sched/rt: Use schedule_preempt_disabled()
[deliverable/linux.git] / arch / tile / kernel / process.c
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/sched.h>
16 #include <linux/preempt.h>
17 #include <linux/module.h>
18 #include <linux/fs.h>
19 #include <linux/kprobes.h>
20 #include <linux/elfcore.h>
21 #include <linux/tick.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/compat.h>
25 #include <linux/hardirq.h>
26 #include <linux/syscalls.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/signal.h>
30 #include <asm/system.h>
31 #include <asm/stack.h>
32 #include <asm/homecache.h>
33 #include <asm/syscalls.h>
34 #include <asm/traps.h>
35 #ifdef CONFIG_HARDWALL
36 #include <asm/hardwall.h>
37 #endif
38 #include <arch/chip.h>
39 #include <arch/abi.h>
40
41
42 /*
43 * Use the (x86) "idle=poll" option to prefer low latency when leaving the
44 * idle loop over low power while in the idle loop, e.g. if we have
45 * one thread per core and we want to get threads out of futex waits fast.
46 */
47 static int no_idle_nap;
48 static int __init idle_setup(char *str)
49 {
50 if (!str)
51 return -EINVAL;
52
53 if (!strcmp(str, "poll")) {
54 pr_info("using polling idle threads.\n");
55 no_idle_nap = 1;
56 } else if (!strcmp(str, "halt"))
57 no_idle_nap = 0;
58 else
59 return -1;
60
61 return 0;
62 }
63 early_param("idle", idle_setup);
64
65 /*
66 * The idle thread. There's no useful work to be
67 * done, so just try to conserve power and have a
68 * low exit latency (ie sit in a loop waiting for
69 * somebody to say that they'd like to reschedule)
70 */
71 void cpu_idle(void)
72 {
73 int cpu = smp_processor_id();
74
75
76 current_thread_info()->status |= TS_POLLING;
77
78 if (no_idle_nap) {
79 while (1) {
80 while (!need_resched())
81 cpu_relax();
82 schedule();
83 }
84 }
85
86 /* endless idle loop with no priority at all */
87 while (1) {
88 tick_nohz_idle_enter();
89 rcu_idle_enter();
90 while (!need_resched()) {
91 if (cpu_is_offline(cpu))
92 BUG(); /* no HOTPLUG_CPU */
93
94 local_irq_disable();
95 __get_cpu_var(irq_stat).idle_timestamp = jiffies;
96 current_thread_info()->status &= ~TS_POLLING;
97 /*
98 * TS_POLLING-cleared state must be visible before we
99 * test NEED_RESCHED:
100 */
101 smp_mb();
102
103 if (!need_resched())
104 _cpu_idle();
105 else
106 local_irq_enable();
107 current_thread_info()->status |= TS_POLLING;
108 }
109 rcu_idle_exit();
110 tick_nohz_idle_exit();
111 schedule_preempt_disabled();
112 }
113 }
114
115 struct thread_info *alloc_thread_info_node(struct task_struct *task, int node)
116 {
117 struct page *page;
118 gfp_t flags = GFP_KERNEL;
119
120 #ifdef CONFIG_DEBUG_STACK_USAGE
121 flags |= __GFP_ZERO;
122 #endif
123
124 page = alloc_pages_node(node, flags, THREAD_SIZE_ORDER);
125 if (!page)
126 return NULL;
127
128 return (struct thread_info *)page_address(page);
129 }
130
131 /*
132 * Free a thread_info node, and all of its derivative
133 * data structures.
134 */
135 void free_thread_info(struct thread_info *info)
136 {
137 struct single_step_state *step_state = info->step_state;
138
139 #ifdef CONFIG_HARDWALL
140 /*
141 * We free a thread_info from the context of the task that has
142 * been scheduled next, so the original task is already dead.
143 * Calling deactivate here just frees up the data structures.
144 * If the task we're freeing held the last reference to a
145 * hardwall fd, it would have been released prior to this point
146 * anyway via exit_files(), and "hardwall" would be NULL by now.
147 */
148 if (info->task->thread.hardwall)
149 hardwall_deactivate(info->task);
150 #endif
151
152 if (step_state) {
153
154 /*
155 * FIXME: we don't munmap step_state->buffer
156 * because the mm_struct for this process (info->task->mm)
157 * has already been zeroed in exit_mm(). Keeping a
158 * reference to it here seems like a bad move, so this
159 * means we can't munmap() the buffer, and therefore if we
160 * ptrace multiple threads in a process, we will slowly
161 * leak user memory. (Note that as soon as the last
162 * thread in a process dies, we will reclaim all user
163 * memory including single-step buffers in the usual way.)
164 * We should either assign a kernel VA to this buffer
165 * somehow, or we should associate the buffer(s) with the
166 * mm itself so we can clean them up that way.
167 */
168 kfree(step_state);
169 }
170
171 free_pages((unsigned long)info, THREAD_SIZE_ORDER);
172 }
173
174 static void save_arch_state(struct thread_struct *t);
175
176 int copy_thread(unsigned long clone_flags, unsigned long sp,
177 unsigned long stack_size,
178 struct task_struct *p, struct pt_regs *regs)
179 {
180 struct pt_regs *childregs;
181 unsigned long ksp;
182
183 /*
184 * When creating a new kernel thread we pass sp as zero.
185 * Assign it to a reasonable value now that we have the stack.
186 */
187 if (sp == 0 && regs->ex1 == PL_ICS_EX1(KERNEL_PL, 0))
188 sp = KSTK_TOP(p);
189
190 /*
191 * Do not clone step state from the parent; each thread
192 * must make its own lazily.
193 */
194 task_thread_info(p)->step_state = NULL;
195
196 /*
197 * Start new thread in ret_from_fork so it schedules properly
198 * and then return from interrupt like the parent.
199 */
200 p->thread.pc = (unsigned long) ret_from_fork;
201
202 /* Save user stack top pointer so we can ID the stack vm area later. */
203 p->thread.usp0 = sp;
204
205 /* Record the pid of the process that created this one. */
206 p->thread.creator_pid = current->pid;
207
208 /*
209 * Copy the registers onto the kernel stack so the
210 * return-from-interrupt code will reload it into registers.
211 */
212 childregs = task_pt_regs(p);
213 *childregs = *regs;
214 childregs->regs[0] = 0; /* return value is zero */
215 childregs->sp = sp; /* override with new user stack pointer */
216
217 /*
218 * If CLONE_SETTLS is set, set "tp" in the new task to "r4",
219 * which is passed in as arg #5 to sys_clone().
220 */
221 if (clone_flags & CLONE_SETTLS)
222 childregs->tp = regs->regs[4];
223
224 /*
225 * Copy the callee-saved registers from the passed pt_regs struct
226 * into the context-switch callee-saved registers area.
227 * This way when we start the interrupt-return sequence, the
228 * callee-save registers will be correctly in registers, which
229 * is how we assume the compiler leaves them as we start doing
230 * the normal return-from-interrupt path after calling C code.
231 * Zero out the C ABI save area to mark the top of the stack.
232 */
233 ksp = (unsigned long) childregs;
234 ksp -= C_ABI_SAVE_AREA_SIZE; /* interrupt-entry save area */
235 ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
236 ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long);
237 memcpy((void *)ksp, &regs->regs[CALLEE_SAVED_FIRST_REG],
238 CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long));
239 ksp -= C_ABI_SAVE_AREA_SIZE; /* __switch_to() save area */
240 ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
241 p->thread.ksp = ksp;
242
243 #if CHIP_HAS_TILE_DMA()
244 /*
245 * No DMA in the new thread. We model this on the fact that
246 * fork() clears the pending signals, alarms, and aio for the child.
247 */
248 memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state));
249 memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb));
250 #endif
251
252 #if CHIP_HAS_SN_PROC()
253 /* Likewise, the new thread is not running static processor code. */
254 p->thread.sn_proc_running = 0;
255 memset(&p->thread.sn_async_tlb, 0, sizeof(struct async_tlb));
256 #endif
257
258 #if CHIP_HAS_PROC_STATUS_SPR()
259 /* New thread has its miscellaneous processor state bits clear. */
260 p->thread.proc_status = 0;
261 #endif
262
263 #ifdef CONFIG_HARDWALL
264 /* New thread does not own any networks. */
265 p->thread.hardwall = NULL;
266 #endif
267
268
269 /*
270 * Start the new thread with the current architecture state
271 * (user interrupt masks, etc.).
272 */
273 save_arch_state(&p->thread);
274
275 return 0;
276 }
277
278 /*
279 * Return "current" if it looks plausible, or else a pointer to a dummy.
280 * This can be helpful if we are just trying to emit a clean panic.
281 */
282 struct task_struct *validate_current(void)
283 {
284 static struct task_struct corrupt = { .comm = "<corrupt>" };
285 struct task_struct *tsk = current;
286 if (unlikely((unsigned long)tsk < PAGE_OFFSET ||
287 (void *)tsk > high_memory ||
288 ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) {
289 pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer);
290 tsk = &corrupt;
291 }
292 return tsk;
293 }
294
295 /* Take and return the pointer to the previous task, for schedule_tail(). */
296 struct task_struct *sim_notify_fork(struct task_struct *prev)
297 {
298 struct task_struct *tsk = current;
299 __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT |
300 (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS));
301 __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK |
302 (tsk->pid << _SIM_CONTROL_OPERATOR_BITS));
303 return prev;
304 }
305
306 int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
307 {
308 struct pt_regs *ptregs = task_pt_regs(tsk);
309 elf_core_copy_regs(regs, ptregs);
310 return 1;
311 }
312
313 #if CHIP_HAS_TILE_DMA()
314
315 /* Allow user processes to access the DMA SPRs */
316 void grant_dma_mpls(void)
317 {
318 #if CONFIG_KERNEL_PL == 2
319 __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
320 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
321 #else
322 __insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1);
323 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1);
324 #endif
325 }
326
327 /* Forbid user processes from accessing the DMA SPRs */
328 void restrict_dma_mpls(void)
329 {
330 #if CONFIG_KERNEL_PL == 2
331 __insn_mtspr(SPR_MPL_DMA_CPL_SET_2, 1);
332 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_2, 1);
333 #else
334 __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
335 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
336 #endif
337 }
338
339 /* Pause the DMA engine, then save off its state registers. */
340 static void save_tile_dma_state(struct tile_dma_state *dma)
341 {
342 unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS);
343 unsigned long post_suspend_state;
344
345 /* If we're running, suspend the engine. */
346 if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK)
347 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
348
349 /*
350 * Wait for the engine to idle, then save regs. Note that we
351 * want to record the "running" bit from before suspension,
352 * and the "done" bit from after, so that we can properly
353 * distinguish a case where the user suspended the engine from
354 * the case where the kernel suspended as part of the context
355 * swap.
356 */
357 do {
358 post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS);
359 } while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK);
360
361 dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR);
362 dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR);
363 dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR);
364 dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR);
365 dma->strides = __insn_mfspr(SPR_DMA_STRIDE);
366 dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE);
367 dma->byte = __insn_mfspr(SPR_DMA_BYTE);
368 dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) |
369 (post_suspend_state & SPR_DMA_STATUS__DONE_MASK);
370 }
371
372 /* Restart a DMA that was running before we were context-switched out. */
373 static void restore_tile_dma_state(struct thread_struct *t)
374 {
375 const struct tile_dma_state *dma = &t->tile_dma_state;
376
377 /*
378 * The only way to restore the done bit is to run a zero
379 * length transaction.
380 */
381 if ((dma->status & SPR_DMA_STATUS__DONE_MASK) &&
382 !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) {
383 __insn_mtspr(SPR_DMA_BYTE, 0);
384 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
385 while (__insn_mfspr(SPR_DMA_USER_STATUS) &
386 SPR_DMA_STATUS__BUSY_MASK)
387 ;
388 }
389
390 __insn_mtspr(SPR_DMA_SRC_ADDR, dma->src);
391 __insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk);
392 __insn_mtspr(SPR_DMA_DST_ADDR, dma->dest);
393 __insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk);
394 __insn_mtspr(SPR_DMA_STRIDE, dma->strides);
395 __insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size);
396 __insn_mtspr(SPR_DMA_BYTE, dma->byte);
397
398 /*
399 * Restart the engine if we were running and not done.
400 * Clear a pending async DMA fault that we were waiting on return
401 * to user space to execute, since we expect the DMA engine
402 * to regenerate those faults for us now. Note that we don't
403 * try to clear the TIF_ASYNC_TLB flag, since it's relatively
404 * harmless if set, and it covers both DMA and the SN processor.
405 */
406 if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) {
407 t->dma_async_tlb.fault_num = 0;
408 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
409 }
410 }
411
412 #endif
413
414 static void save_arch_state(struct thread_struct *t)
415 {
416 #if CHIP_HAS_SPLIT_INTR_MASK()
417 t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) |
418 ((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32);
419 #else
420 t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0);
421 #endif
422 t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0);
423 t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1);
424 t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0);
425 t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1);
426 t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2);
427 t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3);
428 t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS);
429 #if CHIP_HAS_PROC_STATUS_SPR()
430 t->proc_status = __insn_mfspr(SPR_PROC_STATUS);
431 #endif
432 #if !CHIP_HAS_FIXED_INTVEC_BASE()
433 t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0);
434 #endif
435 #if CHIP_HAS_TILE_RTF_HWM()
436 t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM);
437 #endif
438 #if CHIP_HAS_DSTREAM_PF()
439 t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF);
440 #endif
441 }
442
443 static void restore_arch_state(const struct thread_struct *t)
444 {
445 #if CHIP_HAS_SPLIT_INTR_MASK()
446 __insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask);
447 __insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32);
448 #else
449 __insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask);
450 #endif
451 __insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]);
452 __insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]);
453 __insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]);
454 __insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]);
455 __insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]);
456 __insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]);
457 __insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0);
458 #if CHIP_HAS_PROC_STATUS_SPR()
459 __insn_mtspr(SPR_PROC_STATUS, t->proc_status);
460 #endif
461 #if !CHIP_HAS_FIXED_INTVEC_BASE()
462 __insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base);
463 #endif
464 #if CHIP_HAS_TILE_RTF_HWM()
465 __insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm);
466 #endif
467 #if CHIP_HAS_DSTREAM_PF()
468 __insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf);
469 #endif
470 }
471
472
473 void _prepare_arch_switch(struct task_struct *next)
474 {
475 #if CHIP_HAS_SN_PROC()
476 int snctl;
477 #endif
478 #if CHIP_HAS_TILE_DMA()
479 struct tile_dma_state *dma = &current->thread.tile_dma_state;
480 if (dma->enabled)
481 save_tile_dma_state(dma);
482 #endif
483 #if CHIP_HAS_SN_PROC()
484 /*
485 * Suspend the static network processor if it was running.
486 * We do not suspend the fabric itself, just like we don't
487 * try to suspend the UDN.
488 */
489 snctl = __insn_mfspr(SPR_SNCTL);
490 current->thread.sn_proc_running =
491 (snctl & SPR_SNCTL__FRZPROC_MASK) == 0;
492 if (current->thread.sn_proc_running)
493 __insn_mtspr(SPR_SNCTL, snctl | SPR_SNCTL__FRZPROC_MASK);
494 #endif
495 }
496
497
498 struct task_struct *__sched _switch_to(struct task_struct *prev,
499 struct task_struct *next)
500 {
501 /* DMA state is already saved; save off other arch state. */
502 save_arch_state(&prev->thread);
503
504 #if CHIP_HAS_TILE_DMA()
505 /*
506 * Restore DMA in new task if desired.
507 * Note that it is only safe to restart here since interrupts
508 * are disabled, so we can't take any DMATLB miss or access
509 * interrupts before we have finished switching stacks.
510 */
511 if (next->thread.tile_dma_state.enabled) {
512 restore_tile_dma_state(&next->thread);
513 grant_dma_mpls();
514 } else {
515 restrict_dma_mpls();
516 }
517 #endif
518
519 /* Restore other arch state. */
520 restore_arch_state(&next->thread);
521
522 #if CHIP_HAS_SN_PROC()
523 /*
524 * Restart static network processor in the new process
525 * if it was running before.
526 */
527 if (next->thread.sn_proc_running) {
528 int snctl = __insn_mfspr(SPR_SNCTL);
529 __insn_mtspr(SPR_SNCTL, snctl & ~SPR_SNCTL__FRZPROC_MASK);
530 }
531 #endif
532
533 #ifdef CONFIG_HARDWALL
534 /* Enable or disable access to the network registers appropriately. */
535 if (prev->thread.hardwall != NULL) {
536 if (next->thread.hardwall == NULL)
537 restrict_network_mpls();
538 } else if (next->thread.hardwall != NULL) {
539 grant_network_mpls();
540 }
541 #endif
542
543 /*
544 * Switch kernel SP, PC, and callee-saved registers.
545 * In the context of the new task, return the old task pointer
546 * (i.e. the task that actually called __switch_to).
547 * Pass the value to use for SYSTEM_SAVE_K_0 when we reset our sp.
548 */
549 return __switch_to(prev, next, next_current_ksp0(next));
550 }
551
552 /*
553 * This routine is called on return from interrupt if any of the
554 * TIF_WORK_MASK flags are set in thread_info->flags. It is
555 * entered with interrupts disabled so we don't miss an event
556 * that modified the thread_info flags. If any flag is set, we
557 * handle it and return, and the calling assembly code will
558 * re-disable interrupts, reload the thread flags, and call back
559 * if more flags need to be handled.
560 *
561 * We return whether we need to check the thread_info flags again
562 * or not. Note that we don't clear TIF_SINGLESTEP here, so it's
563 * important that it be tested last, and then claim that we don't
564 * need to recheck the flags.
565 */
566 int do_work_pending(struct pt_regs *regs, u32 thread_info_flags)
567 {
568 if (thread_info_flags & _TIF_NEED_RESCHED) {
569 schedule();
570 return 1;
571 }
572 #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
573 if (thread_info_flags & _TIF_ASYNC_TLB) {
574 do_async_page_fault(regs);
575 return 1;
576 }
577 #endif
578 if (thread_info_flags & _TIF_SIGPENDING) {
579 do_signal(regs);
580 return 1;
581 }
582 if (thread_info_flags & _TIF_NOTIFY_RESUME) {
583 clear_thread_flag(TIF_NOTIFY_RESUME);
584 tracehook_notify_resume(regs);
585 if (current->replacement_session_keyring)
586 key_replace_session_keyring();
587 return 1;
588 }
589 if (thread_info_flags & _TIF_SINGLESTEP) {
590 if ((regs->ex1 & SPR_EX_CONTEXT_1_1__PL_MASK) == 0)
591 single_step_once(regs);
592 return 0;
593 }
594 panic("work_pending: bad flags %#x\n", thread_info_flags);
595 }
596
597 /* Note there is an implicit fifth argument if (clone_flags & CLONE_SETTLS). */
598 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
599 void __user *, parent_tidptr, void __user *, child_tidptr,
600 struct pt_regs *, regs)
601 {
602 if (!newsp)
603 newsp = regs->sp;
604 return do_fork(clone_flags, newsp, regs, 0,
605 parent_tidptr, child_tidptr);
606 }
607
608 /*
609 * sys_execve() executes a new program.
610 */
611 SYSCALL_DEFINE4(execve, const char __user *, path,
612 const char __user *const __user *, argv,
613 const char __user *const __user *, envp,
614 struct pt_regs *, regs)
615 {
616 long error;
617 char *filename;
618
619 filename = getname(path);
620 error = PTR_ERR(filename);
621 if (IS_ERR(filename))
622 goto out;
623 error = do_execve(filename, argv, envp, regs);
624 putname(filename);
625 if (error == 0)
626 single_step_execve();
627 out:
628 return error;
629 }
630
631 #ifdef CONFIG_COMPAT
632 long compat_sys_execve(const char __user *path,
633 compat_uptr_t __user *argv,
634 compat_uptr_t __user *envp,
635 struct pt_regs *regs)
636 {
637 long error;
638 char *filename;
639
640 filename = getname(path);
641 error = PTR_ERR(filename);
642 if (IS_ERR(filename))
643 goto out;
644 error = compat_do_execve(filename, argv, envp, regs);
645 putname(filename);
646 if (error == 0)
647 single_step_execve();
648 out:
649 return error;
650 }
651 #endif
652
653 unsigned long get_wchan(struct task_struct *p)
654 {
655 struct KBacktraceIterator kbt;
656
657 if (!p || p == current || p->state == TASK_RUNNING)
658 return 0;
659
660 for (KBacktraceIterator_init(&kbt, p, NULL);
661 !KBacktraceIterator_end(&kbt);
662 KBacktraceIterator_next(&kbt)) {
663 if (!in_sched_functions(kbt.it.pc))
664 return kbt.it.pc;
665 }
666
667 return 0;
668 }
669
670 /*
671 * We pass in lr as zero (cleared in kernel_thread) and the caller
672 * part of the backtrace ABI on the stack also zeroed (in copy_thread)
673 * so that backtraces will stop with this function.
674 * Note that we don't use r0, since copy_thread() clears it.
675 */
676 static void start_kernel_thread(int dummy, int (*fn)(int), int arg)
677 {
678 do_exit(fn(arg));
679 }
680
681 /*
682 * Create a kernel thread
683 */
684 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
685 {
686 struct pt_regs regs;
687
688 memset(&regs, 0, sizeof(regs));
689 regs.ex1 = PL_ICS_EX1(KERNEL_PL, 0); /* run at kernel PL, no ICS */
690 regs.pc = (long) start_kernel_thread;
691 regs.flags = PT_FLAGS_CALLER_SAVES; /* need to restore r1 and r2 */
692 regs.regs[1] = (long) fn; /* function pointer */
693 regs.regs[2] = (long) arg; /* parameter register */
694
695 /* Ok, create the new process.. */
696 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs,
697 0, NULL, NULL);
698 }
699 EXPORT_SYMBOL(kernel_thread);
700
701 /* Flush thread state. */
702 void flush_thread(void)
703 {
704 /* Nothing */
705 }
706
707 /*
708 * Free current thread data structures etc..
709 */
710 void exit_thread(void)
711 {
712 /* Nothing */
713 }
714
715 void show_regs(struct pt_regs *regs)
716 {
717 struct task_struct *tsk = validate_current();
718 int i;
719
720 pr_err("\n");
721 pr_err(" Pid: %d, comm: %20s, CPU: %d\n",
722 tsk->pid, tsk->comm, smp_processor_id());
723 #ifdef __tilegx__
724 for (i = 0; i < 51; i += 3)
725 pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
726 i, regs->regs[i], i+1, regs->regs[i+1],
727 i+2, regs->regs[i+2]);
728 pr_err(" r51: "REGFMT" r52: "REGFMT" tp : "REGFMT"\n",
729 regs->regs[51], regs->regs[52], regs->tp);
730 pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr);
731 #else
732 for (i = 0; i < 52; i += 4)
733 pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT
734 " r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
735 i, regs->regs[i], i+1, regs->regs[i+1],
736 i+2, regs->regs[i+2], i+3, regs->regs[i+3]);
737 pr_err(" r52: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n",
738 regs->regs[52], regs->tp, regs->sp, regs->lr);
739 #endif
740 pr_err(" pc : "REGFMT" ex1: %ld faultnum: %ld\n",
741 regs->pc, regs->ex1, regs->faultnum);
742
743 dump_stack_regs(regs);
744 }
This page took 0.045846 seconds and 5 git commands to generate.