atomic: use <linux/atomic.h>
[deliverable/linux.git] / arch / tile / mm / init.c
1 /*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright 2010 Tilera Corporation. All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation, version 2.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for
13 * more details.
14 */
15
16 #include <linux/module.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/string.h>
22 #include <linux/types.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/mm.h>
26 #include <linux/hugetlb.h>
27 #include <linux/swap.h>
28 #include <linux/smp.h>
29 #include <linux/init.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/poison.h>
33 #include <linux/bootmem.h>
34 #include <linux/slab.h>
35 #include <linux/proc_fs.h>
36 #include <linux/efi.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/processor.h>
41 #include <asm/system.h>
42 #include <asm/pgtable.h>
43 #include <asm/pgalloc.h>
44 #include <asm/dma.h>
45 #include <asm/fixmap.h>
46 #include <asm/tlb.h>
47 #include <asm/tlbflush.h>
48 #include <asm/sections.h>
49 #include <asm/setup.h>
50 #include <asm/homecache.h>
51 #include <hv/hypervisor.h>
52 #include <arch/chip.h>
53
54 #include "migrate.h"
55
56 #define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
57
58 #ifndef __tilegx__
59 unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
60 EXPORT_SYMBOL(VMALLOC_RESERVE);
61 #endif
62
63 /* Create an L2 page table */
64 static pte_t * __init alloc_pte(void)
65 {
66 return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
67 }
68
69 /*
70 * L2 page tables per controller. We allocate these all at once from
71 * the bootmem allocator and store them here. This saves on kernel L2
72 * page table memory, compared to allocating a full 64K page per L2
73 * page table, and also means that in cases where we use huge pages,
74 * we are guaranteed to later be able to shatter those huge pages and
75 * switch to using these page tables instead, without requiring
76 * further allocation. Each l2_ptes[] entry points to the first page
77 * table for the first hugepage-size piece of memory on the
78 * controller; other page tables are just indexed directly, i.e. the
79 * L2 page tables are contiguous in memory for each controller.
80 */
81 static pte_t *l2_ptes[MAX_NUMNODES];
82 static int num_l2_ptes[MAX_NUMNODES];
83
84 static void init_prealloc_ptes(int node, int pages)
85 {
86 BUG_ON(pages & (HV_L2_ENTRIES-1));
87 if (pages) {
88 num_l2_ptes[node] = pages;
89 l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
90 HV_PAGE_TABLE_ALIGN, 0);
91 }
92 }
93
94 pte_t *get_prealloc_pte(unsigned long pfn)
95 {
96 int node = pfn_to_nid(pfn);
97 pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
98 BUG_ON(node >= MAX_NUMNODES);
99 BUG_ON(pfn >= num_l2_ptes[node]);
100 return &l2_ptes[node][pfn];
101 }
102
103 /*
104 * What caching do we expect pages from the heap to have when
105 * they are allocated during bootup? (Once we've installed the
106 * "real" swapper_pg_dir.)
107 */
108 static int initial_heap_home(void)
109 {
110 #if CHIP_HAS_CBOX_HOME_MAP()
111 if (hash_default)
112 return PAGE_HOME_HASH;
113 #endif
114 return smp_processor_id();
115 }
116
117 /*
118 * Place a pointer to an L2 page table in a middle page
119 * directory entry.
120 */
121 static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
122 {
123 phys_addr_t pa = __pa(page_table);
124 unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
125 pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
126 BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
127 pteval = pte_set_home(pteval, initial_heap_home());
128 *(pte_t *)pmd = pteval;
129 if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
130 BUG();
131 }
132
133 #ifdef __tilegx__
134
135 #if HV_L1_SIZE != HV_L2_SIZE
136 # error Rework assumption that L1 and L2 page tables are same size.
137 #endif
138
139 /* Since pmd_t arrays and pte_t arrays are the same size, just use casts. */
140 static inline pmd_t *alloc_pmd(void)
141 {
142 return (pmd_t *)alloc_pte();
143 }
144
145 static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
146 {
147 assign_pte((pmd_t *)pud, (pte_t *)pmd);
148 }
149
150 #endif /* __tilegx__ */
151
152 /* Replace the given pmd with a full PTE table. */
153 void __init shatter_pmd(pmd_t *pmd)
154 {
155 pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
156 assign_pte(pmd, pte);
157 }
158
159 #ifdef CONFIG_HIGHMEM
160 /*
161 * This function initializes a certain range of kernel virtual memory
162 * with new bootmem page tables, everywhere page tables are missing in
163 * the given range.
164 */
165
166 /*
167 * NOTE: The pagetables are allocated contiguous on the physical space
168 * so we can cache the place of the first one and move around without
169 * checking the pgd every time.
170 */
171 static void __init page_table_range_init(unsigned long start,
172 unsigned long end, pgd_t *pgd_base)
173 {
174 pgd_t *pgd;
175 int pgd_idx;
176 unsigned long vaddr;
177
178 vaddr = start;
179 pgd_idx = pgd_index(vaddr);
180 pgd = pgd_base + pgd_idx;
181
182 for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) {
183 pmd_t *pmd = pmd_offset(pud_offset(pgd, vaddr), vaddr);
184 if (pmd_none(*pmd))
185 assign_pte(pmd, alloc_pte());
186 vaddr += PMD_SIZE;
187 }
188 }
189 #endif /* CONFIG_HIGHMEM */
190
191
192 #if CHIP_HAS_CBOX_HOME_MAP()
193
194 static int __initdata ktext_hash = 1; /* .text pages */
195 static int __initdata kdata_hash = 1; /* .data and .bss pages */
196 int __write_once hash_default = 1; /* kernel allocator pages */
197 EXPORT_SYMBOL(hash_default);
198 int __write_once kstack_hash = 1; /* if no homecaching, use h4h */
199 #endif /* CHIP_HAS_CBOX_HOME_MAP */
200
201 /*
202 * CPUs to use to for striping the pages of kernel data. If hash-for-home
203 * is available, this is only relevant if kcache_hash sets up the
204 * .data and .bss to be page-homed, and we don't want the default mode
205 * of using the full set of kernel cpus for the striping.
206 */
207 static __initdata struct cpumask kdata_mask;
208 static __initdata int kdata_arg_seen;
209
210 int __write_once kdata_huge; /* if no homecaching, small pages */
211
212
213 /* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
214 static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
215 {
216 prot = pte_set_home(prot, home);
217 #if CHIP_HAS_CBOX_HOME_MAP()
218 if (home == PAGE_HOME_IMMUTABLE) {
219 if (ktext_hash)
220 prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
221 else
222 prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
223 }
224 #endif
225 return prot;
226 }
227
228 /*
229 * For a given kernel data VA, how should it be cached?
230 * We return the complete pgprot_t with caching bits set.
231 */
232 static pgprot_t __init init_pgprot(ulong address)
233 {
234 int cpu;
235 unsigned long page;
236 enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
237
238 #if CHIP_HAS_CBOX_HOME_MAP()
239 /* For kdata=huge, everything is just hash-for-home. */
240 if (kdata_huge)
241 return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
242 #endif
243
244 /* We map the aliased pages of permanent text inaccessible. */
245 if (address < (ulong) _sinittext - CODE_DELTA)
246 return PAGE_NONE;
247
248 /*
249 * We map read-only data non-coherent for performance. We could
250 * use neighborhood caching on TILE64, but it's not clear it's a win.
251 */
252 if ((address >= (ulong) __start_rodata &&
253 address < (ulong) __end_rodata) ||
254 address == (ulong) empty_zero_page) {
255 return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
256 }
257
258 /* As a performance optimization, keep the boot init stack here. */
259 if (address >= (ulong)&init_thread_union &&
260 address < (ulong)&init_thread_union + THREAD_SIZE)
261 return construct_pgprot(PAGE_KERNEL, smp_processor_id());
262
263 #ifndef __tilegx__
264 #if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
265 /* Force the atomic_locks[] array page to be hash-for-home. */
266 if (address == (ulong) atomic_locks)
267 return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
268 #endif
269 #endif
270
271 /*
272 * Everything else that isn't data or bss is heap, so mark it
273 * with the initial heap home (hash-for-home, or this cpu). This
274 * includes any addresses after the loaded image and any address before
275 * _einitdata, since we already captured the case of text before
276 * _sinittext, and __pa(einittext) is approximately __pa(sinitdata).
277 *
278 * All the LOWMEM pages that we mark this way will get their
279 * struct page homecache properly marked later, in set_page_homes().
280 * The HIGHMEM pages we leave with a default zero for their
281 * homes, but with a zero free_time we don't have to actually
282 * do a flush action the first time we use them, either.
283 */
284 if (address >= (ulong) _end || address < (ulong) _einitdata)
285 return construct_pgprot(PAGE_KERNEL, initial_heap_home());
286
287 #if CHIP_HAS_CBOX_HOME_MAP()
288 /* Use hash-for-home if requested for data/bss. */
289 if (kdata_hash)
290 return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
291 #endif
292
293 /*
294 * Make the w1data homed like heap to start with, to avoid
295 * making it part of the page-striped data area when we're just
296 * going to convert it to read-only soon anyway.
297 */
298 if (address >= (ulong)__w1data_begin && address < (ulong)__w1data_end)
299 return construct_pgprot(PAGE_KERNEL, initial_heap_home());
300
301 /*
302 * Otherwise we just hand out consecutive cpus. To avoid
303 * requiring this function to hold state, we just walk forward from
304 * _sdata by PAGE_SIZE, skipping the readonly and init data, to reach
305 * the requested address, while walking cpu home around kdata_mask.
306 * This is typically no more than a dozen or so iterations.
307 */
308 page = (((ulong)__w1data_end) + PAGE_SIZE - 1) & PAGE_MASK;
309 BUG_ON(address < page || address >= (ulong)_end);
310 cpu = cpumask_first(&kdata_mask);
311 for (; page < address; page += PAGE_SIZE) {
312 if (page >= (ulong)&init_thread_union &&
313 page < (ulong)&init_thread_union + THREAD_SIZE)
314 continue;
315 if (page == (ulong)empty_zero_page)
316 continue;
317 #ifndef __tilegx__
318 #if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
319 if (page == (ulong)atomic_locks)
320 continue;
321 #endif
322 #endif
323 cpu = cpumask_next(cpu, &kdata_mask);
324 if (cpu == NR_CPUS)
325 cpu = cpumask_first(&kdata_mask);
326 }
327 return construct_pgprot(PAGE_KERNEL, cpu);
328 }
329
330 /*
331 * This function sets up how we cache the kernel text. If we have
332 * hash-for-home support, normally that is used instead (see the
333 * kcache_hash boot flag for more information). But if we end up
334 * using a page-based caching technique, this option sets up the
335 * details of that. In addition, the "ktext=nocache" option may
336 * always be used to disable local caching of text pages, if desired.
337 */
338
339 static int __initdata ktext_arg_seen;
340 static int __initdata ktext_small;
341 static int __initdata ktext_local;
342 static int __initdata ktext_all;
343 static int __initdata ktext_nondataplane;
344 static int __initdata ktext_nocache;
345 static struct cpumask __initdata ktext_mask;
346
347 static int __init setup_ktext(char *str)
348 {
349 if (str == NULL)
350 return -EINVAL;
351
352 /* If you have a leading "nocache", turn off ktext caching */
353 if (strncmp(str, "nocache", 7) == 0) {
354 ktext_nocache = 1;
355 pr_info("ktext: disabling local caching of kernel text\n");
356 str += 7;
357 if (*str == ',')
358 ++str;
359 if (*str == '\0')
360 return 0;
361 }
362
363 ktext_arg_seen = 1;
364
365 /* Default setting on Tile64: use a huge page */
366 if (strcmp(str, "huge") == 0)
367 pr_info("ktext: using one huge locally cached page\n");
368
369 /* Pay TLB cost but get no cache benefit: cache small pages locally */
370 else if (strcmp(str, "local") == 0) {
371 ktext_small = 1;
372 ktext_local = 1;
373 pr_info("ktext: using small pages with local caching\n");
374 }
375
376 /* Neighborhood cache ktext pages on all cpus. */
377 else if (strcmp(str, "all") == 0) {
378 ktext_small = 1;
379 ktext_all = 1;
380 pr_info("ktext: using maximal caching neighborhood\n");
381 }
382
383
384 /* Neighborhood ktext pages on specified mask */
385 else if (cpulist_parse(str, &ktext_mask) == 0) {
386 char buf[NR_CPUS * 5];
387 cpulist_scnprintf(buf, sizeof(buf), &ktext_mask);
388 if (cpumask_weight(&ktext_mask) > 1) {
389 ktext_small = 1;
390 pr_info("ktext: using caching neighborhood %s "
391 "with small pages\n", buf);
392 } else {
393 pr_info("ktext: caching on cpu %s with one huge page\n",
394 buf);
395 }
396 }
397
398 else if (*str)
399 return -EINVAL;
400
401 return 0;
402 }
403
404 early_param("ktext", setup_ktext);
405
406
407 static inline pgprot_t ktext_set_nocache(pgprot_t prot)
408 {
409 if (!ktext_nocache)
410 prot = hv_pte_set_nc(prot);
411 #if CHIP_HAS_NC_AND_NOALLOC_BITS()
412 else
413 prot = hv_pte_set_no_alloc_l2(prot);
414 #endif
415 return prot;
416 }
417
418 #ifndef __tilegx__
419 static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
420 {
421 return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
422 }
423 #else
424 static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
425 {
426 pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
427 if (pud_none(*pud))
428 assign_pmd(pud, alloc_pmd());
429 return pmd_offset(pud, va);
430 }
431 #endif
432
433 /* Temporary page table we use for staging. */
434 static pgd_t pgtables[PTRS_PER_PGD]
435 __attribute__((aligned(HV_PAGE_TABLE_ALIGN)));
436
437 /*
438 * This maps the physical memory to kernel virtual address space, a total
439 * of max_low_pfn pages, by creating page tables starting from address
440 * PAGE_OFFSET.
441 *
442 * This routine transitions us from using a set of compiled-in large
443 * pages to using some more precise caching, including removing access
444 * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
445 * marking read-only data as locally cacheable, striping the remaining
446 * .data and .bss across all the available tiles, and removing access
447 * to pages above the top of RAM (thus ensuring a page fault from a bad
448 * virtual address rather than a hypervisor shoot down for accessing
449 * memory outside the assigned limits).
450 */
451 static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
452 {
453 unsigned long address, pfn;
454 pmd_t *pmd;
455 pte_t *pte;
456 int pte_ofs;
457 const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
458 struct cpumask kstripe_mask;
459 int rc, i;
460
461 #if CHIP_HAS_CBOX_HOME_MAP()
462 if (ktext_arg_seen && ktext_hash) {
463 pr_warning("warning: \"ktext\" boot argument ignored"
464 " if \"kcache_hash\" sets up text hash-for-home\n");
465 ktext_small = 0;
466 }
467
468 if (kdata_arg_seen && kdata_hash) {
469 pr_warning("warning: \"kdata\" boot argument ignored"
470 " if \"kcache_hash\" sets up data hash-for-home\n");
471 }
472
473 if (kdata_huge && !hash_default) {
474 pr_warning("warning: disabling \"kdata=huge\"; requires"
475 " kcache_hash=all or =allbutstack\n");
476 kdata_huge = 0;
477 }
478 #endif
479
480 /*
481 * Set up a mask for cpus to use for kernel striping.
482 * This is normally all cpus, but minus dataplane cpus if any.
483 * If the dataplane covers the whole chip, we stripe over
484 * the whole chip too.
485 */
486 cpumask_copy(&kstripe_mask, cpu_possible_mask);
487 if (!kdata_arg_seen)
488 kdata_mask = kstripe_mask;
489
490 /* Allocate and fill in L2 page tables */
491 for (i = 0; i < MAX_NUMNODES; ++i) {
492 #ifdef CONFIG_HIGHMEM
493 unsigned long end_pfn = node_lowmem_end_pfn[i];
494 #else
495 unsigned long end_pfn = node_end_pfn[i];
496 #endif
497 unsigned long end_huge_pfn = 0;
498
499 /* Pre-shatter the last huge page to allow per-cpu pages. */
500 if (kdata_huge)
501 end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);
502
503 pfn = node_start_pfn[i];
504
505 /* Allocate enough memory to hold L2 page tables for node. */
506 init_prealloc_ptes(i, end_pfn - pfn);
507
508 address = (unsigned long) pfn_to_kaddr(pfn);
509 while (pfn < end_pfn) {
510 BUG_ON(address & (HPAGE_SIZE-1));
511 pmd = get_pmd(pgtables, address);
512 pte = get_prealloc_pte(pfn);
513 if (pfn < end_huge_pfn) {
514 pgprot_t prot = init_pgprot(address);
515 *(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
516 for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
517 pfn++, pte_ofs++, address += PAGE_SIZE)
518 pte[pte_ofs] = pfn_pte(pfn, prot);
519 } else {
520 if (kdata_huge)
521 printk(KERN_DEBUG "pre-shattered huge"
522 " page at %#lx\n", address);
523 for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
524 pfn++, pte_ofs++, address += PAGE_SIZE) {
525 pgprot_t prot = init_pgprot(address);
526 pte[pte_ofs] = pfn_pte(pfn, prot);
527 }
528 assign_pte(pmd, pte);
529 }
530 }
531 }
532
533 /*
534 * Set or check ktext_map now that we have cpu_possible_mask
535 * and kstripe_mask to work with.
536 */
537 if (ktext_all)
538 cpumask_copy(&ktext_mask, cpu_possible_mask);
539 else if (ktext_nondataplane)
540 ktext_mask = kstripe_mask;
541 else if (!cpumask_empty(&ktext_mask)) {
542 /* Sanity-check any mask that was requested */
543 struct cpumask bad;
544 cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
545 cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
546 if (!cpumask_empty(&bad)) {
547 char buf[NR_CPUS * 5];
548 cpulist_scnprintf(buf, sizeof(buf), &bad);
549 pr_info("ktext: not using unavailable cpus %s\n", buf);
550 }
551 if (cpumask_empty(&ktext_mask)) {
552 pr_warning("ktext: no valid cpus; caching on %d.\n",
553 smp_processor_id());
554 cpumask_copy(&ktext_mask,
555 cpumask_of(smp_processor_id()));
556 }
557 }
558
559 address = MEM_SV_INTRPT;
560 pmd = get_pmd(pgtables, address);
561 if (ktext_small) {
562 /* Allocate an L2 PTE for the kernel text */
563 int cpu = 0;
564 pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
565 PAGE_HOME_IMMUTABLE);
566
567 if (ktext_local) {
568 if (ktext_nocache)
569 prot = hv_pte_set_mode(prot,
570 HV_PTE_MODE_UNCACHED);
571 else
572 prot = hv_pte_set_mode(prot,
573 HV_PTE_MODE_CACHE_NO_L3);
574 } else {
575 prot = hv_pte_set_mode(prot,
576 HV_PTE_MODE_CACHE_TILE_L3);
577 cpu = cpumask_first(&ktext_mask);
578
579 prot = ktext_set_nocache(prot);
580 }
581
582 BUG_ON(address != (unsigned long)_stext);
583 pfn = 0; /* code starts at PA 0 */
584 pte = alloc_pte();
585 for (pte_ofs = 0; address < (unsigned long)_einittext;
586 pfn++, pte_ofs++, address += PAGE_SIZE) {
587 if (!ktext_local) {
588 prot = set_remote_cache_cpu(prot, cpu);
589 cpu = cpumask_next(cpu, &ktext_mask);
590 if (cpu == NR_CPUS)
591 cpu = cpumask_first(&ktext_mask);
592 }
593 pte[pte_ofs] = pfn_pte(pfn, prot);
594 }
595 assign_pte(pmd, pte);
596 } else {
597 pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
598 pteval = pte_mkhuge(pteval);
599 #if CHIP_HAS_CBOX_HOME_MAP()
600 if (ktext_hash) {
601 pteval = hv_pte_set_mode(pteval,
602 HV_PTE_MODE_CACHE_HASH_L3);
603 pteval = ktext_set_nocache(pteval);
604 } else
605 #endif /* CHIP_HAS_CBOX_HOME_MAP() */
606 if (cpumask_weight(&ktext_mask) == 1) {
607 pteval = set_remote_cache_cpu(pteval,
608 cpumask_first(&ktext_mask));
609 pteval = hv_pte_set_mode(pteval,
610 HV_PTE_MODE_CACHE_TILE_L3);
611 pteval = ktext_set_nocache(pteval);
612 } else if (ktext_nocache)
613 pteval = hv_pte_set_mode(pteval,
614 HV_PTE_MODE_UNCACHED);
615 else
616 pteval = hv_pte_set_mode(pteval,
617 HV_PTE_MODE_CACHE_NO_L3);
618 *(pte_t *)pmd = pteval;
619 }
620
621 /* Set swapper_pgprot here so it is flushed to memory right away. */
622 swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);
623
624 /*
625 * Since we may be changing the caching of the stack and page
626 * table itself, we invoke an assembly helper to do the
627 * following steps:
628 *
629 * - flush the cache so we start with an empty slate
630 * - install pgtables[] as the real page table
631 * - flush the TLB so the new page table takes effect
632 */
633 rc = flush_and_install_context(__pa(pgtables),
634 init_pgprot((unsigned long)pgtables),
635 __get_cpu_var(current_asid),
636 cpumask_bits(my_cpu_mask));
637 BUG_ON(rc != 0);
638
639 /* Copy the page table back to the normal swapper_pg_dir. */
640 memcpy(pgd_base, pgtables, sizeof(pgtables));
641 __install_page_table(pgd_base, __get_cpu_var(current_asid),
642 swapper_pgprot);
643
644 /*
645 * We just read swapper_pgprot and thus brought it into the cache,
646 * with its new home & caching mode. When we start the other CPUs,
647 * they're going to reference swapper_pgprot via their initial fake
648 * VA-is-PA mappings, which cache everything locally. At that
649 * time, if it's in our cache with a conflicting home, the
650 * simulator's coherence checker will complain. So, flush it out
651 * of our cache; we're not going to ever use it again anyway.
652 */
653 __insn_finv(&swapper_pgprot);
654 }
655
656 /*
657 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
658 * is valid. The argument is a physical page number.
659 *
660 * On Tile, the only valid things for which we can just hand out unchecked
661 * PTEs are the kernel code and data. Anything else might change its
662 * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
663 * Note that init_thread_union is released to heap soon after boot,
664 * so we include it in the init data.
665 *
666 * For TILE-Gx, we might want to consider allowing access to PA
667 * regions corresponding to PCI space, etc.
668 */
669 int devmem_is_allowed(unsigned long pagenr)
670 {
671 return pagenr < kaddr_to_pfn(_end) &&
672 !(pagenr >= kaddr_to_pfn(&init_thread_union) ||
673 pagenr < kaddr_to_pfn(_einitdata)) &&
674 !(pagenr >= kaddr_to_pfn(_sinittext) ||
675 pagenr <= kaddr_to_pfn(_einittext-1));
676 }
677
678 #ifdef CONFIG_HIGHMEM
679 static void __init permanent_kmaps_init(pgd_t *pgd_base)
680 {
681 pgd_t *pgd;
682 pud_t *pud;
683 pmd_t *pmd;
684 pte_t *pte;
685 unsigned long vaddr;
686
687 vaddr = PKMAP_BASE;
688 page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
689
690 pgd = swapper_pg_dir + pgd_index(vaddr);
691 pud = pud_offset(pgd, vaddr);
692 pmd = pmd_offset(pud, vaddr);
693 pte = pte_offset_kernel(pmd, vaddr);
694 pkmap_page_table = pte;
695 }
696 #endif /* CONFIG_HIGHMEM */
697
698
699 static void __init init_free_pfn_range(unsigned long start, unsigned long end)
700 {
701 unsigned long pfn;
702 struct page *page = pfn_to_page(start);
703
704 for (pfn = start; pfn < end; ) {
705 /* Optimize by freeing pages in large batches */
706 int order = __ffs(pfn);
707 int count, i;
708 struct page *p;
709
710 if (order >= MAX_ORDER)
711 order = MAX_ORDER-1;
712 count = 1 << order;
713 while (pfn + count > end) {
714 count >>= 1;
715 --order;
716 }
717 for (p = page, i = 0; i < count; ++i, ++p) {
718 __ClearPageReserved(p);
719 /*
720 * Hacky direct set to avoid unnecessary
721 * lock take/release for EVERY page here.
722 */
723 p->_count.counter = 0;
724 p->_mapcount.counter = -1;
725 }
726 init_page_count(page);
727 __free_pages(page, order);
728 totalram_pages += count;
729
730 page += count;
731 pfn += count;
732 }
733 }
734
735 static void __init set_non_bootmem_pages_init(void)
736 {
737 struct zone *z;
738 for_each_zone(z) {
739 unsigned long start, end;
740 int nid = z->zone_pgdat->node_id;
741 int idx = zone_idx(z);
742
743 start = z->zone_start_pfn;
744 if (start == 0)
745 continue; /* bootmem */
746 end = start + z->spanned_pages;
747 if (idx == ZONE_NORMAL) {
748 BUG_ON(start != node_start_pfn[nid]);
749 start = node_free_pfn[nid];
750 }
751 #ifdef CONFIG_HIGHMEM
752 if (idx == ZONE_HIGHMEM)
753 totalhigh_pages += z->spanned_pages;
754 #endif
755 if (kdata_huge) {
756 unsigned long percpu_pfn = node_percpu_pfn[nid];
757 if (start < percpu_pfn && end > percpu_pfn)
758 end = percpu_pfn;
759 }
760 #ifdef CONFIG_PCI
761 if (start <= pci_reserve_start_pfn &&
762 end > pci_reserve_start_pfn) {
763 if (end > pci_reserve_end_pfn)
764 init_free_pfn_range(pci_reserve_end_pfn, end);
765 end = pci_reserve_start_pfn;
766 }
767 #endif
768 init_free_pfn_range(start, end);
769 }
770 }
771
772 /*
773 * paging_init() sets up the page tables - note that all of lowmem is
774 * already mapped by head.S.
775 */
776 void __init paging_init(void)
777 {
778 #ifdef CONFIG_HIGHMEM
779 unsigned long vaddr, end;
780 #endif
781 #ifdef __tilegx__
782 pud_t *pud;
783 #endif
784 pgd_t *pgd_base = swapper_pg_dir;
785
786 kernel_physical_mapping_init(pgd_base);
787
788 #ifdef CONFIG_HIGHMEM
789 /*
790 * Fixed mappings, only the page table structure has to be
791 * created - mappings will be set by set_fixmap():
792 */
793 vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
794 end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK;
795 page_table_range_init(vaddr, end, pgd_base);
796 permanent_kmaps_init(pgd_base);
797 #endif
798
799 #ifdef __tilegx__
800 /*
801 * Since GX allocates just one pmd_t array worth of vmalloc space,
802 * we go ahead and allocate it statically here, then share it
803 * globally. As a result we don't have to worry about any task
804 * changing init_mm once we get up and running, and there's no
805 * need for e.g. vmalloc_sync_all().
806 */
807 BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END));
808 pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
809 assign_pmd(pud, alloc_pmd());
810 #endif
811 }
812
813
814 /*
815 * Walk the kernel page tables and derive the page_home() from
816 * the PTEs, so that set_pte() can properly validate the caching
817 * of all PTEs it sees.
818 */
819 void __init set_page_homes(void)
820 {
821 }
822
823 static void __init set_max_mapnr_init(void)
824 {
825 #ifdef CONFIG_FLATMEM
826 max_mapnr = max_low_pfn;
827 #endif
828 }
829
830 void __init mem_init(void)
831 {
832 int codesize, datasize, initsize;
833 int i;
834 #ifndef __tilegx__
835 void *last;
836 #endif
837
838 #ifdef CONFIG_FLATMEM
839 if (!mem_map)
840 BUG();
841 #endif
842
843 #ifdef CONFIG_HIGHMEM
844 /* check that fixmap and pkmap do not overlap */
845 if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
846 pr_err("fixmap and kmap areas overlap"
847 " - this will crash\n");
848 pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
849 PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1),
850 FIXADDR_START);
851 BUG();
852 }
853 #endif
854
855 set_max_mapnr_init();
856
857 /* this will put all bootmem onto the freelists */
858 totalram_pages += free_all_bootmem();
859
860 /* count all remaining LOWMEM and give all HIGHMEM to page allocator */
861 set_non_bootmem_pages_init();
862
863 codesize = (unsigned long)&_etext - (unsigned long)&_text;
864 datasize = (unsigned long)&_end - (unsigned long)&_sdata;
865 initsize = (unsigned long)&_einittext - (unsigned long)&_sinittext;
866 initsize += (unsigned long)&_einitdata - (unsigned long)&_sinitdata;
867
868 pr_info("Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n",
869 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
870 num_physpages << (PAGE_SHIFT-10),
871 codesize >> 10,
872 datasize >> 10,
873 initsize >> 10,
874 (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
875 );
876
877 /*
878 * In debug mode, dump some interesting memory mappings.
879 */
880 #ifdef CONFIG_HIGHMEM
881 printk(KERN_DEBUG " KMAP %#lx - %#lx\n",
882 FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
883 printk(KERN_DEBUG " PKMAP %#lx - %#lx\n",
884 PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
885 #endif
886 #ifdef CONFIG_HUGEVMAP
887 printk(KERN_DEBUG " HUGEMAP %#lx - %#lx\n",
888 HUGE_VMAP_BASE, HUGE_VMAP_END - 1);
889 #endif
890 printk(KERN_DEBUG " VMALLOC %#lx - %#lx\n",
891 _VMALLOC_START, _VMALLOC_END - 1);
892 #ifdef __tilegx__
893 for (i = MAX_NUMNODES-1; i >= 0; --i) {
894 struct pglist_data *node = &node_data[i];
895 if (node->node_present_pages) {
896 unsigned long start = (unsigned long)
897 pfn_to_kaddr(node->node_start_pfn);
898 unsigned long end = start +
899 (node->node_present_pages << PAGE_SHIFT);
900 printk(KERN_DEBUG " MEM%d %#lx - %#lx\n",
901 i, start, end - 1);
902 }
903 }
904 #else
905 last = high_memory;
906 for (i = MAX_NUMNODES-1; i >= 0; --i) {
907 if ((unsigned long)vbase_map[i] != -1UL) {
908 printk(KERN_DEBUG " LOWMEM%d %#lx - %#lx\n",
909 i, (unsigned long) (vbase_map[i]),
910 (unsigned long) (last-1));
911 last = vbase_map[i];
912 }
913 }
914 #endif
915
916 #ifndef __tilegx__
917 /*
918 * Convert from using one lock for all atomic operations to
919 * one per cpu.
920 */
921 __init_atomic_per_cpu();
922 #endif
923 }
924
925 /*
926 * this is for the non-NUMA, single node SMP system case.
927 * Specifically, in the case of x86, we will always add
928 * memory to the highmem for now.
929 */
930 #ifndef CONFIG_NEED_MULTIPLE_NODES
931 int arch_add_memory(u64 start, u64 size)
932 {
933 struct pglist_data *pgdata = &contig_page_data;
934 struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
935 unsigned long start_pfn = start >> PAGE_SHIFT;
936 unsigned long nr_pages = size >> PAGE_SHIFT;
937
938 return __add_pages(zone, start_pfn, nr_pages);
939 }
940
941 int remove_memory(u64 start, u64 size)
942 {
943 return -EINVAL;
944 }
945 #endif
946
947 struct kmem_cache *pgd_cache;
948
949 void __init pgtable_cache_init(void)
950 {
951 pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL);
952 if (!pgd_cache)
953 panic("pgtable_cache_init(): Cannot create pgd cache");
954 }
955
956 #if !CHIP_HAS_COHERENT_LOCAL_CACHE()
957 /*
958 * The __w1data area holds data that is only written during initialization,
959 * and is read-only and thus freely cacheable thereafter. Fix the page
960 * table entries that cover that region accordingly.
961 */
962 static void mark_w1data_ro(void)
963 {
964 /* Loop over page table entries */
965 unsigned long addr = (unsigned long)__w1data_begin;
966 BUG_ON((addr & (PAGE_SIZE-1)) != 0);
967 for (; addr <= (unsigned long)__w1data_end - 1; addr += PAGE_SIZE) {
968 unsigned long pfn = kaddr_to_pfn((void *)addr);
969 pte_t *ptep = virt_to_pte(NULL, addr);
970 BUG_ON(pte_huge(*ptep)); /* not relevant for kdata_huge */
971 set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL_RO));
972 }
973 }
974 #endif
975
976 #ifdef CONFIG_DEBUG_PAGEALLOC
977 static long __write_once initfree;
978 #else
979 static long __write_once initfree = 1;
980 #endif
981
982 /* Select whether to free (1) or mark unusable (0) the __init pages. */
983 static int __init set_initfree(char *str)
984 {
985 long val;
986 if (strict_strtol(str, 0, &val) == 0) {
987 initfree = val;
988 pr_info("initfree: %s free init pages\n",
989 initfree ? "will" : "won't");
990 }
991 return 1;
992 }
993 __setup("initfree=", set_initfree);
994
995 static void free_init_pages(char *what, unsigned long begin, unsigned long end)
996 {
997 unsigned long addr = (unsigned long) begin;
998
999 if (kdata_huge && !initfree) {
1000 pr_warning("Warning: ignoring initfree=0:"
1001 " incompatible with kdata=huge\n");
1002 initfree = 1;
1003 }
1004 end = (end + PAGE_SIZE - 1) & PAGE_MASK;
1005 local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
1006 for (addr = begin; addr < end; addr += PAGE_SIZE) {
1007 /*
1008 * Note we just reset the home here directly in the
1009 * page table. We know this is safe because our caller
1010 * just flushed the caches on all the other cpus,
1011 * and they won't be touching any of these pages.
1012 */
1013 int pfn = kaddr_to_pfn((void *)addr);
1014 struct page *page = pfn_to_page(pfn);
1015 pte_t *ptep = virt_to_pte(NULL, addr);
1016 if (!initfree) {
1017 /*
1018 * If debugging page accesses then do not free
1019 * this memory but mark them not present - any
1020 * buggy init-section access will create a
1021 * kernel page fault:
1022 */
1023 pte_clear(&init_mm, addr, ptep);
1024 continue;
1025 }
1026 __ClearPageReserved(page);
1027 init_page_count(page);
1028 if (pte_huge(*ptep))
1029 BUG_ON(!kdata_huge);
1030 else
1031 set_pte_at(&init_mm, addr, ptep,
1032 pfn_pte(pfn, PAGE_KERNEL));
1033 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1034 free_page(addr);
1035 totalram_pages++;
1036 }
1037 pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
1038 }
1039
1040 void free_initmem(void)
1041 {
1042 const unsigned long text_delta = MEM_SV_INTRPT - PAGE_OFFSET;
1043
1044 /*
1045 * Evict the dirty initdata on the boot cpu, evict the w1data
1046 * wherever it's homed, and evict all the init code everywhere.
1047 * We are guaranteed that no one will touch the init pages any
1048 * more, and although other cpus may be touching the w1data,
1049 * we only actually change the caching on tile64, which won't
1050 * be keeping local copies in the other tiles' caches anyway.
1051 */
1052 homecache_evict(&cpu_cacheable_map);
1053
1054 /* Free the data pages that we won't use again after init. */
1055 free_init_pages("unused kernel data",
1056 (unsigned long)_sinitdata,
1057 (unsigned long)_einitdata);
1058
1059 /*
1060 * Free the pages mapped from 0xc0000000 that correspond to code
1061 * pages from MEM_SV_INTRPT that we won't use again after init.
1062 */
1063 free_init_pages("unused kernel text",
1064 (unsigned long)_sinittext - text_delta,
1065 (unsigned long)_einittext - text_delta);
1066
1067 #if !CHIP_HAS_COHERENT_LOCAL_CACHE()
1068 /*
1069 * Upgrade the .w1data section to globally cached.
1070 * We don't do this on tilepro, since the cache architecture
1071 * pretty much makes it irrelevant, and in any case we end
1072 * up having racing issues with other tiles that may touch
1073 * the data after we flush the cache but before we update
1074 * the PTEs and flush the TLBs, causing sharer shootdowns
1075 * later. Even though this is to clean data, it seems like
1076 * an unnecessary complication.
1077 */
1078 mark_w1data_ro();
1079 #endif
1080
1081 /* Do a global TLB flush so everyone sees the changes. */
1082 flush_tlb_all();
1083 }
This page took 0.059904 seconds and 5 git commands to generate.