Merge tag 'mfd-for-linus-3.15' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[deliverable/linux.git] / arch / tile / mm / pgtable.c
1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/highmem.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/spinlock.h>
24 #include <linux/cpumask.h>
25 #include <linux/module.h>
26 #include <linux/io.h>
27 #include <linux/vmalloc.h>
28 #include <linux/smp.h>
29
30 #include <asm/pgtable.h>
31 #include <asm/pgalloc.h>
32 #include <asm/fixmap.h>
33 #include <asm/tlb.h>
34 #include <asm/tlbflush.h>
35 #include <asm/homecache.h>
36
37 #define K(x) ((x) << (PAGE_SHIFT-10))
38
39 /*
40 * The normal show_free_areas() is too verbose on Tile, with dozens
41 * of processors and often four NUMA zones each with high and lowmem.
42 */
43 void show_mem(unsigned int filter)
44 {
45 struct zone *zone;
46
47 pr_err("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu"
48 " free:%lu\n slab:%lu mapped:%lu pagetables:%lu bounce:%lu"
49 " pagecache:%lu swap:%lu\n",
50 (global_page_state(NR_ACTIVE_ANON) +
51 global_page_state(NR_ACTIVE_FILE)),
52 (global_page_state(NR_INACTIVE_ANON) +
53 global_page_state(NR_INACTIVE_FILE)),
54 global_page_state(NR_FILE_DIRTY),
55 global_page_state(NR_WRITEBACK),
56 global_page_state(NR_UNSTABLE_NFS),
57 global_page_state(NR_FREE_PAGES),
58 (global_page_state(NR_SLAB_RECLAIMABLE) +
59 global_page_state(NR_SLAB_UNRECLAIMABLE)),
60 global_page_state(NR_FILE_MAPPED),
61 global_page_state(NR_PAGETABLE),
62 global_page_state(NR_BOUNCE),
63 global_page_state(NR_FILE_PAGES),
64 get_nr_swap_pages());
65
66 for_each_zone(zone) {
67 unsigned long flags, order, total = 0, largest_order = -1;
68
69 if (!populated_zone(zone))
70 continue;
71
72 spin_lock_irqsave(&zone->lock, flags);
73 for (order = 0; order < MAX_ORDER; order++) {
74 int nr = zone->free_area[order].nr_free;
75 total += nr << order;
76 if (nr)
77 largest_order = order;
78 }
79 spin_unlock_irqrestore(&zone->lock, flags);
80 pr_err("Node %d %7s: %lukB (largest %luKb)\n",
81 zone_to_nid(zone), zone->name,
82 K(total), largest_order ? K(1UL) << largest_order : 0);
83 }
84 }
85
86 /**
87 * shatter_huge_page() - ensure a given address is mapped by a small page.
88 *
89 * This function converts a huge PTE mapping kernel LOWMEM into a bunch
90 * of small PTEs with the same caching. No cache flush required, but we
91 * must do a global TLB flush.
92 *
93 * Any caller that wishes to modify a kernel mapping that might
94 * have been made with a huge page should call this function,
95 * since doing so properly avoids race conditions with installing the
96 * newly-shattered page and then flushing all the TLB entries.
97 *
98 * @addr: Address at which to shatter any existing huge page.
99 */
100 void shatter_huge_page(unsigned long addr)
101 {
102 pgd_t *pgd;
103 pud_t *pud;
104 pmd_t *pmd;
105 unsigned long flags = 0; /* happy compiler */
106 #ifdef __PAGETABLE_PMD_FOLDED
107 struct list_head *pos;
108 #endif
109
110 /* Get a pointer to the pmd entry that we need to change. */
111 addr &= HPAGE_MASK;
112 BUG_ON(pgd_addr_invalid(addr));
113 BUG_ON(addr < PAGE_OFFSET); /* only for kernel LOWMEM */
114 pgd = swapper_pg_dir + pgd_index(addr);
115 pud = pud_offset(pgd, addr);
116 BUG_ON(!pud_present(*pud));
117 pmd = pmd_offset(pud, addr);
118 BUG_ON(!pmd_present(*pmd));
119 if (!pmd_huge_page(*pmd))
120 return;
121
122 spin_lock_irqsave(&init_mm.page_table_lock, flags);
123 if (!pmd_huge_page(*pmd)) {
124 /* Lost the race to convert the huge page. */
125 spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
126 return;
127 }
128
129 /* Shatter the huge page into the preallocated L2 page table. */
130 pmd_populate_kernel(&init_mm, pmd, get_prealloc_pte(pmd_pfn(*pmd)));
131
132 #ifdef __PAGETABLE_PMD_FOLDED
133 /* Walk every pgd on the system and update the pmd there. */
134 spin_lock(&pgd_lock);
135 list_for_each(pos, &pgd_list) {
136 pmd_t *copy_pmd;
137 pgd = list_to_pgd(pos) + pgd_index(addr);
138 pud = pud_offset(pgd, addr);
139 copy_pmd = pmd_offset(pud, addr);
140 __set_pmd(copy_pmd, *pmd);
141 }
142 spin_unlock(&pgd_lock);
143 #endif
144
145 /* Tell every cpu to notice the change. */
146 flush_remote(0, 0, NULL, addr, HPAGE_SIZE, HPAGE_SIZE,
147 cpu_possible_mask, NULL, 0);
148
149 /* Hold the lock until the TLB flush is finished to avoid races. */
150 spin_unlock_irqrestore(&init_mm.page_table_lock, flags);
151 }
152
153 /*
154 * List of all pgd's needed so it can invalidate entries in both cached
155 * and uncached pgd's. This is essentially codepath-based locking
156 * against pageattr.c; it is the unique case in which a valid change
157 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
158 * vmalloc faults work because attached pagetables are never freed.
159 *
160 * The lock is always taken with interrupts disabled, unlike on x86
161 * and other platforms, because we need to take the lock in
162 * shatter_huge_page(), which may be called from an interrupt context.
163 * We are not at risk from the tlbflush IPI deadlock that was seen on
164 * x86, since we use the flush_remote() API to have the hypervisor do
165 * the TLB flushes regardless of irq disabling.
166 */
167 DEFINE_SPINLOCK(pgd_lock);
168 LIST_HEAD(pgd_list);
169
170 static inline void pgd_list_add(pgd_t *pgd)
171 {
172 list_add(pgd_to_list(pgd), &pgd_list);
173 }
174
175 static inline void pgd_list_del(pgd_t *pgd)
176 {
177 list_del(pgd_to_list(pgd));
178 }
179
180 #define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET)
181 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START)
182
183 static void pgd_ctor(pgd_t *pgd)
184 {
185 unsigned long flags;
186
187 memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t));
188 spin_lock_irqsave(&pgd_lock, flags);
189
190 #ifndef __tilegx__
191 /*
192 * Check that the user interrupt vector has no L2.
193 * It never should for the swapper, and new page tables
194 * should always start with an empty user interrupt vector.
195 */
196 BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0);
197 #endif
198
199 memcpy(pgd + KERNEL_PGD_INDEX_START,
200 swapper_pg_dir + KERNEL_PGD_INDEX_START,
201 KERNEL_PGD_PTRS * sizeof(pgd_t));
202
203 pgd_list_add(pgd);
204 spin_unlock_irqrestore(&pgd_lock, flags);
205 }
206
207 static void pgd_dtor(pgd_t *pgd)
208 {
209 unsigned long flags; /* can be called from interrupt context */
210
211 spin_lock_irqsave(&pgd_lock, flags);
212 pgd_list_del(pgd);
213 spin_unlock_irqrestore(&pgd_lock, flags);
214 }
215
216 pgd_t *pgd_alloc(struct mm_struct *mm)
217 {
218 pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL);
219 if (pgd)
220 pgd_ctor(pgd);
221 return pgd;
222 }
223
224 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
225 {
226 pgd_dtor(pgd);
227 kmem_cache_free(pgd_cache, pgd);
228 }
229
230
231 #define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER)
232
233 struct page *pgtable_alloc_one(struct mm_struct *mm, unsigned long address,
234 int order)
235 {
236 gfp_t flags = GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO;
237 struct page *p;
238 int i;
239
240 p = alloc_pages(flags, L2_USER_PGTABLE_ORDER);
241 if (p == NULL)
242 return NULL;
243
244 if (!pgtable_page_ctor(p)) {
245 __free_pages(p, L2_USER_PGTABLE_ORDER);
246 return NULL;
247 }
248
249 /*
250 * Make every page have a page_count() of one, not just the first.
251 * We don't use __GFP_COMP since it doesn't look like it works
252 * correctly with tlb_remove_page().
253 */
254 for (i = 1; i < order; ++i) {
255 init_page_count(p+i);
256 inc_zone_page_state(p+i, NR_PAGETABLE);
257 }
258
259 return p;
260 }
261
262 /*
263 * Free page immediately (used in __pte_alloc if we raced with another
264 * process). We have to correct whatever pte_alloc_one() did before
265 * returning the pages to the allocator.
266 */
267 void pgtable_free(struct mm_struct *mm, struct page *p, int order)
268 {
269 int i;
270
271 pgtable_page_dtor(p);
272 __free_page(p);
273
274 for (i = 1; i < order; ++i) {
275 __free_page(p+i);
276 dec_zone_page_state(p+i, NR_PAGETABLE);
277 }
278 }
279
280 void __pgtable_free_tlb(struct mmu_gather *tlb, struct page *pte,
281 unsigned long address, int order)
282 {
283 int i;
284
285 pgtable_page_dtor(pte);
286 tlb_remove_page(tlb, pte);
287
288 for (i = 1; i < order; ++i) {
289 tlb_remove_page(tlb, pte + i);
290 dec_zone_page_state(pte + i, NR_PAGETABLE);
291 }
292 }
293
294 #ifndef __tilegx__
295
296 /*
297 * FIXME: needs to be atomic vs hypervisor writes. For now we make the
298 * window of vulnerability a bit smaller by doing an unlocked 8-bit update.
299 */
300 int ptep_test_and_clear_young(struct vm_area_struct *vma,
301 unsigned long addr, pte_t *ptep)
302 {
303 #if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16
304 # error Code assumes HV_PTE "accessed" bit in second byte
305 #endif
306 u8 *tmp = (u8 *)ptep;
307 u8 second_byte = tmp[1];
308 if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8))))
309 return 0;
310 tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8));
311 return 1;
312 }
313
314 /*
315 * This implementation is atomic vs hypervisor writes, since the hypervisor
316 * always writes the low word (where "accessed" and "dirty" are) and this
317 * routine only writes the high word.
318 */
319 void ptep_set_wrprotect(struct mm_struct *mm,
320 unsigned long addr, pte_t *ptep)
321 {
322 #if HV_PTE_INDEX_WRITABLE < 32
323 # error Code assumes HV_PTE "writable" bit in high word
324 #endif
325 u32 *tmp = (u32 *)ptep;
326 tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32));
327 }
328
329 #endif
330
331 /*
332 * Return a pointer to the PTE that corresponds to the given
333 * address in the given page table. A NULL page table just uses
334 * the standard kernel page table; the preferred API in this case
335 * is virt_to_kpte().
336 *
337 * The returned pointer can point to a huge page in other levels
338 * of the page table than the bottom, if the huge page is present
339 * in the page table. For bottom-level PTEs, the returned pointer
340 * can point to a PTE that is either present or not.
341 */
342 pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr)
343 {
344 pgd_t *pgd;
345 pud_t *pud;
346 pmd_t *pmd;
347
348 if (pgd_addr_invalid(addr))
349 return NULL;
350
351 pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr);
352 pud = pud_offset(pgd, addr);
353 if (!pud_present(*pud))
354 return NULL;
355 if (pud_huge_page(*pud))
356 return (pte_t *)pud;
357 pmd = pmd_offset(pud, addr);
358 if (!pmd_present(*pmd))
359 return NULL;
360 if (pmd_huge_page(*pmd))
361 return (pte_t *)pmd;
362 return pte_offset_kernel(pmd, addr);
363 }
364 EXPORT_SYMBOL(virt_to_pte);
365
366 pte_t *virt_to_kpte(unsigned long kaddr)
367 {
368 BUG_ON(kaddr < PAGE_OFFSET);
369 return virt_to_pte(NULL, kaddr);
370 }
371 EXPORT_SYMBOL(virt_to_kpte);
372
373 pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu)
374 {
375 unsigned int width = smp_width;
376 int x = cpu % width;
377 int y = cpu / width;
378 BUG_ON(y >= smp_height);
379 BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
380 BUG_ON(cpu < 0 || cpu >= NR_CPUS);
381 BUG_ON(!cpu_is_valid_lotar(cpu));
382 return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y));
383 }
384
385 int get_remote_cache_cpu(pgprot_t prot)
386 {
387 HV_LOTAR lotar = hv_pte_get_lotar(prot);
388 int x = HV_LOTAR_X(lotar);
389 int y = HV_LOTAR_Y(lotar);
390 BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
391 return x + y * smp_width;
392 }
393
394 /*
395 * Convert a kernel VA to a PA and homing information.
396 */
397 int va_to_cpa_and_pte(void *va, unsigned long long *cpa, pte_t *pte)
398 {
399 struct page *page = virt_to_page(va);
400 pte_t null_pte = { 0 };
401
402 *cpa = __pa(va);
403
404 /* Note that this is not writing a page table, just returning a pte. */
405 *pte = pte_set_home(null_pte, page_home(page));
406
407 return 0; /* return non-zero if not hfh? */
408 }
409 EXPORT_SYMBOL(va_to_cpa_and_pte);
410
411 void __set_pte(pte_t *ptep, pte_t pte)
412 {
413 #ifdef __tilegx__
414 *ptep = pte;
415 #else
416 # if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32
417 # error Must write the present and migrating bits last
418 # endif
419 if (pte_present(pte)) {
420 ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
421 barrier();
422 ((u32 *)ptep)[0] = (u32)(pte_val(pte));
423 } else {
424 ((u32 *)ptep)[0] = (u32)(pte_val(pte));
425 barrier();
426 ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
427 }
428 #endif /* __tilegx__ */
429 }
430
431 void set_pte(pte_t *ptep, pte_t pte)
432 {
433 if (pte_present(pte) &&
434 (!CHIP_HAS_MMIO() || hv_pte_get_mode(pte) != HV_PTE_MODE_MMIO)) {
435 /* The PTE actually references physical memory. */
436 unsigned long pfn = pte_pfn(pte);
437 if (pfn_valid(pfn)) {
438 /* Update the home of the PTE from the struct page. */
439 pte = pte_set_home(pte, page_home(pfn_to_page(pfn)));
440 } else if (hv_pte_get_mode(pte) == 0) {
441 /* remap_pfn_range(), etc, must supply PTE mode. */
442 panic("set_pte(): out-of-range PFN and mode 0\n");
443 }
444 }
445
446 __set_pte(ptep, pte);
447 }
448
449 /* Can this mm load a PTE with cached_priority set? */
450 static inline int mm_is_priority_cached(struct mm_struct *mm)
451 {
452 return mm->context.priority_cached != 0;
453 }
454
455 /*
456 * Add a priority mapping to an mm_context and
457 * notify the hypervisor if this is the first one.
458 */
459 void start_mm_caching(struct mm_struct *mm)
460 {
461 if (!mm_is_priority_cached(mm)) {
462 mm->context.priority_cached = -1UL;
463 hv_set_caching(-1UL);
464 }
465 }
466
467 /*
468 * Validate and return the priority_cached flag. We know if it's zero
469 * that we don't need to scan, since we immediately set it non-zero
470 * when we first consider a MAP_CACHE_PRIORITY mapping.
471 *
472 * We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it,
473 * since we're in an interrupt context (servicing switch_mm) we don't
474 * worry about it and don't unset the "priority_cached" field.
475 * Presumably we'll come back later and have more luck and clear
476 * the value then; for now we'll just keep the cache marked for priority.
477 */
478 static unsigned long update_priority_cached(struct mm_struct *mm)
479 {
480 if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) {
481 struct vm_area_struct *vm;
482 for (vm = mm->mmap; vm; vm = vm->vm_next) {
483 if (hv_pte_get_cached_priority(vm->vm_page_prot))
484 break;
485 }
486 if (vm == NULL)
487 mm->context.priority_cached = 0;
488 up_write(&mm->mmap_sem);
489 }
490 return mm->context.priority_cached;
491 }
492
493 /* Set caching correctly for an mm that we are switching to. */
494 void check_mm_caching(struct mm_struct *prev, struct mm_struct *next)
495 {
496 if (!mm_is_priority_cached(next)) {
497 /*
498 * If the new mm doesn't use priority caching, just see if we
499 * need the hv_set_caching(), or can assume it's already zero.
500 */
501 if (mm_is_priority_cached(prev))
502 hv_set_caching(0);
503 } else {
504 hv_set_caching(update_priority_cached(next));
505 }
506 }
507
508 #if CHIP_HAS_MMIO()
509
510 /* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */
511 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
512 pgprot_t home)
513 {
514 void *addr;
515 struct vm_struct *area;
516 unsigned long offset, last_addr;
517 pgprot_t pgprot;
518
519 /* Don't allow wraparound or zero size */
520 last_addr = phys_addr + size - 1;
521 if (!size || last_addr < phys_addr)
522 return NULL;
523
524 /* Create a read/write, MMIO VA mapping homed at the requested shim. */
525 pgprot = PAGE_KERNEL;
526 pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO);
527 pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home));
528
529 /*
530 * Mappings have to be page-aligned
531 */
532 offset = phys_addr & ~PAGE_MASK;
533 phys_addr &= PAGE_MASK;
534 size = PAGE_ALIGN(last_addr+1) - phys_addr;
535
536 /*
537 * Ok, go for it..
538 */
539 area = get_vm_area(size, VM_IOREMAP /* | other flags? */);
540 if (!area)
541 return NULL;
542 area->phys_addr = phys_addr;
543 addr = area->addr;
544 if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size,
545 phys_addr, pgprot)) {
546 free_vm_area(area);
547 return NULL;
548 }
549 return (__force void __iomem *) (offset + (char *)addr);
550 }
551 EXPORT_SYMBOL(ioremap_prot);
552
553 /* Unmap an MMIO VA mapping. */
554 void iounmap(volatile void __iomem *addr_in)
555 {
556 volatile void __iomem *addr = (volatile void __iomem *)
557 (PAGE_MASK & (unsigned long __force)addr_in);
558 #if 1
559 vunmap((void * __force)addr);
560 #else
561 /* x86 uses this complicated flow instead of vunmap(). Is
562 * there any particular reason we should do the same? */
563 struct vm_struct *p, *o;
564
565 /* Use the vm area unlocked, assuming the caller
566 ensures there isn't another iounmap for the same address
567 in parallel. Reuse of the virtual address is prevented by
568 leaving it in the global lists until we're done with it.
569 cpa takes care of the direct mappings. */
570 p = find_vm_area((void *)addr);
571
572 if (!p) {
573 pr_err("iounmap: bad address %p\n", addr);
574 dump_stack();
575 return;
576 }
577
578 /* Finally remove it */
579 o = remove_vm_area((void *)addr);
580 BUG_ON(p != o || o == NULL);
581 kfree(p);
582 #endif
583 }
584 EXPORT_SYMBOL(iounmap);
585
586 #endif /* CHIP_HAS_MMIO() */
This page took 0.04302 seconds and 5 git commands to generate.