arm64: dts: msm8996: add support blsp2_uart2
[deliverable/linux.git] / arch / um / kernel / process.c
1 /*
2 * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
3 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
4 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
5 * Copyright 2003 PathScale, Inc.
6 * Licensed under the GPL
7 */
8
9 #include <linux/stddef.h>
10 #include <linux/err.h>
11 #include <linux/hardirq.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/personality.h>
15 #include <linux/proc_fs.h>
16 #include <linux/ptrace.h>
17 #include <linux/random.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/seq_file.h>
21 #include <linux/tick.h>
22 #include <linux/threads.h>
23 #include <linux/tracehook.h>
24 #include <asm/current.h>
25 #include <asm/pgtable.h>
26 #include <asm/mmu_context.h>
27 #include <asm/uaccess.h>
28 #include <as-layout.h>
29 #include <kern_util.h>
30 #include <os.h>
31 #include <skas.h>
32 #include <timer-internal.h>
33
34 /*
35 * This is a per-cpu array. A processor only modifies its entry and it only
36 * cares about its entry, so it's OK if another processor is modifying its
37 * entry.
38 */
39 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
40
41 static inline int external_pid(void)
42 {
43 /* FIXME: Need to look up userspace_pid by cpu */
44 return userspace_pid[0];
45 }
46
47 int pid_to_processor_id(int pid)
48 {
49 int i;
50
51 for (i = 0; i < ncpus; i++) {
52 if (cpu_tasks[i].pid == pid)
53 return i;
54 }
55 return -1;
56 }
57
58 void free_stack(unsigned long stack, int order)
59 {
60 free_pages(stack, order);
61 }
62
63 unsigned long alloc_stack(int order, int atomic)
64 {
65 unsigned long page;
66 gfp_t flags = GFP_KERNEL;
67
68 if (atomic)
69 flags = GFP_ATOMIC;
70 page = __get_free_pages(flags, order);
71
72 return page;
73 }
74
75 static inline void set_current(struct task_struct *task)
76 {
77 cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
78 { external_pid(), task });
79 }
80
81 extern void arch_switch_to(struct task_struct *to);
82
83 void *__switch_to(struct task_struct *from, struct task_struct *to)
84 {
85 to->thread.prev_sched = from;
86 set_current(to);
87
88 switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
89 arch_switch_to(current);
90
91 return current->thread.prev_sched;
92 }
93
94 void interrupt_end(void)
95 {
96 struct pt_regs *regs = &current->thread.regs;
97
98 if (need_resched())
99 schedule();
100 if (test_thread_flag(TIF_SIGPENDING))
101 do_signal(regs);
102 if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
103 tracehook_notify_resume(regs);
104 }
105
106 int get_current_pid(void)
107 {
108 return task_pid_nr(current);
109 }
110
111 /*
112 * This is called magically, by its address being stuffed in a jmp_buf
113 * and being longjmp-d to.
114 */
115 void new_thread_handler(void)
116 {
117 int (*fn)(void *), n;
118 void *arg;
119
120 if (current->thread.prev_sched != NULL)
121 schedule_tail(current->thread.prev_sched);
122 current->thread.prev_sched = NULL;
123
124 fn = current->thread.request.u.thread.proc;
125 arg = current->thread.request.u.thread.arg;
126
127 /*
128 * callback returns only if the kernel thread execs a process
129 */
130 n = fn(arg);
131 userspace(&current->thread.regs.regs);
132 }
133
134 /* Called magically, see new_thread_handler above */
135 void fork_handler(void)
136 {
137 force_flush_all();
138
139 schedule_tail(current->thread.prev_sched);
140
141 /*
142 * XXX: if interrupt_end() calls schedule, this call to
143 * arch_switch_to isn't needed. We could want to apply this to
144 * improve performance. -bb
145 */
146 arch_switch_to(current);
147
148 current->thread.prev_sched = NULL;
149
150 userspace(&current->thread.regs.regs);
151 }
152
153 int copy_thread(unsigned long clone_flags, unsigned long sp,
154 unsigned long arg, struct task_struct * p)
155 {
156 void (*handler)(void);
157 int kthread = current->flags & PF_KTHREAD;
158 int ret = 0;
159
160 p->thread = (struct thread_struct) INIT_THREAD;
161
162 if (!kthread) {
163 memcpy(&p->thread.regs.regs, current_pt_regs(),
164 sizeof(p->thread.regs.regs));
165 PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
166 if (sp != 0)
167 REGS_SP(p->thread.regs.regs.gp) = sp;
168
169 handler = fork_handler;
170
171 arch_copy_thread(&current->thread.arch, &p->thread.arch);
172 } else {
173 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
174 p->thread.request.u.thread.proc = (int (*)(void *))sp;
175 p->thread.request.u.thread.arg = (void *)arg;
176 handler = new_thread_handler;
177 }
178
179 new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
180
181 if (!kthread) {
182 clear_flushed_tls(p);
183
184 /*
185 * Set a new TLS for the child thread?
186 */
187 if (clone_flags & CLONE_SETTLS)
188 ret = arch_copy_tls(p);
189 }
190
191 return ret;
192 }
193
194 void initial_thread_cb(void (*proc)(void *), void *arg)
195 {
196 int save_kmalloc_ok = kmalloc_ok;
197
198 kmalloc_ok = 0;
199 initial_thread_cb_skas(proc, arg);
200 kmalloc_ok = save_kmalloc_ok;
201 }
202
203 void arch_cpu_idle(void)
204 {
205 cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
206 os_idle_sleep(UM_NSEC_PER_SEC);
207 local_irq_enable();
208 }
209
210 int __cant_sleep(void) {
211 return in_atomic() || irqs_disabled() || in_interrupt();
212 /* Is in_interrupt() really needed? */
213 }
214
215 int user_context(unsigned long sp)
216 {
217 unsigned long stack;
218
219 stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
220 return stack != (unsigned long) current_thread_info();
221 }
222
223 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
224
225 void do_uml_exitcalls(void)
226 {
227 exitcall_t *call;
228
229 call = &__uml_exitcall_end;
230 while (--call >= &__uml_exitcall_begin)
231 (*call)();
232 }
233
234 char *uml_strdup(const char *string)
235 {
236 return kstrdup(string, GFP_KERNEL);
237 }
238 EXPORT_SYMBOL(uml_strdup);
239
240 int copy_to_user_proc(void __user *to, void *from, int size)
241 {
242 return copy_to_user(to, from, size);
243 }
244
245 int copy_from_user_proc(void *to, void __user *from, int size)
246 {
247 return copy_from_user(to, from, size);
248 }
249
250 int clear_user_proc(void __user *buf, int size)
251 {
252 return clear_user(buf, size);
253 }
254
255 int strlen_user_proc(char __user *str)
256 {
257 return strlen_user(str);
258 }
259
260 int cpu(void)
261 {
262 return current_thread_info()->cpu;
263 }
264
265 static atomic_t using_sysemu = ATOMIC_INIT(0);
266 int sysemu_supported;
267
268 void set_using_sysemu(int value)
269 {
270 if (value > sysemu_supported)
271 return;
272 atomic_set(&using_sysemu, value);
273 }
274
275 int get_using_sysemu(void)
276 {
277 return atomic_read(&using_sysemu);
278 }
279
280 static int sysemu_proc_show(struct seq_file *m, void *v)
281 {
282 seq_printf(m, "%d\n", get_using_sysemu());
283 return 0;
284 }
285
286 static int sysemu_proc_open(struct inode *inode, struct file *file)
287 {
288 return single_open(file, sysemu_proc_show, NULL);
289 }
290
291 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
292 size_t count, loff_t *pos)
293 {
294 char tmp[2];
295
296 if (copy_from_user(tmp, buf, 1))
297 return -EFAULT;
298
299 if (tmp[0] >= '0' && tmp[0] <= '2')
300 set_using_sysemu(tmp[0] - '0');
301 /* We use the first char, but pretend to write everything */
302 return count;
303 }
304
305 static const struct file_operations sysemu_proc_fops = {
306 .owner = THIS_MODULE,
307 .open = sysemu_proc_open,
308 .read = seq_read,
309 .llseek = seq_lseek,
310 .release = single_release,
311 .write = sysemu_proc_write,
312 };
313
314 int __init make_proc_sysemu(void)
315 {
316 struct proc_dir_entry *ent;
317 if (!sysemu_supported)
318 return 0;
319
320 ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
321
322 if (ent == NULL)
323 {
324 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
325 return 0;
326 }
327
328 return 0;
329 }
330
331 late_initcall(make_proc_sysemu);
332
333 int singlestepping(void * t)
334 {
335 struct task_struct *task = t ? t : current;
336
337 if (!(task->ptrace & PT_DTRACE))
338 return 0;
339
340 if (task->thread.singlestep_syscall)
341 return 1;
342
343 return 2;
344 }
345
346 /*
347 * Only x86 and x86_64 have an arch_align_stack().
348 * All other arches have "#define arch_align_stack(x) (x)"
349 * in their asm/exec.h
350 * As this is included in UML from asm-um/system-generic.h,
351 * we can use it to behave as the subarch does.
352 */
353 #ifndef arch_align_stack
354 unsigned long arch_align_stack(unsigned long sp)
355 {
356 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
357 sp -= get_random_int() % 8192;
358 return sp & ~0xf;
359 }
360 #endif
361
362 unsigned long get_wchan(struct task_struct *p)
363 {
364 unsigned long stack_page, sp, ip;
365 bool seen_sched = 0;
366
367 if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
368 return 0;
369
370 stack_page = (unsigned long) task_stack_page(p);
371 /* Bail if the process has no kernel stack for some reason */
372 if (stack_page == 0)
373 return 0;
374
375 sp = p->thread.switch_buf->JB_SP;
376 /*
377 * Bail if the stack pointer is below the bottom of the kernel
378 * stack for some reason
379 */
380 if (sp < stack_page)
381 return 0;
382
383 while (sp < stack_page + THREAD_SIZE) {
384 ip = *((unsigned long *) sp);
385 if (in_sched_functions(ip))
386 /* Ignore everything until we're above the scheduler */
387 seen_sched = 1;
388 else if (kernel_text_address(ip) && seen_sched)
389 return ip;
390
391 sp += sizeof(unsigned long);
392 }
393
394 return 0;
395 }
396
397 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
398 {
399 int cpu = current_thread_info()->cpu;
400
401 return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu);
402 }
403
This page took 0.054219 seconds and 5 git commands to generate.