_K_1 has ICS set.
126 * SPR_EX_CONTEXT_0_0 is setup to user program's next PC.
127 * SPR_EX_CONTEXT_0_1 = 0.
128 */
129 .macro int_hand_unalign_fast vecnum, vecname
130 .org (\vecnum << 8)
131 intvec_\vecname:
132 /* Put r3 in SPR_SYSTEM_SAVE_K_1. */
133 mtspr SPR_SYSTEM_SAVE_K_1, r3
134
135 mfspr r3, SPR_EX_CONTEXT_K_1
136 /*
137 * Examine if exception comes from user without ICS set.
138 * If not, just go directly to the slow path.
139 */
140 bnez r3, hand_unalign_slow_nonuser
141
142 mfspr r3, SPR_SYSTEM_SAVE_K_0
143
144 /* Get &thread_info->unalign_jit_tmp[0] in r3. */
145 bfexts r3, r3, 0, CPU_SHIFT-1
146 mm r3, zero, LOG2_THREAD_SIZE, 63
147 addli r3, r3, THREAD_INFO_UNALIGN_JIT_TMP_OFFSET
148
149 /*
150 * Save r0, r1, r2 into thread_info array r3 points to
151 * from low to high memory in order.
152 */
153 st_add r3, r0, 8
154 st_add r3, r1, 8
155 {
156 st_add r3, r2, 8
157 andi r2, sp, 7
158 }
159
160 /* Save stored r3 value so we can revert it on a page fault. */
161 mfspr r1, SPR_SYSTEM_SAVE_K_1
162 st r3, r1
163
164 {
165 /* Generate a SIGBUS if sp is not 8-byte aligned. */
166 bnez r2, hand_unalign_slow_badsp
167 }
168
169 /*
170 * Get the thread_info in r0; load r1 with pc. Set the low bit of sp
171 * as an indicator to the page fault code in case we fault.
172 */
173 {
174 ori sp, sp, 1
175 mfspr r1, SPR_EX_CONTEXT_K_0
176 }
177
178 /* Add the jit_info offset in thread_info; extract r1 [3:9] into r2. */
179 {
180 addli r0, r3, THREAD_INFO_UNALIGN_JIT_BASE_OFFSET - \
181 (THREAD_INFO_UNALIGN_JIT_TMP_OFFSET + (3 * 8))
182 bfextu r2, r1, 3, (2 + PAGE_SHIFT - UNALIGN_JIT_SHIFT)
183 }
184
185 /* Load the jit_info; multiply r2 by 128. */
186 {
187 ld r0, r0
188 shli r2, r2, UNALIGN_JIT_SHIFT
189 }
190
191 /*
192 * If r0 is NULL, the JIT page is not mapped, so go to slow path;
193 * add offset r2 to r0 at the same time.
194 */
195 {
196 beqz r0, hand_unalign_slow
197 add r2, r0, r2
198 }
199
200 /*
201 * We are loading from userspace (both the JIT info PC and
202 * instruction word, and the instruction word we executed)
203 * and since either could fault while holding the interrupt
204 * critical section, we must tag this region and check it in
205 * do_page_fault() to handle it properly.
206 */
207 ENTRY(__start_unalign_asm_code)
208
209 /* Load first word of JIT in r0 and increment r2 by 8. */
210 ld_add r0, r2, 8
211
212 /*
213 * Compare the PC with the 1st word in JIT; load the fault bundle
214 * into r1.
215 */
216 {
217 cmpeq r0, r0, r1
218 ld r1, r1
219 }
220
221 /* Go to slow path if PC doesn't match. */
222 beqz r0, hand_unalign_slow
223
224 /*
225 * Load the 2nd word of JIT, which is supposed to be the fault
226 * bundle for a cache hit. Increment r2; after this bundle r2 will
227 * point to the potential start of the JIT code we want to run.
228 */
229 ld_add r0, r2, 8
230
231 /* No further accesses to userspace are done after this point. */
232 ENTRY(__end_unalign_asm_code)
233
234 /* Compare the real bundle with what is saved in the JIT area. */
235 {
236 cmpeq r0, r1, r0
237 mtspr SPR_EX_CONTEXT_0_1, zero
238 }
239
240 /* Go to slow path if the fault bundle does not match. */
241 beqz r0, hand_unalign_slow
242
243 /*
244 * A cache hit is found.
245 * r2 points to start of JIT code (3rd word).
246 * r0 is the fault pc.
247 * r1 is the fault bundle.
248 * Reset the low bit of sp.
249 */
250 {
251 mfspr r0, SPR_EX_CONTEXT_K_0
252 andi sp, sp, ~1
253 }
254
255 /* Write r2 into EX_CONTEXT_K_0 and increment PC. */
256 {
257 mtspr SPR_EX_CONTEXT_K_0, r2
258 addi r0, r0, 8
259 }
260
261 /*
262 * Set ICS on kernel EX_CONTEXT_K_1 in order to "iret" to
263 * user with ICS set. This way, if the JIT fixup causes another
264 * unalign exception (which shouldn't be possible) the user
265 * process will be terminated with SIGBUS. Also, our fixup will
266 * run without interleaving with external interrupts.
267 * Each fixup is at most 14 bundles, so it won't hold ICS for long.
268 */
269 {
270 movei r1, PL_ICS_EX1(USER_PL, 1)
271 mtspr SPR_EX_CONTEXT_0_0, r0
272 }
273
274 {
275 mtspr SPR_EX_CONTEXT_K_1, r1
276 addi r3, r3, -(3 * 8)
277 }
278
279 /* Restore r0..r3. */
280 ld_add r0, r3, 8
281 ld_add r1, r3, 8
282 ld_add r2, r3, 8
283 ld r3, r3
284
285 iret
286 ENDPROC(intvec_\vecname)
287 .endm
288
289 #ifdef __COLLECT_LINKER_FEEDBACK__
290 .pushsection .text.intvec_feedback,"ax"
291 intvec_feedback:
292 .popsection
293 #endif
294
295 /*
296 * Default interrupt handler.
297 *
298 * vecnum is where we'll put this code.
299 * c_routine is the C routine we'll call.
300 *
301 * The C routine is passed two arguments:
302 * - A pointer to the pt_regs state.
303 * - The interrupt vector number.
304 *
305 * The "processing" argument specifies the code for processing
306 * the interrupt. Defaults to "handle_interrupt".
307 */
308 .macro __int_hand vecnum, vecname, c_routine,processing=handle_interrupt
309 intvec_\vecname:
310 /* Temporarily save a register so we have somewhere to work. */
311
312 mtspr SPR_SYSTEM_SAVE_K_1, r0
313 mfspr r0, SPR_EX_CONTEXT_K_1
314
315 /*
316 * The unalign data fastpath code sets the low bit in sp to
317 * force us to reset it here on fault.
318 */
319 {
320 blbs sp, 2f
321 IS_KERNEL_EX1(r0, r0)
322 }
323
324 .ifc \vecnum, INT_DOUBLE_FAULT
325 /*
326 * For double-faults from user-space, fall through to the normal
327 * register save and stack setup path. Otherwise, it's the
328 * hypervisor giving us one last chance to dump diagnostics, and we
329 * branch to the kernel_double_fault routine to do so.
330 */
331 beqz r0, 1f
332 j _kernel_double_fault
333 1:
334 .else
335 /*
336 * If we're coming from user-space, then set sp to the top of
337 * the kernel stack. Otherwise, assume sp is already valid.
338 */
339 {
340 bnez r0, 0f
341 move r0, sp
342 }
343 .endif
344
345 .ifc \c_routine, do_page_fault
346 /*
347 * The page_fault handler may be downcalled directly by the
348 * hypervisor even when Linux is running and has ICS set.
349 *
350 * In this case the contents of EX_CONTEXT_K_1 reflect the
351 * previous fault and can't be relied on to choose whether or
352 * not to reinitialize the stack pointer. So we add a test
353 * to see whether SYSTEM_SAVE_K_2 has the high bit set,
354 * and if so we don't reinitialize sp, since we must be coming
355 * from Linux. (In fact the precise case is !(val & ~1),
356 * but any Linux PC has to have the high bit set.)
357 *
358 * Note that the hypervisor *always* sets SYSTEM_SAVE_K_2 for
359 * any path that turns into a downcall to one of our TLB handlers.
360 *
361 * FIXME: if we end up never using this path, perhaps we should
362 * prevent the hypervisor from generating downcalls in this case.
363 * The advantage of getting a downcall is we can panic in Linux.
364 */
365 mfspr r0, SPR_SYSTEM_SAVE_K_2
366 {
367 bltz r0, 0f /* high bit in S_S_1_2 is for a PC to use */
368 move r0, sp
369 }
370 .endif
371
372 2:
373 /*
374 * SYSTEM_SAVE_K_0 holds the cpu number in the high bits, and
375 * the current stack top in the lower bits. So we recover
376 * our starting stack value by sign-extending the low bits, then
377 * point sp at the top aligned address on the actual stack page.
378 */
379 mfspr r0, SPR_SYSTEM_SAVE_K_0
380 bfexts r0, r0, 0, CPU_SHIFT-1
381
382 0:
383 /*
384 * Align the stack mod 64 so we can properly predict what
385 * cache lines we need to write-hint to reduce memory fetch
386 * latency as we enter the kernel. The layout of memory is
387 * as follows, with cache line 0 at the lowest VA, and cache
388 * line 8 just below the r0 value this "andi" computes.
389 * Note that we never write to cache line 8, and we skip
390 * cache lines 1-3 for syscalls.
391 *
392 * cache line 8: ptregs padding (two words)
393 * cache line 7: sp, lr, pc, ex1, faultnum, orig_r0, flags, cmpexch
394 * cache line 6: r46...r53 (tp)
395 * cache line 5: r38...r45
396 * cache line 4: r30...r37
397 * cache line 3: r22...r29
398 * cache line 2: r14...r21
399 * cache line 1: r6...r13
400 * cache line 0: 2 x frame, r0..r5
401 */
402 #if STACK_TOP_DELTA != 64
403 #error STACK_TOP_DELTA must be 64 for assumptions here and in task_pt_regs()
404 #endif
405 andi r0, r0, -64
406
407 /*
408 * Push the first four registers on the stack, so that we can set
409 * them to vector-unique values before we jump to the common code.
410 *
411 * Registers are pushed on the stack as a struct pt_regs,
412 * with the sp initially just above the struct, and when we're
413 * done, sp points to the base of the struct, minus
414 * C_ABI_SAVE_AREA_SIZE, so we can directly jal to C code.
415 *
416 * This routine saves just the first four registers, plus the
417 * stack context so we can do proper backtracing right away,
418 * and defers to handle_interrupt to save the rest.
419 * The backtracer needs pc, ex1, lr, sp, r52, and faultnum,
420 * and needs sp set to its final location at the bottom of
421 * the stack frame.
422 */
423 addli r0, r0, PTREGS_OFFSET_LR - (PTREGS_SIZE + KSTK_PTREGS_GAP)
424 wh64 r0 /* cache line 7 */
425 {
426 st r0, lr
427 addli r0, r0, PTREGS_OFFSET_SP - PTREGS_OFFSET_LR
428 }
429 {
430 st r0, sp
431 addli sp, r0, PTREGS_OFFSET_REG(52) - PTREGS_OFFSET_SP
432 }
433 wh64 sp /* cache line 6 */
434 {
435 st sp, r52
436 addli sp, sp, PTREGS_OFFSET_REG(1) - PTREGS_OFFSET_REG(52)
437 }
438 wh64 sp /* cache line 0 */
439 {
440 st sp, r1
441 addli sp, sp, PTREGS_OFFSET_REG(2) - PTREGS_OFFSET_REG(1)
442 }
443 {
444 st sp, r2
445 addli sp, sp, PTREGS_OFFSET_REG(3) - PTREGS_OFFSET_REG(2)
446 }
447 {
448 st sp, r3
449 addli sp, sp, PTREGS_OFFSET_PC - PTREGS_OFFSET_REG(3)
450 }
451 mfspr r0, SPR_EX_CONTEXT_K_0
452 .ifc \processing,handle_syscall
453 /*
454 * Bump the saved PC by one bundle so that when we return, we won't
455 * execute the same swint instruction again. We need to do this while
456 * we're in the critical section.
457 */
458 addi r0, r0, 8
459 .endif
460 {
461 st sp, r0
462 addli sp, sp, PTREGS_OFFSET_EX1 - PTREGS_OFFSET_PC
463 }
464 mfspr r0, SPR_EX_CONTEXT_K_1
465 {
466 st sp, r0
467 addi sp, sp, PTREGS_OFFSET_FAULTNUM - PTREGS_OFFSET_EX1
468 /*
469 * Use r0 for syscalls so it's a temporary; use r1 for interrupts
470 * so that it gets passed through unchanged to the handler routine.
471 * Note that the .if conditional confusingly spans bundles.
472 */
473 .ifc \processing,handle_syscall
474 movei r0, \vecnum
475 }
476 {
477 st sp, r0
478 .else
479 movei r1, \vecnum
480 }
481 {
482 st sp, r1
483 .endif
484 addli sp, sp, PTREGS_OFFSET_REG(0) - PTREGS_OFFSET_FAULTNUM
485 }
486 mfspr r0, SPR_SYSTEM_SAVE_K_1 /* Original r0 */
487 {
488 st sp, r0
489 addi sp, sp, -PTREGS_OFFSET_REG(0) - 8
490 }
491 {
492 st sp, zero /* write zero into "Next SP" frame pointer */
493 addi sp, sp, -8 /* leave SP pointing at bottom of frame */
494 }
495 .ifc \processing,handle_syscall
496 j handle_syscall
497 .else
498 /* Capture per-interrupt SPR context to registers. */
499 .ifc \c_routine, do_page_fault
500 mfspr r2, SPR_SYSTEM_SAVE_K_3 /* address of page fault */
501 mfspr r3, SPR_SYSTEM_SAVE_K_2 /* info about page fault */
502 .else
503 .ifc \vecnum, INT_ILL_TRANS
504 mfspr r2, ILL_VA_PC
505 .else
506 .ifc \vecnum, INT_DOUBLE_FAULT
507 mfspr r2, SPR_SYSTEM_SAVE_K_2 /* double fault info from HV */
508 .else
509 .ifc \c_routine, do_trap
510 mfspr r2, GPV_REASON
511 .else
512 .ifc \c_routine, op_handle_perf_interrupt
513 mfspr r2, PERF_COUNT_STS
514 .else
515 .ifc \c_routine, op_handle_aux_perf_interrupt
516 mfspr r2, AUX_PERF_COUNT_STS
517 .endif
518 .endif
519 .endif
520 .endif
521 .endif
522 .endif
523 /* Put function pointer in r0 */
524 moveli r0, hw2_last(\c_routine)
525 shl16insli r0, r0, hw1(\c_routine)
526 {
527 shl16insli r0, r0, hw0(\c_routine)
528 j \processing
529 }
530 .endif
531 ENDPROC(intvec_\vecname)
532
533 #ifdef __COLLECT_LINKER_FEEDBACK__
534 .pushsection .text.intvec_feedback,"ax"
535 .org (\vecnum << 5)
536 FEEDBACK_ENTER_EXPLICIT(intvec_\vecname, .intrpt, 1 << 8)
537 jrp lr
538 .popsection
539 #endif
540
541 .endm
542
543
544 /*
545 * Save the rest of the registers that we didn't save in the actual
546 * vector itself. We can't use r0-r10 inclusive here.
547 */
548 .macro finish_interrupt_save, function
549
550 /* If it's a syscall, save a proper orig_r0, otherwise just zero. */
551 PTREGS_PTR(r52, PTREGS_OFFSET_ORIG_R0)
552 {
553 .ifc \function,handle_syscall
554 st r52, r0
555 .else
556 st r52, zero
557 .endif
558 PTREGS_PTR(r52, PTREGS_OFFSET_TP)
559 }
560 st r52, tp
561 {
562 mfspr tp, CMPEXCH_VALUE
563 PTREGS_PTR(r52, PTREGS_OFFSET_CMPEXCH)
564 }
565
566 /*
567 * For ordinary syscalls, we save neither caller- nor callee-
568 * save registers, since the syscall invoker doesn't expect the
569 * caller-saves to be saved, and the called kernel functions will
570 * take care of saving the callee-saves for us.
571 *
572 * For interrupts we save just the caller-save registers. Saving
573 * them is required (since the "caller" can't save them). Again,
574 * the called kernel functions will restore the callee-save
575 * registers for us appropriately.
576 *
577 * On return, we normally restore nothing special for syscalls,
578 * and just the caller-save registers for interrupts.
579 *
580 * However, there are some important caveats to all this:
581 *
582 * - We always save a few callee-save registers to give us
583 * some scratchpad registers to carry across function calls.
584 *
585 * - fork/vfork/etc require us to save all the callee-save
586 * registers, which we do in PTREGS_SYSCALL_ALL_REGS, below.
587 *
588 * - We always save r0..r5 and r10 for syscalls, since we need
589 * to reload them a bit later for the actual kernel call, and
590 * since we might need them for -ERESTARTNOINTR, etc.
591 *
592 * - Before invoking a signal handler, we save the unsaved
593 * callee-save registers so they are visible to the
594 * signal handler or any ptracer.
595 *
596 * - If the unsaved callee-save registers are modified, we set
597 * a bit in pt_regs so we know to reload them from pt_regs
598 * and not just rely on the kernel function unwinding.
599 * (Done for ptrace register writes and SA_SIGINFO handler.)
600 */
601 {
602 st r52, tp
603 PTREGS_PTR(r52, PTREGS_OFFSET_REG(33))
604 }
605 wh64 r52 /* cache line 4 */
606 push_reg r33, r52
607 push_reg r32, r52
608 push_reg r31, r52
609 .ifc \function,handle_syscall
610 push_reg r30, r52, PTREGS_OFFSET_SYSCALL - PTREGS_OFFSET_REG(30)
611 push_reg TREG_SYSCALL_NR_NAME, r52, \
612 PTREGS_OFFSET_REG(5) - PTREGS_OFFSET_SYSCALL
613 .else
614
615 push_reg r30, r52, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(30)
616 wh64 r52 /* cache line 3 */
617 push_reg r29, r52
618 push_reg r28, r52
619 push_reg r27, r52
620 push_reg r26, r52
621 push_reg r25, r52
622 push_reg r24, r52
623 push_reg r23, r52
624 push_reg r22, r52
625 wh64 r52 /* cache line 2 */
626 push_reg r21, r52
627 push_reg r20, r52
628 push_reg r19, r52
629 push_reg r18, r52
630 push_reg r17, r52
631 push_reg r16, r52
632 push_reg r15, r52
633 push_reg r14, r52
634 wh64 r52 /* cache line 1 */
635 push_reg r13, r52
636 push_reg r12, r52
637 push_reg r11, r52
638 push_reg r10, r52
639 push_reg r9, r52
640 push_reg r8, r52
641 push_reg r7, r52
642 push_reg r6, r52
643
644 .endif
645
646 push_reg r5, r52
647 st r52, r4
648
649 /*
650 * If we will be returning to the kernel, we will need to
651 * reset the interrupt masks to the state they had before.
652 * Set DISABLE_IRQ in flags iff we came from kernel pl with
653 * irqs disabled.
654 */
655 mfspr r32, SPR_EX_CONTEXT_K_1
656 {
657 IS_KERNEL_EX1(r22, r22)
658 PTREGS_PTR(r21, PTREGS_OFFSET_FLAGS)
659 }
660 beqzt r32, 1f /* zero if from user space */
661 IRQS_DISABLED(r32) /* zero if irqs enabled */
662 #if PT_FLAGS_DISABLE_IRQ != 1
663 # error Value of IRQS_DISABLED used to set PT_FLAGS_DISABLE_IRQ; fix
664 #endif
665 1:
666 .ifnc \function,handle_syscall
667 /* Record the fact that we saved the caller-save registers above. */
668 ori r32, r32, PT_FLAGS_CALLER_SAVES
669 .endif
670 st r21, r32
671
672 /*
673 * we've captured enough state to the stack (including in
674 * particular our EX_CONTEXT state) that we can now release
675 * the interrupt critical section and replace it with our
676 * standard "interrupts disabled" mask value. This allows
677 * synchronous interrupts (and profile interrupts) to punch
678 * through from this point onwards.
679 *
680 * It's important that no code before this point touch memory
681 * other than our own stack (to keep the invariant that this
682 * is all that gets touched under ICS), and that no code after
683 * this point reference any interrupt-specific SPR, in particular
684 * the EX_CONTEXT_K_ values.
685 */
686 .ifc \function,handle_nmi
687 IRQ_DISABLE_ALL(r20)
688 .else
689 IRQ_DISABLE(r20, r21)
690 .endif
691 mtspr INTERRUPT_CRITICAL_SECTION, zero
692
693 /* Load tp with our per-cpu offset. */
694 #ifdef CONFIG_SMP
695 {
696 mfspr r20, SPR_SYSTEM_SAVE_K_0
697 moveli r21, hw2_last(__per_cpu_offset)
698 }
699 {
700 shl16insli r21, r21, hw1(__per_cpu_offset)
701 bfextu r20, r20, CPU_SHIFT, 63
702 }
703 shl16insli r21, r21, hw0(__per_cpu_offset)
704 shl3add r20, r20, r21
705 ld tp, r20
706 #else
707 move tp, zero
708 #endif
709
710 #ifdef __COLLECT_LINKER_FEEDBACK__
711 /*
712 * Notify the feedback routines that we were in the
713 * appropriate fixed interrupt vector area. Note that we
714 * still have ICS set at this point, so we can't invoke any
715 * atomic operations or we will panic. The feedback
716 * routines internally preserve r0..r10 and r30 up.
717 */
718 .ifnc \function,handle_syscall
719 shli r20, r1, 5
720 .else
721 moveli r20, INT_SWINT_1 << 5
722 .endif
723 moveli r21, hw2_last(intvec_feedback)
724 shl16insli r21, r21, hw1(intvec_feedback)
725 shl16insli r21, r21, hw0(intvec_feedback)
726 add r20, r20, r21
727 jalr r20
728
729 /* And now notify the feedback routines that we are here. */
730 FEEDBACK_ENTER(\function)
731 #endif
732
733 /*
734 * Prepare the first 256 stack bytes to be rapidly accessible
735 * without having to fetch the background data.
736 */
737 addi r52, sp, -64
738 {
739 wh64 r52
740 addi r52, r52, -64
741 }
742 {
743 wh64 r52
744 addi r52, r52, -64
745 }
746 {
747 wh64 r52
748 addi r52, r52, -64
749 }
750 wh64 r52
751
752 #ifdef CONFIG_TRACE_IRQFLAGS
753 .ifnc \function,handle_nmi
754 /*
755 * We finally have enough state set up to notify the irq
756 * tracing code that irqs were disabled on entry to the handler.
757 * The TRACE_IRQS_OFF call clobbers registers r0-r29.
758 * For syscalls, we already have the register state saved away
759 * on the stack, so we don't bother to do any register saves here,
760 * and later we pop the registers back off the kernel stack.
761 * For interrupt handlers, save r0-r3 in callee-saved registers.
762 */
763 .ifnc \function,handle_syscall
764 { move r30, r0; move r31, r1 }
765 { move r32, r2; move r33, r3 }
766 .endif
767 TRACE_IRQS_OFF
768 .ifnc \function,handle_syscall
769 { move r0, r30; move r1, r31 }
770 { move r2, r32; move r3, r33 }
771 .endif
772 .endif
773 #endif
774
775 .endm
776
777 /*
778 * Redispatch a downcall.
779 */
780 .macro dc_dispatch vecnum, vecname
781 .org (\vecnum << 8)
782 intvec_\vecname:
783 j _hv_downcall_dispatch
784 ENDPROC(intvec_\vecname)
785 .endm
786
787 /*
788 * Common code for most interrupts. The C function we're eventually
789 * going to is in r0, and the faultnum is in r1; the original
790 * values for those registers are on the stack.
791 */
792 .pushsection .text.handle_interrupt,"ax"
793 handle_interrupt:
794 finish_interrupt_save handle_interrupt
795
796 /* Jump to the C routine; it should enable irqs as soon as possible. */
797 {
798 jalr r0
799 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
800 }
801 FEEDBACK_REENTER(handle_interrupt)
802 {
803 movei r30, 0 /* not an NMI */
804 j interrupt_return
805 }
806 STD_ENDPROC(handle_interrupt)
807
808 /*
809 * This routine takes a boolean in r30 indicating if this is an NMI.
810 * If so, we also expect a boolean in r31 indicating whether to
811 * re-enable the oprofile interrupts.
812 *
813 * Note that .Lresume_userspace is jumped to directly in several
814 * places, and we need to make sure r30 is set correctly in those
815 * callers as well.
816 */
817 STD_ENTRY(interrupt_return)
818 /* If we're resuming to kernel space, don't check thread flags. */
819 {
820 bnez r30, .Lrestore_all /* NMIs don't special-case user-space */
821 PTREGS_PTR(r29, PTREGS_OFFSET_EX1)
822 }
823 ld r29, r29
824 IS_KERNEL_EX1(r29, r29)
825 {
826 beqzt r29, .Lresume_userspace
827 move r29, sp
828 }
829
830 #ifdef CONFIG_PREEMPT
831 /* Returning to kernel space. Check if we need preemption. */
832 EXTRACT_THREAD_INFO(r29)
833 addli r28, r29, THREAD_INFO_FLAGS_OFFSET
834 {
835 ld r28, r28
836 addli r29, r29, THREAD_INFO_PREEMPT_COUNT_OFFSET
837 }
838 {
839 andi r28, r28, _TIF_NEED_RESCHED
840 ld4s r29, r29
841 }
842 beqzt r28, 1f
843 bnez r29, 1f
844 jal preempt_schedule_irq
845 FEEDBACK_REENTER(interrupt_return)
846 1:
847 #endif
848
849 /* If we're resuming to _cpu_idle_nap, bump PC forward by 8. */
850 {
851 moveli r27, hw2_last(_cpu_idle_nap)
852 PTREGS_PTR(r29, PTREGS_OFFSET_PC)
853 }
854 {
855 ld r28, r29
856 shl16insli r27, r27, hw1(_cpu_idle_nap)
857 }
858 {
859 shl16insli r27, r27, hw0(_cpu_idle_nap)
860 }
861 {
862 cmpeq r27, r27, r28
863 }
864 {
865 blbc r27, .Lrestore_all
866 addi r28, r28, 8
867 }
868 st r29, r28
869 j .Lrestore_all
870
871 .Lresume_userspace:
872 FEEDBACK_REENTER(interrupt_return)
873
874 /*
875 * Use r33 to hold whether we have already loaded the callee-saves
876 * into ptregs. We don't want to do it twice in this loop, since
877 * then we'd clobber whatever changes are made by ptrace, etc.
878 */
879 {
880 movei r33, 0
881 move r32, sp
882 }
883
884 /* Get base of stack in r32. */
885 EXTRACT_THREAD_INFO(r32)
886
887 .Lretry_work_pending:
888 /*
889 * Disable interrupts so as to make sure we don't
890 * miss an interrupt that sets any of the thread flags (like
891 * need_resched or sigpending) between sampling and the iret.
892 * Routines like schedule() or do_signal() may re-enable
893 * interrupts before returning.
894 */
895 IRQ_DISABLE(r20, r21)
896 TRACE_IRQS_OFF /* Note: clobbers registers r0-r29 */
897
898
899 /* Check to see if there is any work to do before returning to user. */
900 {
901 addi r29, r32, THREAD_INFO_FLAGS_OFFSET
902 moveli r1, hw1_last(_TIF_ALLWORK_MASK)
903 }
904 {
905 ld r29, r29
906 shl16insli r1, r1, hw0(_TIF_ALLWORK_MASK)
907 }
908 and r1, r29, r1
909 beqzt r1, .Lrestore_all
910
911 /*
912 * Make sure we have all the registers saved for signal
913 * handling or notify-resume. Call out to C code to figure out
914 * exactly what we need to do for each flag bit, then if
915 * necessary, reload the flags and recheck.
916 */
917 {
918 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
919 bnez r33, 1f
920 }
921 push_extra_callee_saves r0
922 movei r33, 1
923 1: jal do_work_pending
924 bnez r0, .Lretry_work_pending
925
926 /*
927 * In the NMI case we
928 * omit the call to single_process_check_nohz, which normally checks
929 * to see if we should start or stop the scheduler tick, because
930 * we can't call arbitrary Linux code from an NMI context.
931 * We always call the homecache TLB deferral code to re-trigger
932 * the deferral mechanism.
933 *
934 * The other chunk of responsibility this code has is to reset the
935 * interrupt masks appropriately to reset irqs and NMIs. We have
936 * to call TRACE_IRQS_OFF and TRACE_IRQS_ON to support all the
937 * lockdep-type stuff, but we can't set ICS until afterwards, since
938 * ICS can only be used in very tight chunks of code to avoid
939 * tripping over various assertions that it is off.
940 */
941 .Lrestore_all:
942 PTREGS_PTR(r0, PTREGS_OFFSET_EX1)
943 {
944 ld r0, r0
945 PTREGS_PTR(r32, PTREGS_OFFSET_FLAGS)
946 }
947 {
948 IS_KERNEL_EX1(r0, r0)
949 ld r32, r32
950 }
951 bnez r0, 1f
952 j 2f
953 #if PT_FLAGS_DISABLE_IRQ != 1
954 # error Assuming PT_FLAGS_DISABLE_IRQ == 1 so we can use blbct below
955 #endif
956 1: blbct r32, 2f
957 IRQ_DISABLE(r20,r21)
958 TRACE_IRQS_OFF
959 movei r0, 1
960 mtspr INTERRUPT_CRITICAL_SECTION, r0
961 beqzt r30, .Lrestore_regs
962 j 3f
963 2: TRACE_IRQS_ON
964 IRQ_ENABLE_LOAD(r20, r21)
965 movei r0, 1
966 mtspr INTERRUPT_CRITICAL_SECTION, r0
967 IRQ_ENABLE_APPLY(r20, r21)
968 beqzt r30, .Lrestore_regs
969 3:
970
971
972 /*
973 * We now commit to returning from this interrupt, since we will be
974 * doing things like setting EX_CONTEXT SPRs and unwinding the stack
975 * frame. No calls should be made to any other code after this point.
976 * This code should only be entered with ICS set.
977 * r32 must still be set to ptregs.flags.
978 * We launch loads to each cache line separately first, so we can
979 * get some parallelism out of the memory subsystem.
980 * We start zeroing caller-saved registers throughout, since
981 * that will save some cycles if this turns out to be a syscall.
982 */
983 .Lrestore_regs:
984
985 /*
986 * Rotate so we have one high bit and one low bit to test.
987 * - low bit says whether to restore all the callee-saved registers,
988 * or just r30-r33, and r52 up.
989 * - high bit (i.e. sign bit) says whether to restore all the
990 * caller-saved registers, or just r0.
991 */
992 #if PT_FLAGS_CALLER_SAVES != 2 || PT_FLAGS_RESTORE_REGS != 4
993 # error Rotate trick does not work :-)
994 #endif
995 {
996 rotli r20, r32, 62
997 PTREGS_PTR(sp, PTREGS_OFFSET_REG(0))
998 }
999
1000 /*
1001 * Load cache lines 0, 4, 6 and 7, in that order, then use
1002 * the last loaded value, which makes it likely that the other
1003 * cache lines have also loaded, at which point we should be
1004 * able to safely read all the remaining words on those cache
1005 * lines without waiting for the memory subsystem.
1006 */
1007 pop_reg r0, sp, PTREGS_OFFSET_REG(30) - PTREGS_OFFSET_REG(0)
1008 pop_reg r30, sp, PTREGS_OFFSET_REG(52) - PTREGS_OFFSET_REG(30)
1009 pop_reg_zero r52, r3, sp, PTREGS_OFFSET_CMPEXCH - PTREGS_OFFSET_REG(52)
1010 pop_reg_zero r21, r27, sp, PTREGS_OFFSET_EX1 - PTREGS_OFFSET_CMPEXCH
1011 pop_reg_zero lr, r2, sp, PTREGS_OFFSET_PC - PTREGS_OFFSET_EX1
1012 {
1013 mtspr CMPEXCH_VALUE, r21
1014 move r4, zero
1015 }
1016 pop_reg r21, sp, PTREGS_OFFSET_REG(31) - PTREGS_OFFSET_PC
1017 {
1018 mtspr SPR_EX_CONTEXT_K_1, lr
1019 IS_KERNEL_EX1(lr, lr)
1020 }
1021 {
1022 mtspr SPR_EX_CONTEXT_K_0, r21
1023 move r5, zero
1024 }
1025
1026 /* Restore callee-saveds that we actually use. */
1027 pop_reg_zero r31, r6
1028 pop_reg_zero r32, r7
1029 pop_reg_zero r33, r8, sp, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(33)
1030
1031 /*
1032 * If we modified other callee-saveds, restore them now.
1033 * This is rare, but could be via ptrace or signal handler.
1034 */
1035 {
1036 move r9, zero
1037 blbs r20, .Lrestore_callees
1038 }
1039 .Lcontinue_restore_regs:
1040
1041 /* Check if we're returning from a syscall. */
1042 {
1043 move r10, zero
1044 bltzt r20, 1f /* no, so go restore callee-save registers */
1045 }
1046
1047 /*
1048 * Check if we're returning to userspace.
1049 * Note that if we're not, we don't worry about zeroing everything.
1050 */
1051 {
1052 addli sp, sp, PTREGS_OFFSET_LR - PTREGS_OFFSET_REG(29)
1053 bnez lr, .Lkernel_return
1054 }
1055
1056 /*
1057 * On return from syscall, we've restored r0 from pt_regs, but we
1058 * clear the remainder of the caller-saved registers. We could
1059 * restore the syscall arguments, but there's not much point,
1060 * and it ensures user programs aren't trying to use the
1061 * caller-saves if we clear them, as well as avoiding leaking
1062 * kernel pointers into userspace.
1063 */
1064 pop_reg_zero lr, r11, sp, PTREGS_OFFSET_TP - PTREGS_OFFSET_LR
1065 pop_reg_zero tp, r12, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_TP
1066 {
1067 ld sp, sp
1068 move r13, zero
1069 move r14, zero
1070 }
1071 { move r15, zero; move r16, zero }
1072 { move r17, zero; move r18, zero }
1073 { move r19, zero; move r20, zero }
1074 { move r21, zero; move r22, zero }
1075 { move r23, zero; move r24, zero }
1076 { move r25, zero; move r26, zero }
1077
1078 /* Set r1 to errno if we are returning an error, otherwise zero. */
1079 {
1080 moveli r29, 4096
1081 sub r1, zero, r0
1082 }
1083 {
1084 move r28, zero
1085 cmpltu r29, r1, r29
1086 }
1087 {
1088 mnz r1, r29, r1
1089 move r29, zero
1090 }
1091 iret
1092
1093 /*
1094 * Not a syscall, so restore caller-saved registers.
1095 * First kick off loads for cache lines 1-3, which we're touching
1096 * for the first time here.
1097 */
1098 .align 64
1099 1: pop_reg r29, sp, PTREGS_OFFSET_REG(21) - PTREGS_OFFSET_REG(29)
1100 pop_reg r21, sp, PTREGS_OFFSET_REG(13) - PTREGS_OFFSET_REG(21)
1101 pop_reg r13, sp, PTREGS_OFFSET_REG(1) - PTREGS_OFFSET_REG(13)
1102 pop_reg r1
1103 pop_reg r2
1104 pop_reg r3
1105 pop_reg r4
1106 pop_reg r5
1107 pop_reg r6
1108 pop_reg r7
1109 pop_reg r8
1110 pop_reg r9
1111 pop_reg r10
1112 pop_reg r11
1113 pop_reg r12, sp, 16
1114 /* r13 already restored above */
1115 pop_reg r14
1116 pop_reg r15
1117 pop_reg r16
1118 pop_reg r17
1119 pop_reg r18
1120 pop_reg r19
1121 pop_reg r20, sp, 16
1122 /* r21 already restored above */
1123 pop_reg r22
1124 pop_reg r23
1125 pop_reg r24
1126 pop_reg r25
1127 pop_reg r26
1128 pop_reg r27
1129 pop_reg r28, sp, PTREGS_OFFSET_LR - PTREGS_OFFSET_REG(28)
1130 /* r29 already restored above */
1131 bnez lr, .Lkernel_return
1132 pop_reg lr, sp, PTREGS_OFFSET_TP - PTREGS_OFFSET_LR
1133 pop_reg tp, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_TP
1134 ld sp, sp
1135 iret
1136
1137 /*
1138 * We can't restore tp when in kernel mode, since a thread might
1139 * have migrated from another cpu and brought a stale tp value.
1140 */
1141 .Lkernel_return:
1142 pop_reg lr, sp, PTREGS_OFFSET_SP - PTREGS_OFFSET_LR
1143 ld sp, sp
1144 iret
1145
1146 /* Restore callee-saved registers from r34 to r51. */
1147 .Lrestore_callees:
1148 addli sp, sp, PTREGS_OFFSET_REG(34) - PTREGS_OFFSET_REG(29)
1149 pop_reg r34
1150 pop_reg r35
1151 pop_reg r36
1152 pop_reg r37
1153 pop_reg r38
1154 pop_reg r39
1155 pop_reg r40
1156 pop_reg r41
1157 pop_reg r42
1158 pop_reg r43
1159 pop_reg r44
1160 pop_reg r45
1161 pop_reg r46
1162 pop_reg r47
1163 pop_reg r48
1164 pop_reg r49
1165 pop_reg r50
1166 pop_reg r51, sp, PTREGS_OFFSET_REG(29) - PTREGS_OFFSET_REG(51)
1167 j .Lcontinue_restore_regs
1168 STD_ENDPROC(interrupt_return)
1169
1170 /*
1171 * "NMI" interrupts mask ALL interrupts before calling the
1172 * handler, and don't check thread flags, etc., on the way
1173 * back out. In general, the only things we do here for NMIs
1174 * are register save/restore and dataplane kernel-TLB management.
1175 * We don't (for example) deal with start/stop of the sched tick.
1176 */
1177 .pushsection .text.handle_nmi,"ax"
1178 handle_nmi:
1179 finish_interrupt_save handle_nmi
1180 {
1181 jalr r0
1182 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1183 }
1184 FEEDBACK_REENTER(handle_nmi)
1185 {
1186 movei r30, 1
1187 move r31, r0
1188 }
1189 j interrupt_return
1190 STD_ENDPROC(handle_nmi)
1191
1192 /*
1193 * Parallel code for syscalls to handle_interrupt.
1194 */
1195 .pushsection .text.handle_syscall,"ax"
1196 handle_syscall:
1197 finish_interrupt_save handle_syscall
1198
1199 /* Enable irqs. */
1200 TRACE_IRQS_ON
1201 IRQ_ENABLE(r20, r21)
1202
1203 /* Bump the counter for syscalls made on this tile. */
1204 moveli r20, hw2_last(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET)
1205 shl16insli r20, r20, hw1(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET)
1206 shl16insli r20, r20, hw0(irq_stat + IRQ_CPUSTAT_SYSCALL_COUNT_OFFSET)
1207 add r20, r20, tp
1208 ld4s r21, r20
1209 {
1210 addi r21, r21, 1
1211 move r31, sp
1212 }
1213 {
1214 st4 r20, r21
1215 EXTRACT_THREAD_INFO(r31)
1216 }
1217
1218 /* Trace syscalls, if requested. */
1219 addi r31, r31, THREAD_INFO_FLAGS_OFFSET
1220 {
1221 ld r30, r31
1222 moveli r32, _TIF_SYSCALL_ENTRY_WORK
1223 }
1224 and r30, r30, r32
1225 {
1226 addi r30, r31, THREAD_INFO_STATUS_OFFSET - THREAD_INFO_FLAGS_OFFSET
1227 beqzt r30, .Lrestore_syscall_regs
1228 }
1229 {
1230 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1231 jal do_syscall_trace_enter
1232 }
1233 FEEDBACK_REENTER(handle_syscall)
1234
1235 /*
1236 * We always reload our registers from the stack at this
1237 * point. They might be valid, if we didn't build with
1238 * TRACE_IRQFLAGS, and this isn't a dataplane tile, and we're not
1239 * doing syscall tracing, but there are enough cases now that it
1240 * seems simplest just to do the reload unconditionally.
1241 */
1242 .Lrestore_syscall_regs:
1243 {
1244 ld r30, r30
1245 PTREGS_PTR(r11, PTREGS_OFFSET_REG(0))
1246 }
1247 pop_reg r0, r11
1248 pop_reg r1, r11
1249 pop_reg r2, r11
1250 pop_reg r3, r11
1251 pop_reg r4, r11
1252 pop_reg r5, r11, PTREGS_OFFSET_SYSCALL - PTREGS_OFFSET_REG(5)
1253 {
1254 ld TREG_SYSCALL_NR_NAME, r11
1255 moveli r21, __NR_syscalls
1256 }
1257
1258 /* Ensure that the syscall number is within the legal range. */
1259 {
1260 moveli r20, hw2(sys_call_table)
1261 #ifdef CONFIG_COMPAT
1262 blbs r30, .Lcompat_syscall
1263 #endif
1264 }
1265 {
1266 cmpltu r21, TREG_SYSCALL_NR_NAME, r21
1267 shl16insli r20, r20, hw1(sys_call_table)
1268 }
1269 {
1270 blbc r21, .Linvalid_syscall
1271 shl16insli r20, r20, hw0(sys_call_table)
1272 }
1273 .Lload_syscall_pointer:
1274 shl3add r20, TREG_SYSCALL_NR_NAME, r20
1275 ld r20, r20
1276
1277 /* Jump to syscall handler. */
1278 jalr r20
1279 .Lhandle_syscall_link: /* value of "lr" after "jalr r20" above */
1280
1281 /*
1282 * Write our r0 onto the stack so it gets restored instead
1283 * of whatever the user had there before.
1284 * In compat mode, sign-extend r0 before storing it.
1285 */
1286 {
1287 PTREGS_PTR(r29, PTREGS_OFFSET_REG(0))
1288 blbct r30, 1f
1289 }
1290 addxi r0, r0, 0
1291 1: st r29, r0
1292
1293 .Lsyscall_sigreturn_skip:
1294 FEEDBACK_REENTER(handle_syscall)
1295
1296 /* Do syscall trace again, if requested. */
1297 {
1298 ld r30, r31
1299 moveli r32, _TIF_SYSCALL_EXIT_WORK
1300 }
1301 and r0, r30, r32
1302 {
1303 andi r0, r30, _TIF_SINGLESTEP
1304 beqzt r0, 1f
1305 }
1306 {
1307 PTREGS_PTR(r0, PTREGS_OFFSET_BASE)
1308 jal do_syscall_trace_exit
1309 }
1310 FEEDBACK_REENTER(handle_syscall)
1311 andi r0, r30, _TIF_SINGLESTEP
1312
1313 1: beqzt r0, 2f
1314
1315 /* Single stepping -- notify ptrace. */
1316 {
1317 movei r0, SIGTRAP
1318 jal ptrace_notify
1319 }
1320 FEEDBACK_REENTER(handle_syscall)
1321
1322 2: {
1323 movei r30, 0 /* not an NMI */
1324 j .Lresume_userspace /* jump into middle of interrupt_return */
1325 }
1326
1327 #ifdef CONFIG_COMPAT
1328 .Lcompat_syscall:
1329 /*
1330 * Load the base of the compat syscall table in r20, and
1331 * range-check the syscall number (duplicated from 64-bit path).
1332 * Sign-extend all the user's passed arguments to make them consistent.
1333 * Also save the original "r(n)" values away in "r(11+n)" in
1334 * case the syscall table entry wants to validate them.
1335 */
1336 moveli r20, hw2(compat_sys_call_table)
1337 {
1338 cmpltu r21, TREG_SYSCALL_NR_NAME, r21
1339 shl16insli r20, r20, hw1(compat_sys_call_table)
1340 }
1341 {
1342 blbc r21, .Linvalid_syscall
1343 shl16insli r20, r20, hw0(compat_sys_call_table)
1344 }
1345 { move r11, r0; addxi r0, r0, 0 }
1346 { move r12, r1; addxi r1, r1, 0 }
1347 { move r13, r2; addxi r2, r2, 0 }
1348 { move r14, r3; addxi r3, r3, 0 }
1349 { move r15, r4; addxi r4, r4, 0 }
1350 { move r16, r5; addxi r5, r5, 0 }
1351 j .Lload_syscall_pointer
1352 #endif
1353
1354 .Linvalid_syscall:
1355 /* Report an invalid syscall back to the user program */
1356 {
1357 PTREGS_PTR(r29, PTREGS_OFFSET_REG(0))
1358 movei r28, -ENOSYS
1359 }
1360 st r29, r28
1361 {
1362 movei r30, 0 /* not an NMI */
1363 j .Lresume_userspace /* jump into middle of interrupt_return */
1364 }
1365 STD_ENDPROC(handle_syscall)
1366
1367 /* Return the address for oprofile to suppress in backtraces. */
1368 STD_ENTRY_SECTION(handle_syscall_link_address, .text.handle_syscall)
1369 lnk r0
1370 {
1371 addli r0, r0, .Lhandle_syscall_link - .
1372 jrp lr
1373 }
1374 STD_ENDPROC(handle_syscall_link_address)
1375
1376 STD_ENTRY(ret_from_fork)
1377 jal sim_notify_fork
1378 jal schedule_tail
1379 FEEDBACK_REENTER(ret_from_fork)
1380 {
1381 movei r30, 0 /* not an NMI */
1382 j .Lresume_userspace /* jump into middle of interrupt_return */
1383 }
1384 STD_ENDPROC(ret_from_fork)
1385
1386 STD_ENTRY(ret_from_kernel_thread)
1387 jal sim_notify_fork
1388 jal schedule_tail
1389 FEEDBACK_REENTER(ret_from_fork)
1390 {
1391 move r0, r31
1392 jalr r30
1393 }
1394 FEEDBACK_REENTER(ret_from_kernel_thread)
1395 {
1396 movei r30, 0 /* not an NMI */
1397 j .Lresume_userspace /* jump into middle of interrupt_return */
1398 }
1399 STD_ENDPROC(ret_from_kernel_thread)
1400
1401 /* Various stub interrupt handlers and syscall handlers */
1402
1403 STD_ENTRY_LOCAL(_kernel_double_fault)
1404 mfspr r1, SPR_EX_CONTEXT_K_0
1405 move r2, lr
1406 move r3, sp
1407 move r4, r52
1408 addi sp, sp, -C_ABI_SAVE_AREA_SIZE
1409 j kernel_double_fault
1410 STD_ENDPROC(_kernel_double_fault)
1411
1412 STD_ENTRY_LOCAL(bad_intr)
1413 mfspr r2, SPR_EX_CONTEXT_K_0
1414 panic "Unhandled interrupt %#x: PC %#lx"
1415 STD_ENDPROC(bad_intr)
1416
1417 /*
1418 * Special-case sigreturn to not write r0 to the stack on return.
1419 * This is technically more efficient, but it also avoids difficulties
1420 * in the 64-bit OS when handling 32-bit compat code, since we must not
1421 * sign-extend r0 for the sigreturn return-value case.
1422 */
1423 #define PTREGS_SYSCALL_SIGRETURN(x, reg) \
1424 STD_ENTRY(_##x); \
1425 addli lr, lr, .Lsyscall_sigreturn_skip - .Lhandle_syscall_link; \
1426 { \
1427 PTREGS_PTR(reg, PTREGS_OFFSET_BASE); \
1428 j x \
1429 }; \
1430 STD_ENDPROC(_##x)
1431
1432 PTREGS_SYSCALL_SIGRETURN(sys_rt_sigreturn, r0)
1433 #ifdef CONFIG_COMPAT
1434 PTREGS_SYSCALL_SIGRETURN(compat_sys_rt_sigreturn, r0)
1435 #endif
1436
1437 /* Save additional callee-saves to pt_regs and jump to standard function. */
1438 STD_ENTRY(_sys_clone)
1439 push_extra_callee_saves r4
1440 j sys_clone
1441 STD_ENDPROC(_sys_clone)
1442
1443 /*
1444 * Recover r3, r2, r1 and r0 here saved by unalign fast vector.
1445 * The vector area limit is 32 bundles, so we handle the reload here.
1446 * r0, r1, r2 are in thread_info from low to high memory in order.
1447 * r3 points to location the original r3 was saved.
1448 * We put this code in the __HEAD section so it can be reached
1449 * via a conditional branch from the fast path.
1450 */
1451 __HEAD
1452 hand_unalign_slow:
1453 andi sp, sp, ~1
1454 hand_unalign_slow_badsp:
1455 addi r3, r3, -(3 * 8)
1456 ld_add r0, r3, 8
1457 ld_add r1, r3, 8
1458 ld r2, r3
1459 hand_unalign_slow_nonuser:
1460 mfspr r3, SPR_SYSTEM_SAVE_K_1
1461 __int_hand INT_UNALIGN_DATA, UNALIGN_DATA_SLOW, int_unalign
1462
1463 /* The unaligned data support needs to read all the registers. */
1464 int_unalign:
1465 push_extra_callee_saves r0
1466 j do_unaligned
1467 ENDPROC(hand_unalign_slow)
1468
1469 /* Fill the return address stack with nonzero entries. */
1470 STD_ENTRY(fill_ra_stack)
1471 {
1472 move r0, lr
1473 jal 1f
1474 }
1475 1: jal 2f
1476 2: jal 3f
1477 3: jal 4f
1478 4: jrp r0
1479 STD_ENDPROC(fill_ra_stack)
1480
1481 .macro int_hand vecnum, vecname, c_routine, processing=handle_interrupt
1482 .org (\vecnum << 8)
1483 __int_hand \vecnum, \vecname, \c_routine, \processing
1484 .endm
1485
1486 /* Include .intrpt array of interrupt vectors */
1487 .section ".intrpt", "ax"
1488 .global intrpt_start
1489 intrpt_start:
1490
1491 #define op_handle_perf_interrupt bad_intr
1492 #define op_handle_aux_perf_interrupt bad_intr
1493
1494 #ifndef CONFIG_HARDWALL
1495 #define do_hardwall_trap bad_intr
1496 #endif
1497
1498 int_hand INT_MEM_ERROR, MEM_ERROR, do_trap
1499 int_hand INT_SINGLE_STEP_3, SINGLE_STEP_3, bad_intr
1500 #if CONFIG_KERNEL_PL == 2
1501 int_hand INT_SINGLE_STEP_2, SINGLE_STEP_2, gx_singlestep_handle
1502 int_hand INT_SINGLE_STEP_1, SINGLE_STEP_1, bad_intr
1503 #else
1504 int_hand INT_SINGLE_STEP_2, SINGLE_STEP_2, bad_intr
1505 int_hand INT_SINGLE_STEP_1, SINGLE_STEP_1, gx_singlestep_handle
1506 #endif
1507 int_hand INT_SINGLE_STEP_0, SINGLE_STEP_0, bad_intr
1508 int_hand INT_IDN_COMPLETE, IDN_COMPLETE, bad_intr
1509 int_hand INT_UDN_COMPLETE, UDN_COMPLETE, bad_intr
1510 int_hand INT_ITLB_MISS, ITLB_MISS, do_page_fault
1511 int_hand INT_ILL, ILL, do_trap
1512 int_hand INT_GPV, GPV, do_trap
1513 int_hand INT_IDN_ACCESS, IDN_ACCESS, do_trap
1514 int_hand INT_UDN_ACCESS, UDN_ACCESS, do_trap
1515 int_hand INT_SWINT_3, SWINT_3, do_trap
1516 int_hand INT_SWINT_2, SWINT_2, do_trap
1517 int_hand INT_SWINT_1, SWINT_1, SYSCALL, handle_syscall
1518 int_hand INT_SWINT_0, SWINT_0, do_trap
1519 int_hand INT_ILL_TRANS, ILL_TRANS, do_trap
1520 int_hand_unalign_fast INT_UNALIGN_DATA, UNALIGN_DATA
1521 int_hand INT_DTLB_MISS, DTLB_MISS, do_page_fault
1522 int_hand INT_DTLB_ACCESS, DTLB_ACCESS, do_page_fault
1523 int_hand INT_IDN_FIREWALL, IDN_FIREWALL, do_hardwall_trap
1524 int_hand INT_UDN_FIREWALL, UDN_FIREWALL, do_hardwall_trap
1525 int_hand INT_TILE_TIMER, TILE_TIMER, do_timer_interrupt
1526 int_hand INT_IDN_TIMER, IDN_TIMER, bad_intr
1527 int_hand INT_UDN_TIMER, UDN_TIMER, bad_intr
1528 int_hand INT_IDN_AVAIL, IDN_AVAIL, bad_intr
1529 int_hand INT_UDN_AVAIL, UDN_AVAIL, bad_intr
1530 int_hand INT_IPI_3, IPI_3, bad_intr
1531 #if CONFIG_KERNEL_PL == 2
1532 int_hand INT_IPI_2, IPI_2, tile_dev_intr
1533 int_hand INT_IPI_1, IPI_1, bad_intr
1534 #else
1535 int_hand INT_IPI_2, IPI_2, bad_intr
1536 int_hand INT_IPI_1, IPI_1, tile_dev_intr
1537 #endif
1538 int_hand INT_IPI_0, IPI_0, bad_intr
1539 int_hand INT_PERF_COUNT, PERF_COUNT, \
1540 op_handle_perf_interrupt, handle_nmi
1541 int_hand INT_AUX_PERF_COUNT, AUX_PERF_COUNT, \
1542 op_handle_perf_interrupt, handle_nmi
1543 int_hand INT_INTCTRL_3, INTCTRL_3, bad_intr
1544 #if CONFIG_KERNEL_PL == 2
1545 dc_dispatch INT_INTCTRL_2, INTCTRL_2
1546 int_hand INT_INTCTRL_1, INTCTRL_1, bad_intr
1547 #else
1548 int_hand INT_INTCTRL_2, INTCTRL_2, bad_intr
1549 dc_dispatch INT_INTCTRL_1, INTCTRL_1
1550 #endif
1551 int_hand INT_INTCTRL_0, INTCTRL_0, bad_intr
1552 int_hand INT_MESSAGE_RCV_DWNCL, MESSAGE_RCV_DWNCL, \
1553 hv_message_intr
1554 int_hand INT_DEV_INTR_DWNCL, DEV_INTR_DWNCL, bad_intr
1555 int_hand INT_I_ASID, I_ASID, bad_intr
1556 int_hand INT_D_ASID, D_ASID, bad_intr
1557 int_hand INT_DOUBLE_FAULT, DOUBLE_FAULT, do_trap
1558
1559 /* Synthetic interrupt delivered only by the simulator */
1560 int_hand INT_BREAKPOINT, BREAKPOINT, do_breakpoint
This page took 0.062033 seconds and 5 git commands to generate.