um: net: replace GFP_KERNEL with GFP_ATOMIC when spinlock is held
[deliverable/linux.git] / arch / um / os-Linux / signal.c
1 /*
2 * Copyright (C) 2004 PathScale, Inc
3 * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
4 * Licensed under the GPL
5 */
6
7 #include <stdlib.h>
8 #include <stdarg.h>
9 #include <errno.h>
10 #include <signal.h>
11 #include <strings.h>
12 #include <as-layout.h>
13 #include <kern_util.h>
14 #include <os.h>
15 #include <sysdep/mcontext.h>
16 #include "internal.h"
17
18 void (*sig_info[NSIG])(int, struct siginfo *, struct uml_pt_regs *) = {
19 [SIGTRAP] = relay_signal,
20 [SIGFPE] = relay_signal,
21 [SIGILL] = relay_signal,
22 [SIGWINCH] = winch,
23 [SIGBUS] = bus_handler,
24 [SIGSEGV] = segv_handler,
25 [SIGIO] = sigio_handler,
26 [SIGVTALRM] = timer_handler };
27
28 static void sig_handler_common(int sig, struct siginfo *si, mcontext_t *mc)
29 {
30 struct uml_pt_regs r;
31 int save_errno = errno;
32
33 r.is_user = 0;
34 if (sig == SIGSEGV) {
35 /* For segfaults, we want the data from the sigcontext. */
36 get_regs_from_mc(&r, mc);
37 GET_FAULTINFO_FROM_MC(r.faultinfo, mc);
38 }
39
40 /* enable signals if sig isn't IRQ signal */
41 if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGVTALRM))
42 unblock_signals();
43
44 (*sig_info[sig])(sig, si, &r);
45
46 errno = save_errno;
47 }
48
49 /*
50 * These are the asynchronous signals. SIGPROF is excluded because we want to
51 * be able to profile all of UML, not just the non-critical sections. If
52 * profiling is not thread-safe, then that is not my problem. We can disable
53 * profiling when SMP is enabled in that case.
54 */
55 #define SIGIO_BIT 0
56 #define SIGIO_MASK (1 << SIGIO_BIT)
57
58 #define SIGVTALRM_BIT 1
59 #define SIGVTALRM_MASK (1 << SIGVTALRM_BIT)
60
61 static int signals_enabled;
62 static unsigned int signals_pending;
63
64 void sig_handler(int sig, struct siginfo *si, mcontext_t *mc)
65 {
66 int enabled;
67
68 enabled = signals_enabled;
69 if (!enabled && (sig == SIGIO)) {
70 signals_pending |= SIGIO_MASK;
71 return;
72 }
73
74 block_signals();
75
76 sig_handler_common(sig, si, mc);
77
78 set_signals(enabled);
79 }
80
81 static void real_alarm_handler(mcontext_t *mc)
82 {
83 struct uml_pt_regs regs;
84
85 if (mc != NULL)
86 get_regs_from_mc(&regs, mc);
87 regs.is_user = 0;
88 unblock_signals();
89 timer_handler(SIGVTALRM, NULL, &regs);
90 }
91
92 void alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc)
93 {
94 int enabled;
95
96 enabled = signals_enabled;
97 if (!signals_enabled) {
98 signals_pending |= SIGVTALRM_MASK;
99 return;
100 }
101
102 block_signals();
103
104 real_alarm_handler(mc);
105 set_signals(enabled);
106 }
107
108 void timer_init(void)
109 {
110 set_handler(SIGVTALRM);
111 }
112
113 void set_sigstack(void *sig_stack, int size)
114 {
115 stack_t stack = {
116 .ss_flags = 0,
117 .ss_sp = sig_stack,
118 .ss_size = size - sizeof(void *)
119 };
120
121 if (sigaltstack(&stack, NULL) != 0)
122 panic("enabling signal stack failed, errno = %d\n", errno);
123 }
124
125 static void (*handlers[_NSIG])(int sig, struct siginfo *si, mcontext_t *mc) = {
126 [SIGSEGV] = sig_handler,
127 [SIGBUS] = sig_handler,
128 [SIGILL] = sig_handler,
129 [SIGFPE] = sig_handler,
130 [SIGTRAP] = sig_handler,
131
132 [SIGIO] = sig_handler,
133 [SIGWINCH] = sig_handler,
134 [SIGVTALRM] = alarm_handler
135 };
136
137
138 static void hard_handler(int sig, siginfo_t *si, void *p)
139 {
140 struct ucontext *uc = p;
141 mcontext_t *mc = &uc->uc_mcontext;
142 unsigned long pending = 1UL << sig;
143
144 do {
145 int nested, bail;
146
147 /*
148 * pending comes back with one bit set for each
149 * interrupt that arrived while setting up the stack,
150 * plus a bit for this interrupt, plus the zero bit is
151 * set if this is a nested interrupt.
152 * If bail is true, then we interrupted another
153 * handler setting up the stack. In this case, we
154 * have to return, and the upper handler will deal
155 * with this interrupt.
156 */
157 bail = to_irq_stack(&pending);
158 if (bail)
159 return;
160
161 nested = pending & 1;
162 pending &= ~1;
163
164 while ((sig = ffs(pending)) != 0){
165 sig--;
166 pending &= ~(1 << sig);
167 (*handlers[sig])(sig, (struct siginfo *)si, mc);
168 }
169
170 /*
171 * Again, pending comes back with a mask of signals
172 * that arrived while tearing down the stack. If this
173 * is non-zero, we just go back, set up the stack
174 * again, and handle the new interrupts.
175 */
176 if (!nested)
177 pending = from_irq_stack(nested);
178 } while (pending);
179 }
180
181 void set_handler(int sig)
182 {
183 struct sigaction action;
184 int flags = SA_SIGINFO | SA_ONSTACK;
185 sigset_t sig_mask;
186
187 action.sa_sigaction = hard_handler;
188
189 /* block irq ones */
190 sigemptyset(&action.sa_mask);
191 sigaddset(&action.sa_mask, SIGVTALRM);
192 sigaddset(&action.sa_mask, SIGIO);
193 sigaddset(&action.sa_mask, SIGWINCH);
194
195 if (sig == SIGSEGV)
196 flags |= SA_NODEFER;
197
198 if (sigismember(&action.sa_mask, sig))
199 flags |= SA_RESTART; /* if it's an irq signal */
200
201 action.sa_flags = flags;
202 action.sa_restorer = NULL;
203 if (sigaction(sig, &action, NULL) < 0)
204 panic("sigaction failed - errno = %d\n", errno);
205
206 sigemptyset(&sig_mask);
207 sigaddset(&sig_mask, sig);
208 if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0)
209 panic("sigprocmask failed - errno = %d\n", errno);
210 }
211
212 int change_sig(int signal, int on)
213 {
214 sigset_t sigset;
215
216 sigemptyset(&sigset);
217 sigaddset(&sigset, signal);
218 if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0)
219 return -errno;
220
221 return 0;
222 }
223
224 void block_signals(void)
225 {
226 signals_enabled = 0;
227 /*
228 * This must return with signals disabled, so this barrier
229 * ensures that writes are flushed out before the return.
230 * This might matter if gcc figures out how to inline this and
231 * decides to shuffle this code into the caller.
232 */
233 barrier();
234 }
235
236 void unblock_signals(void)
237 {
238 int save_pending;
239
240 if (signals_enabled == 1)
241 return;
242
243 /*
244 * We loop because the IRQ handler returns with interrupts off. So,
245 * interrupts may have arrived and we need to re-enable them and
246 * recheck signals_pending.
247 */
248 while (1) {
249 /*
250 * Save and reset save_pending after enabling signals. This
251 * way, signals_pending won't be changed while we're reading it.
252 */
253 signals_enabled = 1;
254
255 /*
256 * Setting signals_enabled and reading signals_pending must
257 * happen in this order.
258 */
259 barrier();
260
261 save_pending = signals_pending;
262 if (save_pending == 0)
263 return;
264
265 signals_pending = 0;
266
267 /*
268 * We have pending interrupts, so disable signals, as the
269 * handlers expect them off when they are called. They will
270 * be enabled again above.
271 */
272
273 signals_enabled = 0;
274
275 /*
276 * Deal with SIGIO first because the alarm handler might
277 * schedule, leaving the pending SIGIO stranded until we come
278 * back here.
279 *
280 * SIGIO's handler doesn't use siginfo or mcontext,
281 * so they can be NULL.
282 */
283 if (save_pending & SIGIO_MASK)
284 sig_handler_common(SIGIO, NULL, NULL);
285
286 if (save_pending & SIGVTALRM_MASK)
287 real_alarm_handler(NULL);
288 }
289 }
290
291 int get_signals(void)
292 {
293 return signals_enabled;
294 }
295
296 int set_signals(int enable)
297 {
298 int ret;
299 if (signals_enabled == enable)
300 return enable;
301
302 ret = signals_enabled;
303 if (enable)
304 unblock_signals();
305 else block_signals();
306
307 return ret;
308 }
309
310 int os_is_signal_stack(void)
311 {
312 stack_t ss;
313 sigaltstack(NULL, &ss);
314
315 return ss.ss_flags & SS_ONSTACK;
316 }
This page took 0.04287 seconds and 6 git commands to generate.