32a1918e1b880d2ab94f7a62c044bd3d8fff64e9
[deliverable/linux.git] / arch / x86 / Kconfig
1 # x86 configuration
2 mainmenu "Linux Kernel Configuration for x86"
3
4 # Select 32 or 64 bit
5 config 64BIT
6 bool "64-bit kernel" if ARCH = "x86"
7 default ARCH = "x86_64"
8 ---help---
9 Say yes to build a 64-bit kernel - formerly known as x86_64
10 Say no to build a 32-bit kernel - formerly known as i386
11
12 config X86_32
13 def_bool !64BIT
14
15 config X86_64
16 def_bool 64BIT
17
18 ### Arch settings
19 config X86
20 def_bool y
21 select HAVE_AOUT if X86_32
22 select HAVE_READQ
23 select HAVE_WRITEQ
24 select HAVE_UNSTABLE_SCHED_CLOCK
25 select HAVE_IDE
26 select HAVE_OPROFILE
27 select HAVE_PERF_EVENTS if (!M386 && !M486)
28 select HAVE_IOREMAP_PROT
29 select HAVE_KPROBES
30 select ARCH_WANT_OPTIONAL_GPIOLIB
31 select ARCH_WANT_FRAME_POINTERS
32 select HAVE_DMA_ATTRS
33 select HAVE_KRETPROBES
34 select HAVE_FTRACE_MCOUNT_RECORD
35 select HAVE_DYNAMIC_FTRACE
36 select HAVE_FUNCTION_TRACER
37 select HAVE_FUNCTION_GRAPH_TRACER
38 select HAVE_FUNCTION_GRAPH_FP_TEST
39 select HAVE_FUNCTION_TRACE_MCOUNT_TEST
40 select HAVE_FTRACE_NMI_ENTER if DYNAMIC_FTRACE
41 select HAVE_SYSCALL_TRACEPOINTS
42 select HAVE_KVM
43 select HAVE_ARCH_KGDB
44 select HAVE_ARCH_TRACEHOOK
45 select HAVE_GENERIC_DMA_COHERENT if X86_32
46 select HAVE_EFFICIENT_UNALIGNED_ACCESS
47 select USER_STACKTRACE_SUPPORT
48 select HAVE_DMA_API_DEBUG
49 select HAVE_KERNEL_GZIP
50 select HAVE_KERNEL_BZIP2
51 select HAVE_KERNEL_LZMA
52 select HAVE_HW_BREAKPOINT
53 select HAVE_ARCH_KMEMCHECK
54 select HAVE_USER_RETURN_NOTIFIER
55
56 config OUTPUT_FORMAT
57 string
58 default "elf32-i386" if X86_32
59 default "elf64-x86-64" if X86_64
60
61 config ARCH_DEFCONFIG
62 string
63 default "arch/x86/configs/i386_defconfig" if X86_32
64 default "arch/x86/configs/x86_64_defconfig" if X86_64
65
66 config GENERIC_TIME
67 def_bool y
68
69 config GENERIC_CMOS_UPDATE
70 def_bool y
71
72 config CLOCKSOURCE_WATCHDOG
73 def_bool y
74
75 config GENERIC_CLOCKEVENTS
76 def_bool y
77
78 config GENERIC_CLOCKEVENTS_BROADCAST
79 def_bool y
80 depends on X86_64 || (X86_32 && X86_LOCAL_APIC)
81
82 config LOCKDEP_SUPPORT
83 def_bool y
84
85 config STACKTRACE_SUPPORT
86 def_bool y
87
88 config HAVE_LATENCYTOP_SUPPORT
89 def_bool y
90
91 config MMU
92 def_bool y
93
94 config ZONE_DMA
95 def_bool y
96
97 config SBUS
98 bool
99
100 config GENERIC_ISA_DMA
101 def_bool y
102
103 config GENERIC_IOMAP
104 def_bool y
105
106 config GENERIC_BUG
107 def_bool y
108 depends on BUG
109 select GENERIC_BUG_RELATIVE_POINTERS if X86_64
110
111 config GENERIC_BUG_RELATIVE_POINTERS
112 bool
113
114 config GENERIC_HWEIGHT
115 def_bool y
116
117 config GENERIC_GPIO
118 bool
119
120 config ARCH_MAY_HAVE_PC_FDC
121 def_bool y
122
123 config RWSEM_GENERIC_SPINLOCK
124 def_bool !X86_XADD
125
126 config RWSEM_XCHGADD_ALGORITHM
127 def_bool X86_XADD
128
129 config ARCH_HAS_CPU_IDLE_WAIT
130 def_bool y
131
132 config GENERIC_CALIBRATE_DELAY
133 def_bool y
134
135 config GENERIC_TIME_VSYSCALL
136 bool
137 default X86_64
138
139 config ARCH_HAS_CPU_RELAX
140 def_bool y
141
142 config ARCH_HAS_DEFAULT_IDLE
143 def_bool y
144
145 config ARCH_HAS_CACHE_LINE_SIZE
146 def_bool y
147
148 config HAVE_SETUP_PER_CPU_AREA
149 def_bool y
150
151 config NEED_PER_CPU_EMBED_FIRST_CHUNK
152 def_bool y
153
154 config NEED_PER_CPU_PAGE_FIRST_CHUNK
155 def_bool y
156
157 config HAVE_CPUMASK_OF_CPU_MAP
158 def_bool X86_64_SMP
159
160 config ARCH_HIBERNATION_POSSIBLE
161 def_bool y
162
163 config ARCH_SUSPEND_POSSIBLE
164 def_bool y
165
166 config ZONE_DMA32
167 bool
168 default X86_64
169
170 config ARCH_POPULATES_NODE_MAP
171 def_bool y
172
173 config AUDIT_ARCH
174 bool
175 default X86_64
176
177 config ARCH_SUPPORTS_OPTIMIZED_INLINING
178 def_bool y
179
180 config ARCH_SUPPORTS_DEBUG_PAGEALLOC
181 def_bool y
182
183 config HAVE_INTEL_TXT
184 def_bool y
185 depends on EXPERIMENTAL && DMAR && ACPI
186
187 # Use the generic interrupt handling code in kernel/irq/:
188 config GENERIC_HARDIRQS
189 bool
190 default y
191
192 config GENERIC_HARDIRQS_NO__DO_IRQ
193 def_bool y
194
195 config GENERIC_IRQ_PROBE
196 bool
197 default y
198
199 config GENERIC_PENDING_IRQ
200 bool
201 depends on GENERIC_HARDIRQS && SMP
202 default y
203
204 config USE_GENERIC_SMP_HELPERS
205 def_bool y
206 depends on SMP
207
208 config X86_32_SMP
209 def_bool y
210 depends on X86_32 && SMP
211
212 config X86_64_SMP
213 def_bool y
214 depends on X86_64 && SMP
215
216 config X86_HT
217 bool
218 depends on SMP
219 default y
220
221 config X86_TRAMPOLINE
222 bool
223 depends on SMP || (64BIT && ACPI_SLEEP)
224 default y
225
226 config X86_32_LAZY_GS
227 def_bool y
228 depends on X86_32 && !CC_STACKPROTECTOR
229
230 config KTIME_SCALAR
231 def_bool X86_32
232 source "init/Kconfig"
233 source "kernel/Kconfig.freezer"
234
235 menu "Processor type and features"
236
237 source "kernel/time/Kconfig"
238
239 config SMP
240 bool "Symmetric multi-processing support"
241 ---help---
242 This enables support for systems with more than one CPU. If you have
243 a system with only one CPU, like most personal computers, say N. If
244 you have a system with more than one CPU, say Y.
245
246 If you say N here, the kernel will run on single and multiprocessor
247 machines, but will use only one CPU of a multiprocessor machine. If
248 you say Y here, the kernel will run on many, but not all,
249 singleprocessor machines. On a singleprocessor machine, the kernel
250 will run faster if you say N here.
251
252 Note that if you say Y here and choose architecture "586" or
253 "Pentium" under "Processor family", the kernel will not work on 486
254 architectures. Similarly, multiprocessor kernels for the "PPro"
255 architecture may not work on all Pentium based boards.
256
257 People using multiprocessor machines who say Y here should also say
258 Y to "Enhanced Real Time Clock Support", below. The "Advanced Power
259 Management" code will be disabled if you say Y here.
260
261 See also <file:Documentation/i386/IO-APIC.txt>,
262 <file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at
263 <http://www.tldp.org/docs.html#howto>.
264
265 If you don't know what to do here, say N.
266
267 config X86_X2APIC
268 bool "Support x2apic"
269 depends on X86_LOCAL_APIC && X86_64 && INTR_REMAP
270 ---help---
271 This enables x2apic support on CPUs that have this feature.
272
273 This allows 32-bit apic IDs (so it can support very large systems),
274 and accesses the local apic via MSRs not via mmio.
275
276 If you don't know what to do here, say N.
277
278 config SPARSE_IRQ
279 bool "Support sparse irq numbering"
280 depends on PCI_MSI || HT_IRQ
281 ---help---
282 This enables support for sparse irqs. This is useful for distro
283 kernels that want to define a high CONFIG_NR_CPUS value but still
284 want to have low kernel memory footprint on smaller machines.
285
286 ( Sparse IRQs can also be beneficial on NUMA boxes, as they spread
287 out the irq_desc[] array in a more NUMA-friendly way. )
288
289 If you don't know what to do here, say N.
290
291 config NUMA_IRQ_DESC
292 def_bool y
293 depends on SPARSE_IRQ && NUMA
294
295 config X86_MPPARSE
296 bool "Enable MPS table" if ACPI
297 default y
298 depends on X86_LOCAL_APIC
299 ---help---
300 For old smp systems that do not have proper acpi support. Newer systems
301 (esp with 64bit cpus) with acpi support, MADT and DSDT will override it
302
303 config X86_BIGSMP
304 bool "Support for big SMP systems with more than 8 CPUs"
305 depends on X86_32 && SMP
306 ---help---
307 This option is needed for the systems that have more than 8 CPUs
308
309 if X86_32
310 config X86_EXTENDED_PLATFORM
311 bool "Support for extended (non-PC) x86 platforms"
312 default y
313 ---help---
314 If you disable this option then the kernel will only support
315 standard PC platforms. (which covers the vast majority of
316 systems out there.)
317
318 If you enable this option then you'll be able to select support
319 for the following (non-PC) 32 bit x86 platforms:
320 AMD Elan
321 NUMAQ (IBM/Sequent)
322 RDC R-321x SoC
323 SGI 320/540 (Visual Workstation)
324 Summit/EXA (IBM x440)
325 Unisys ES7000 IA32 series
326 Moorestown MID devices
327
328 If you have one of these systems, or if you want to build a
329 generic distribution kernel, say Y here - otherwise say N.
330 endif
331
332 if X86_64
333 config X86_EXTENDED_PLATFORM
334 bool "Support for extended (non-PC) x86 platforms"
335 default y
336 ---help---
337 If you disable this option then the kernel will only support
338 standard PC platforms. (which covers the vast majority of
339 systems out there.)
340
341 If you enable this option then you'll be able to select support
342 for the following (non-PC) 64 bit x86 platforms:
343 ScaleMP vSMP
344 SGI Ultraviolet
345
346 If you have one of these systems, or if you want to build a
347 generic distribution kernel, say Y here - otherwise say N.
348 endif
349 # This is an alphabetically sorted list of 64 bit extended platforms
350 # Please maintain the alphabetic order if and when there are additions
351
352 config X86_VSMP
353 bool "ScaleMP vSMP"
354 select PARAVIRT
355 depends on X86_64 && PCI
356 depends on X86_EXTENDED_PLATFORM
357 ---help---
358 Support for ScaleMP vSMP systems. Say 'Y' here if this kernel is
359 supposed to run on these EM64T-based machines. Only choose this option
360 if you have one of these machines.
361
362 config X86_UV
363 bool "SGI Ultraviolet"
364 depends on X86_64
365 depends on X86_EXTENDED_PLATFORM
366 depends on NUMA
367 depends on X86_X2APIC
368 ---help---
369 This option is needed in order to support SGI Ultraviolet systems.
370 If you don't have one of these, you should say N here.
371
372 # Following is an alphabetically sorted list of 32 bit extended platforms
373 # Please maintain the alphabetic order if and when there are additions
374
375 config X86_ELAN
376 bool "AMD Elan"
377 depends on X86_32
378 depends on X86_EXTENDED_PLATFORM
379 ---help---
380 Select this for an AMD Elan processor.
381
382 Do not use this option for K6/Athlon/Opteron processors!
383
384 If unsure, choose "PC-compatible" instead.
385
386 config X86_MRST
387 bool "Moorestown MID platform"
388 depends on X86_32
389 depends on X86_EXTENDED_PLATFORM
390 ---help---
391 Moorestown is Intel's Low Power Intel Architecture (LPIA) based Moblin
392 Internet Device(MID) platform. Moorestown consists of two chips:
393 Lincroft (CPU core, graphics, and memory controller) and Langwell IOH.
394 Unlike standard x86 PCs, Moorestown does not have many legacy devices
395 nor standard legacy replacement devices/features. e.g. Moorestown does
396 not contain i8259, i8254, HPET, legacy BIOS, most of the io ports.
397
398 config X86_RDC321X
399 bool "RDC R-321x SoC"
400 depends on X86_32
401 depends on X86_EXTENDED_PLATFORM
402 select M486
403 select X86_REBOOTFIXUPS
404 ---help---
405 This option is needed for RDC R-321x system-on-chip, also known
406 as R-8610-(G).
407 If you don't have one of these chips, you should say N here.
408
409 config X86_32_NON_STANDARD
410 bool "Support non-standard 32-bit SMP architectures"
411 depends on X86_32 && SMP
412 depends on X86_EXTENDED_PLATFORM
413 ---help---
414 This option compiles in the NUMAQ, Summit, bigsmp, ES7000, default
415 subarchitectures. It is intended for a generic binary kernel.
416 if you select them all, kernel will probe it one by one. and will
417 fallback to default.
418
419 # Alphabetically sorted list of Non standard 32 bit platforms
420
421 config X86_NUMAQ
422 bool "NUMAQ (IBM/Sequent)"
423 depends on X86_32_NON_STANDARD
424 select NUMA
425 select X86_MPPARSE
426 ---help---
427 This option is used for getting Linux to run on a NUMAQ (IBM/Sequent)
428 NUMA multiquad box. This changes the way that processors are
429 bootstrapped, and uses Clustered Logical APIC addressing mode instead
430 of Flat Logical. You will need a new lynxer.elf file to flash your
431 firmware with - send email to <Martin.Bligh@us.ibm.com>.
432
433 config X86_SUPPORTS_MEMORY_FAILURE
434 bool
435 # MCE code calls memory_failure():
436 depends on X86_MCE
437 # On 32-bit this adds too big of NODES_SHIFT and we run out of page flags:
438 depends on !X86_NUMAQ
439 # On 32-bit SPARSEMEM adds too big of SECTIONS_WIDTH:
440 depends on X86_64 || !SPARSEMEM
441 select ARCH_SUPPORTS_MEMORY_FAILURE
442 default y
443
444 config X86_VISWS
445 bool "SGI 320/540 (Visual Workstation)"
446 depends on X86_32 && PCI && X86_MPPARSE && PCI_GODIRECT
447 depends on X86_32_NON_STANDARD
448 ---help---
449 The SGI Visual Workstation series is an IA32-based workstation
450 based on SGI systems chips with some legacy PC hardware attached.
451
452 Say Y here to create a kernel to run on the SGI 320 or 540.
453
454 A kernel compiled for the Visual Workstation will run on general
455 PCs as well. See <file:Documentation/sgi-visws.txt> for details.
456
457 config X86_SUMMIT
458 bool "Summit/EXA (IBM x440)"
459 depends on X86_32_NON_STANDARD
460 ---help---
461 This option is needed for IBM systems that use the Summit/EXA chipset.
462 In particular, it is needed for the x440.
463
464 config X86_ES7000
465 bool "Unisys ES7000 IA32 series"
466 depends on X86_32_NON_STANDARD && X86_BIGSMP
467 ---help---
468 Support for Unisys ES7000 systems. Say 'Y' here if this kernel is
469 supposed to run on an IA32-based Unisys ES7000 system.
470
471 config SCHED_OMIT_FRAME_POINTER
472 def_bool y
473 prompt "Single-depth WCHAN output"
474 depends on X86
475 ---help---
476 Calculate simpler /proc/<PID>/wchan values. If this option
477 is disabled then wchan values will recurse back to the
478 caller function. This provides more accurate wchan values,
479 at the expense of slightly more scheduling overhead.
480
481 If in doubt, say "Y".
482
483 menuconfig PARAVIRT_GUEST
484 bool "Paravirtualized guest support"
485 ---help---
486 Say Y here to get to see options related to running Linux under
487 various hypervisors. This option alone does not add any kernel code.
488
489 If you say N, all options in this submenu will be skipped and disabled.
490
491 if PARAVIRT_GUEST
492
493 source "arch/x86/xen/Kconfig"
494
495 config VMI
496 bool "VMI Guest support (DEPRECATED)"
497 select PARAVIRT
498 depends on X86_32
499 ---help---
500 VMI provides a paravirtualized interface to the VMware ESX server
501 (it could be used by other hypervisors in theory too, but is not
502 at the moment), by linking the kernel to a GPL-ed ROM module
503 provided by the hypervisor.
504
505 As of September 2009, VMware has started a phased retirement
506 of this feature from VMware's products. Please see
507 feature-removal-schedule.txt for details. If you are
508 planning to enable this option, please note that you cannot
509 live migrate a VMI enabled VM to a future VMware product,
510 which doesn't support VMI. So if you expect your kernel to
511 seamlessly migrate to newer VMware products, keep this
512 disabled.
513
514 config KVM_CLOCK
515 bool "KVM paravirtualized clock"
516 select PARAVIRT
517 select PARAVIRT_CLOCK
518 ---help---
519 Turning on this option will allow you to run a paravirtualized clock
520 when running over the KVM hypervisor. Instead of relying on a PIT
521 (or probably other) emulation by the underlying device model, the host
522 provides the guest with timing infrastructure such as time of day, and
523 system time
524
525 config KVM_GUEST
526 bool "KVM Guest support"
527 select PARAVIRT
528 ---help---
529 This option enables various optimizations for running under the KVM
530 hypervisor.
531
532 source "arch/x86/lguest/Kconfig"
533
534 config PARAVIRT
535 bool "Enable paravirtualization code"
536 ---help---
537 This changes the kernel so it can modify itself when it is run
538 under a hypervisor, potentially improving performance significantly
539 over full virtualization. However, when run without a hypervisor
540 the kernel is theoretically slower and slightly larger.
541
542 config PARAVIRT_SPINLOCKS
543 bool "Paravirtualization layer for spinlocks"
544 depends on PARAVIRT && SMP && EXPERIMENTAL
545 ---help---
546 Paravirtualized spinlocks allow a pvops backend to replace the
547 spinlock implementation with something virtualization-friendly
548 (for example, block the virtual CPU rather than spinning).
549
550 Unfortunately the downside is an up to 5% performance hit on
551 native kernels, with various workloads.
552
553 If you are unsure how to answer this question, answer N.
554
555 config PARAVIRT_CLOCK
556 bool
557 default n
558
559 endif
560
561 config PARAVIRT_DEBUG
562 bool "paravirt-ops debugging"
563 depends on PARAVIRT && DEBUG_KERNEL
564 ---help---
565 Enable to debug paravirt_ops internals. Specifically, BUG if
566 a paravirt_op is missing when it is called.
567
568 config MEMTEST
569 bool "Memtest"
570 ---help---
571 This option adds a kernel parameter 'memtest', which allows memtest
572 to be set.
573 memtest=0, mean disabled; -- default
574 memtest=1, mean do 1 test pattern;
575 ...
576 memtest=4, mean do 4 test patterns.
577 If you are unsure how to answer this question, answer N.
578
579 config X86_SUMMIT_NUMA
580 def_bool y
581 depends on X86_32 && NUMA && X86_32_NON_STANDARD
582
583 config X86_CYCLONE_TIMER
584 def_bool y
585 depends on X86_32_NON_STANDARD
586
587 source "arch/x86/Kconfig.cpu"
588
589 config HPET_TIMER
590 def_bool X86_64
591 prompt "HPET Timer Support" if X86_32
592 ---help---
593 Use the IA-PC HPET (High Precision Event Timer) to manage
594 time in preference to the PIT and RTC, if a HPET is
595 present.
596 HPET is the next generation timer replacing legacy 8254s.
597 The HPET provides a stable time base on SMP
598 systems, unlike the TSC, but it is more expensive to access,
599 as it is off-chip. You can find the HPET spec at
600 <http://www.intel.com/hardwaredesign/hpetspec_1.pdf>.
601
602 You can safely choose Y here. However, HPET will only be
603 activated if the platform and the BIOS support this feature.
604 Otherwise the 8254 will be used for timing services.
605
606 Choose N to continue using the legacy 8254 timer.
607
608 config HPET_EMULATE_RTC
609 def_bool y
610 depends on HPET_TIMER && (RTC=y || RTC=m || RTC_DRV_CMOS=m || RTC_DRV_CMOS=y)
611
612 # Mark as embedded because too many people got it wrong.
613 # The code disables itself when not needed.
614 config DMI
615 default y
616 bool "Enable DMI scanning" if EMBEDDED
617 ---help---
618 Enabled scanning of DMI to identify machine quirks. Say Y
619 here unless you have verified that your setup is not
620 affected by entries in the DMI blacklist. Required by PNP
621 BIOS code.
622
623 config GART_IOMMU
624 bool "GART IOMMU support" if EMBEDDED
625 default y
626 select SWIOTLB
627 depends on X86_64 && PCI
628 ---help---
629 Support for full DMA access of devices with 32bit memory access only
630 on systems with more than 3GB. This is usually needed for USB,
631 sound, many IDE/SATA chipsets and some other devices.
632 Provides a driver for the AMD Athlon64/Opteron/Turion/Sempron GART
633 based hardware IOMMU and a software bounce buffer based IOMMU used
634 on Intel systems and as fallback.
635 The code is only active when needed (enough memory and limited
636 device) unless CONFIG_IOMMU_DEBUG or iommu=force is specified
637 too.
638
639 config CALGARY_IOMMU
640 bool "IBM Calgary IOMMU support"
641 select SWIOTLB
642 depends on X86_64 && PCI && EXPERIMENTAL
643 ---help---
644 Support for hardware IOMMUs in IBM's xSeries x366 and x460
645 systems. Needed to run systems with more than 3GB of memory
646 properly with 32-bit PCI devices that do not support DAC
647 (Double Address Cycle). Calgary also supports bus level
648 isolation, where all DMAs pass through the IOMMU. This
649 prevents them from going anywhere except their intended
650 destination. This catches hard-to-find kernel bugs and
651 mis-behaving drivers and devices that do not use the DMA-API
652 properly to set up their DMA buffers. The IOMMU can be
653 turned off at boot time with the iommu=off parameter.
654 Normally the kernel will make the right choice by itself.
655 If unsure, say Y.
656
657 config CALGARY_IOMMU_ENABLED_BY_DEFAULT
658 def_bool y
659 prompt "Should Calgary be enabled by default?"
660 depends on CALGARY_IOMMU
661 ---help---
662 Should Calgary be enabled by default? if you choose 'y', Calgary
663 will be used (if it exists). If you choose 'n', Calgary will not be
664 used even if it exists. If you choose 'n' and would like to use
665 Calgary anyway, pass 'iommu=calgary' on the kernel command line.
666 If unsure, say Y.
667
668 config AMD_IOMMU
669 bool "AMD IOMMU support"
670 select SWIOTLB
671 select PCI_MSI
672 depends on X86_64 && PCI && ACPI
673 ---help---
674 With this option you can enable support for AMD IOMMU hardware in
675 your system. An IOMMU is a hardware component which provides
676 remapping of DMA memory accesses from devices. With an AMD IOMMU you
677 can isolate the the DMA memory of different devices and protect the
678 system from misbehaving device drivers or hardware.
679
680 You can find out if your system has an AMD IOMMU if you look into
681 your BIOS for an option to enable it or if you have an IVRS ACPI
682 table.
683
684 config AMD_IOMMU_STATS
685 bool "Export AMD IOMMU statistics to debugfs"
686 depends on AMD_IOMMU
687 select DEBUG_FS
688 ---help---
689 This option enables code in the AMD IOMMU driver to collect various
690 statistics about whats happening in the driver and exports that
691 information to userspace via debugfs.
692 If unsure, say N.
693
694 # need this always selected by IOMMU for the VIA workaround
695 config SWIOTLB
696 def_bool y if X86_64
697 ---help---
698 Support for software bounce buffers used on x86-64 systems
699 which don't have a hardware IOMMU (e.g. the current generation
700 of Intel's x86-64 CPUs). Using this PCI devices which can only
701 access 32-bits of memory can be used on systems with more than
702 3 GB of memory. If unsure, say Y.
703
704 config IOMMU_HELPER
705 def_bool (CALGARY_IOMMU || GART_IOMMU || SWIOTLB || AMD_IOMMU)
706
707 config IOMMU_API
708 def_bool (AMD_IOMMU || DMAR)
709
710 config MAXSMP
711 bool "Configure Maximum number of SMP Processors and NUMA Nodes"
712 depends on X86_64 && SMP && DEBUG_KERNEL && EXPERIMENTAL
713 select CPUMASK_OFFSTACK
714 default n
715 ---help---
716 Configure maximum number of CPUS and NUMA Nodes for this architecture.
717 If unsure, say N.
718
719 config NR_CPUS
720 int "Maximum number of CPUs" if SMP && !MAXSMP
721 range 2 8 if SMP && X86_32 && !X86_BIGSMP
722 range 2 512 if SMP && !MAXSMP
723 default "1" if !SMP
724 default "4096" if MAXSMP
725 default "32" if SMP && (X86_NUMAQ || X86_SUMMIT || X86_BIGSMP || X86_ES7000)
726 default "8" if SMP
727 ---help---
728 This allows you to specify the maximum number of CPUs which this
729 kernel will support. The maximum supported value is 512 and the
730 minimum value which makes sense is 2.
731
732 This is purely to save memory - each supported CPU adds
733 approximately eight kilobytes to the kernel image.
734
735 config SCHED_SMT
736 bool "SMT (Hyperthreading) scheduler support"
737 depends on X86_HT
738 ---help---
739 SMT scheduler support improves the CPU scheduler's decision making
740 when dealing with Intel Pentium 4 chips with HyperThreading at a
741 cost of slightly increased overhead in some places. If unsure say
742 N here.
743
744 config SCHED_MC
745 def_bool y
746 prompt "Multi-core scheduler support"
747 depends on X86_HT
748 ---help---
749 Multi-core scheduler support improves the CPU scheduler's decision
750 making when dealing with multi-core CPU chips at a cost of slightly
751 increased overhead in some places. If unsure say N here.
752
753 source "kernel/Kconfig.preempt"
754
755 config X86_UP_APIC
756 bool "Local APIC support on uniprocessors"
757 depends on X86_32 && !SMP && !X86_32_NON_STANDARD
758 ---help---
759 A local APIC (Advanced Programmable Interrupt Controller) is an
760 integrated interrupt controller in the CPU. If you have a single-CPU
761 system which has a processor with a local APIC, you can say Y here to
762 enable and use it. If you say Y here even though your machine doesn't
763 have a local APIC, then the kernel will still run with no slowdown at
764 all. The local APIC supports CPU-generated self-interrupts (timer,
765 performance counters), and the NMI watchdog which detects hard
766 lockups.
767
768 config X86_UP_IOAPIC
769 bool "IO-APIC support on uniprocessors"
770 depends on X86_UP_APIC
771 ---help---
772 An IO-APIC (I/O Advanced Programmable Interrupt Controller) is an
773 SMP-capable replacement for PC-style interrupt controllers. Most
774 SMP systems and many recent uniprocessor systems have one.
775
776 If you have a single-CPU system with an IO-APIC, you can say Y here
777 to use it. If you say Y here even though your machine doesn't have
778 an IO-APIC, then the kernel will still run with no slowdown at all.
779
780 config X86_LOCAL_APIC
781 def_bool y
782 depends on X86_64 || SMP || X86_32_NON_STANDARD || X86_UP_APIC
783
784 config X86_IO_APIC
785 def_bool y
786 depends on X86_64 || SMP || X86_32_NON_STANDARD || X86_UP_APIC
787
788 config X86_VISWS_APIC
789 def_bool y
790 depends on X86_32 && X86_VISWS
791
792 config X86_REROUTE_FOR_BROKEN_BOOT_IRQS
793 bool "Reroute for broken boot IRQs"
794 default n
795 depends on X86_IO_APIC
796 ---help---
797 This option enables a workaround that fixes a source of
798 spurious interrupts. This is recommended when threaded
799 interrupt handling is used on systems where the generation of
800 superfluous "boot interrupts" cannot be disabled.
801
802 Some chipsets generate a legacy INTx "boot IRQ" when the IRQ
803 entry in the chipset's IO-APIC is masked (as, e.g. the RT
804 kernel does during interrupt handling). On chipsets where this
805 boot IRQ generation cannot be disabled, this workaround keeps
806 the original IRQ line masked so that only the equivalent "boot
807 IRQ" is delivered to the CPUs. The workaround also tells the
808 kernel to set up the IRQ handler on the boot IRQ line. In this
809 way only one interrupt is delivered to the kernel. Otherwise
810 the spurious second interrupt may cause the kernel to bring
811 down (vital) interrupt lines.
812
813 Only affects "broken" chipsets. Interrupt sharing may be
814 increased on these systems.
815
816 config X86_MCE
817 bool "Machine Check / overheating reporting"
818 ---help---
819 Machine Check support allows the processor to notify the
820 kernel if it detects a problem (e.g. overheating, data corruption).
821 The action the kernel takes depends on the severity of the problem,
822 ranging from warning messages to halting the machine.
823
824 config X86_MCE_INTEL
825 def_bool y
826 prompt "Intel MCE features"
827 depends on X86_MCE && X86_LOCAL_APIC
828 ---help---
829 Additional support for intel specific MCE features such as
830 the thermal monitor.
831
832 config X86_MCE_AMD
833 def_bool y
834 prompt "AMD MCE features"
835 depends on X86_MCE && X86_LOCAL_APIC
836 ---help---
837 Additional support for AMD specific MCE features such as
838 the DRAM Error Threshold.
839
840 config X86_ANCIENT_MCE
841 def_bool n
842 depends on X86_32 && X86_MCE
843 prompt "Support for old Pentium 5 / WinChip machine checks"
844 ---help---
845 Include support for machine check handling on old Pentium 5 or WinChip
846 systems. These typically need to be enabled explicitely on the command
847 line.
848
849 config X86_MCE_THRESHOLD
850 depends on X86_MCE_AMD || X86_MCE_INTEL
851 bool
852 default y
853
854 config X86_MCE_INJECT
855 depends on X86_MCE
856 tristate "Machine check injector support"
857 ---help---
858 Provide support for injecting machine checks for testing purposes.
859 If you don't know what a machine check is and you don't do kernel
860 QA it is safe to say n.
861
862 config X86_THERMAL_VECTOR
863 def_bool y
864 depends on X86_MCE_INTEL
865
866 config VM86
867 bool "Enable VM86 support" if EMBEDDED
868 default y
869 depends on X86_32
870 ---help---
871 This option is required by programs like DOSEMU to run 16-bit legacy
872 code on X86 processors. It also may be needed by software like
873 XFree86 to initialize some video cards via BIOS. Disabling this
874 option saves about 6k.
875
876 config TOSHIBA
877 tristate "Toshiba Laptop support"
878 depends on X86_32
879 ---help---
880 This adds a driver to safely access the System Management Mode of
881 the CPU on Toshiba portables with a genuine Toshiba BIOS. It does
882 not work on models with a Phoenix BIOS. The System Management Mode
883 is used to set the BIOS and power saving options on Toshiba portables.
884
885 For information on utilities to make use of this driver see the
886 Toshiba Linux utilities web site at:
887 <http://www.buzzard.org.uk/toshiba/>.
888
889 Say Y if you intend to run this kernel on a Toshiba portable.
890 Say N otherwise.
891
892 config I8K
893 tristate "Dell laptop support"
894 ---help---
895 This adds a driver to safely access the System Management Mode
896 of the CPU on the Dell Inspiron 8000. The System Management Mode
897 is used to read cpu temperature and cooling fan status and to
898 control the fans on the I8K portables.
899
900 This driver has been tested only on the Inspiron 8000 but it may
901 also work with other Dell laptops. You can force loading on other
902 models by passing the parameter `force=1' to the module. Use at
903 your own risk.
904
905 For information on utilities to make use of this driver see the
906 I8K Linux utilities web site at:
907 <http://people.debian.org/~dz/i8k/>
908
909 Say Y if you intend to run this kernel on a Dell Inspiron 8000.
910 Say N otherwise.
911
912 config X86_REBOOTFIXUPS
913 bool "Enable X86 board specific fixups for reboot"
914 depends on X86_32
915 ---help---
916 This enables chipset and/or board specific fixups to be done
917 in order to get reboot to work correctly. This is only needed on
918 some combinations of hardware and BIOS. The symptom, for which
919 this config is intended, is when reboot ends with a stalled/hung
920 system.
921
922 Currently, the only fixup is for the Geode machines using
923 CS5530A and CS5536 chipsets and the RDC R-321x SoC.
924
925 Say Y if you want to enable the fixup. Currently, it's safe to
926 enable this option even if you don't need it.
927 Say N otherwise.
928
929 config MICROCODE
930 tristate "/dev/cpu/microcode - microcode support"
931 select FW_LOADER
932 ---help---
933 If you say Y here, you will be able to update the microcode on
934 certain Intel and AMD processors. The Intel support is for the
935 IA32 family, e.g. Pentium Pro, Pentium II, Pentium III,
936 Pentium 4, Xeon etc. The AMD support is for family 0x10 and
937 0x11 processors, e.g. Opteron, Phenom and Turion 64 Ultra.
938 You will obviously need the actual microcode binary data itself
939 which is not shipped with the Linux kernel.
940
941 This option selects the general module only, you need to select
942 at least one vendor specific module as well.
943
944 To compile this driver as a module, choose M here: the
945 module will be called microcode.
946
947 config MICROCODE_INTEL
948 bool "Intel microcode patch loading support"
949 depends on MICROCODE
950 default MICROCODE
951 select FW_LOADER
952 ---help---
953 This options enables microcode patch loading support for Intel
954 processors.
955
956 For latest news and information on obtaining all the required
957 Intel ingredients for this driver, check:
958 <http://www.urbanmyth.org/microcode/>.
959
960 config MICROCODE_AMD
961 bool "AMD microcode patch loading support"
962 depends on MICROCODE
963 select FW_LOADER
964 ---help---
965 If you select this option, microcode patch loading support for AMD
966 processors will be enabled.
967
968 config MICROCODE_OLD_INTERFACE
969 def_bool y
970 depends on MICROCODE
971
972 config X86_MSR
973 tristate "/dev/cpu/*/msr - Model-specific register support"
974 ---help---
975 This device gives privileged processes access to the x86
976 Model-Specific Registers (MSRs). It is a character device with
977 major 202 and minors 0 to 31 for /dev/cpu/0/msr to /dev/cpu/31/msr.
978 MSR accesses are directed to a specific CPU on multi-processor
979 systems.
980
981 config X86_CPUID
982 tristate "/dev/cpu/*/cpuid - CPU information support"
983 ---help---
984 This device gives processes access to the x86 CPUID instruction to
985 be executed on a specific processor. It is a character device
986 with major 203 and minors 0 to 31 for /dev/cpu/0/cpuid to
987 /dev/cpu/31/cpuid.
988
989 config X86_CPU_DEBUG
990 tristate "/sys/kernel/debug/x86/cpu/* - CPU Debug support"
991 ---help---
992 If you select this option, this will provide various x86 CPUs
993 information through debugfs.
994
995 choice
996 prompt "High Memory Support"
997 default HIGHMEM4G if !X86_NUMAQ
998 default HIGHMEM64G if X86_NUMAQ
999 depends on X86_32
1000
1001 config NOHIGHMEM
1002 bool "off"
1003 depends on !X86_NUMAQ
1004 ---help---
1005 Linux can use up to 64 Gigabytes of physical memory on x86 systems.
1006 However, the address space of 32-bit x86 processors is only 4
1007 Gigabytes large. That means that, if you have a large amount of
1008 physical memory, not all of it can be "permanently mapped" by the
1009 kernel. The physical memory that's not permanently mapped is called
1010 "high memory".
1011
1012 If you are compiling a kernel which will never run on a machine with
1013 more than 1 Gigabyte total physical RAM, answer "off" here (default
1014 choice and suitable for most users). This will result in a "3GB/1GB"
1015 split: 3GB are mapped so that each process sees a 3GB virtual memory
1016 space and the remaining part of the 4GB virtual memory space is used
1017 by the kernel to permanently map as much physical memory as
1018 possible.
1019
1020 If the machine has between 1 and 4 Gigabytes physical RAM, then
1021 answer "4GB" here.
1022
1023 If more than 4 Gigabytes is used then answer "64GB" here. This
1024 selection turns Intel PAE (Physical Address Extension) mode on.
1025 PAE implements 3-level paging on IA32 processors. PAE is fully
1026 supported by Linux, PAE mode is implemented on all recent Intel
1027 processors (Pentium Pro and better). NOTE: If you say "64GB" here,
1028 then the kernel will not boot on CPUs that don't support PAE!
1029
1030 The actual amount of total physical memory will either be
1031 auto detected or can be forced by using a kernel command line option
1032 such as "mem=256M". (Try "man bootparam" or see the documentation of
1033 your boot loader (lilo or loadlin) about how to pass options to the
1034 kernel at boot time.)
1035
1036 If unsure, say "off".
1037
1038 config HIGHMEM4G
1039 bool "4GB"
1040 depends on !X86_NUMAQ
1041 ---help---
1042 Select this if you have a 32-bit processor and between 1 and 4
1043 gigabytes of physical RAM.
1044
1045 config HIGHMEM64G
1046 bool "64GB"
1047 depends on !M386 && !M486
1048 select X86_PAE
1049 ---help---
1050 Select this if you have a 32-bit processor and more than 4
1051 gigabytes of physical RAM.
1052
1053 endchoice
1054
1055 choice
1056 depends on EXPERIMENTAL
1057 prompt "Memory split" if EMBEDDED
1058 default VMSPLIT_3G
1059 depends on X86_32
1060 ---help---
1061 Select the desired split between kernel and user memory.
1062
1063 If the address range available to the kernel is less than the
1064 physical memory installed, the remaining memory will be available
1065 as "high memory". Accessing high memory is a little more costly
1066 than low memory, as it needs to be mapped into the kernel first.
1067 Note that increasing the kernel address space limits the range
1068 available to user programs, making the address space there
1069 tighter. Selecting anything other than the default 3G/1G split
1070 will also likely make your kernel incompatible with binary-only
1071 kernel modules.
1072
1073 If you are not absolutely sure what you are doing, leave this
1074 option alone!
1075
1076 config VMSPLIT_3G
1077 bool "3G/1G user/kernel split"
1078 config VMSPLIT_3G_OPT
1079 depends on !X86_PAE
1080 bool "3G/1G user/kernel split (for full 1G low memory)"
1081 config VMSPLIT_2G
1082 bool "2G/2G user/kernel split"
1083 config VMSPLIT_2G_OPT
1084 depends on !X86_PAE
1085 bool "2G/2G user/kernel split (for full 2G low memory)"
1086 config VMSPLIT_1G
1087 bool "1G/3G user/kernel split"
1088 endchoice
1089
1090 config PAGE_OFFSET
1091 hex
1092 default 0xB0000000 if VMSPLIT_3G_OPT
1093 default 0x80000000 if VMSPLIT_2G
1094 default 0x78000000 if VMSPLIT_2G_OPT
1095 default 0x40000000 if VMSPLIT_1G
1096 default 0xC0000000
1097 depends on X86_32
1098
1099 config HIGHMEM
1100 def_bool y
1101 depends on X86_32 && (HIGHMEM64G || HIGHMEM4G)
1102
1103 config X86_PAE
1104 bool "PAE (Physical Address Extension) Support"
1105 depends on X86_32 && !HIGHMEM4G
1106 ---help---
1107 PAE is required for NX support, and furthermore enables
1108 larger swapspace support for non-overcommit purposes. It
1109 has the cost of more pagetable lookup overhead, and also
1110 consumes more pagetable space per process.
1111
1112 config ARCH_PHYS_ADDR_T_64BIT
1113 def_bool X86_64 || X86_PAE
1114
1115 config DIRECT_GBPAGES
1116 bool "Enable 1GB pages for kernel pagetables" if EMBEDDED
1117 default y
1118 depends on X86_64
1119 ---help---
1120 Allow the kernel linear mapping to use 1GB pages on CPUs that
1121 support it. This can improve the kernel's performance a tiny bit by
1122 reducing TLB pressure. If in doubt, say "Y".
1123
1124 # Common NUMA Features
1125 config NUMA
1126 bool "Numa Memory Allocation and Scheduler Support"
1127 depends on SMP
1128 depends on X86_64 || (X86_32 && HIGHMEM64G && (X86_NUMAQ || X86_BIGSMP || X86_SUMMIT && ACPI) && EXPERIMENTAL)
1129 default y if (X86_NUMAQ || X86_SUMMIT || X86_BIGSMP)
1130 ---help---
1131 Enable NUMA (Non Uniform Memory Access) support.
1132
1133 The kernel will try to allocate memory used by a CPU on the
1134 local memory controller of the CPU and add some more
1135 NUMA awareness to the kernel.
1136
1137 For 64-bit this is recommended if the system is Intel Core i7
1138 (or later), AMD Opteron, or EM64T NUMA.
1139
1140 For 32-bit this is only needed on (rare) 32-bit-only platforms
1141 that support NUMA topologies, such as NUMAQ / Summit, or if you
1142 boot a 32-bit kernel on a 64-bit NUMA platform.
1143
1144 Otherwise, you should say N.
1145
1146 comment "NUMA (Summit) requires SMP, 64GB highmem support, ACPI"
1147 depends on X86_32 && X86_SUMMIT && (!HIGHMEM64G || !ACPI)
1148
1149 config K8_NUMA
1150 def_bool y
1151 prompt "Old style AMD Opteron NUMA detection"
1152 depends on X86_64 && NUMA && PCI
1153 ---help---
1154 Enable K8 NUMA node topology detection. You should say Y here if
1155 you have a multi processor AMD K8 system. This uses an old
1156 method to read the NUMA configuration directly from the builtin
1157 Northbridge of Opteron. It is recommended to use X86_64_ACPI_NUMA
1158 instead, which also takes priority if both are compiled in.
1159
1160 config X86_64_ACPI_NUMA
1161 def_bool y
1162 prompt "ACPI NUMA detection"
1163 depends on X86_64 && NUMA && ACPI && PCI
1164 select ACPI_NUMA
1165 ---help---
1166 Enable ACPI SRAT based node topology detection.
1167
1168 # Some NUMA nodes have memory ranges that span
1169 # other nodes. Even though a pfn is valid and
1170 # between a node's start and end pfns, it may not
1171 # reside on that node. See memmap_init_zone()
1172 # for details.
1173 config NODES_SPAN_OTHER_NODES
1174 def_bool y
1175 depends on X86_64_ACPI_NUMA
1176
1177 config NUMA_EMU
1178 bool "NUMA emulation"
1179 depends on X86_64 && NUMA
1180 ---help---
1181 Enable NUMA emulation. A flat machine will be split
1182 into virtual nodes when booted with "numa=fake=N", where N is the
1183 number of nodes. This is only useful for debugging.
1184
1185 config NODES_SHIFT
1186 int "Maximum NUMA Nodes (as a power of 2)" if !MAXSMP
1187 range 1 9
1188 default "9" if MAXSMP
1189 default "6" if X86_64
1190 default "4" if X86_NUMAQ
1191 default "3"
1192 depends on NEED_MULTIPLE_NODES
1193 ---help---
1194 Specify the maximum number of NUMA Nodes available on the target
1195 system. Increases memory reserved to accommodate various tables.
1196
1197 config HAVE_ARCH_BOOTMEM
1198 def_bool y
1199 depends on X86_32 && NUMA
1200
1201 config ARCH_HAVE_MEMORY_PRESENT
1202 def_bool y
1203 depends on X86_32 && DISCONTIGMEM
1204
1205 config NEED_NODE_MEMMAP_SIZE
1206 def_bool y
1207 depends on X86_32 && (DISCONTIGMEM || SPARSEMEM)
1208
1209 config HAVE_ARCH_ALLOC_REMAP
1210 def_bool y
1211 depends on X86_32 && NUMA
1212
1213 config ARCH_FLATMEM_ENABLE
1214 def_bool y
1215 depends on X86_32 && ARCH_SELECT_MEMORY_MODEL && !NUMA
1216
1217 config ARCH_DISCONTIGMEM_ENABLE
1218 def_bool y
1219 depends on NUMA && X86_32
1220
1221 config ARCH_DISCONTIGMEM_DEFAULT
1222 def_bool y
1223 depends on NUMA && X86_32
1224
1225 config ARCH_PROC_KCORE_TEXT
1226 def_bool y
1227 depends on X86_64 && PROC_KCORE
1228
1229 config ARCH_SPARSEMEM_DEFAULT
1230 def_bool y
1231 depends on X86_64
1232
1233 config ARCH_SPARSEMEM_ENABLE
1234 def_bool y
1235 depends on X86_64 || NUMA || (EXPERIMENTAL && X86_32) || X86_32_NON_STANDARD
1236 select SPARSEMEM_STATIC if X86_32
1237 select SPARSEMEM_VMEMMAP_ENABLE if X86_64
1238
1239 config ARCH_SELECT_MEMORY_MODEL
1240 def_bool y
1241 depends on ARCH_SPARSEMEM_ENABLE
1242
1243 config ARCH_MEMORY_PROBE
1244 def_bool X86_64
1245 depends on MEMORY_HOTPLUG
1246
1247 source "mm/Kconfig"
1248
1249 config HIGHPTE
1250 bool "Allocate 3rd-level pagetables from highmem"
1251 depends on X86_32 && (HIGHMEM4G || HIGHMEM64G)
1252 ---help---
1253 The VM uses one page table entry for each page of physical memory.
1254 For systems with a lot of RAM, this can be wasteful of precious
1255 low memory. Setting this option will put user-space page table
1256 entries in high memory.
1257
1258 config X86_CHECK_BIOS_CORRUPTION
1259 bool "Check for low memory corruption"
1260 ---help---
1261 Periodically check for memory corruption in low memory, which
1262 is suspected to be caused by BIOS. Even when enabled in the
1263 configuration, it is disabled at runtime. Enable it by
1264 setting "memory_corruption_check=1" on the kernel command
1265 line. By default it scans the low 64k of memory every 60
1266 seconds; see the memory_corruption_check_size and
1267 memory_corruption_check_period parameters in
1268 Documentation/kernel-parameters.txt to adjust this.
1269
1270 When enabled with the default parameters, this option has
1271 almost no overhead, as it reserves a relatively small amount
1272 of memory and scans it infrequently. It both detects corruption
1273 and prevents it from affecting the running system.
1274
1275 It is, however, intended as a diagnostic tool; if repeatable
1276 BIOS-originated corruption always affects the same memory,
1277 you can use memmap= to prevent the kernel from using that
1278 memory.
1279
1280 config X86_BOOTPARAM_MEMORY_CORRUPTION_CHECK
1281 bool "Set the default setting of memory_corruption_check"
1282 depends on X86_CHECK_BIOS_CORRUPTION
1283 default y
1284 ---help---
1285 Set whether the default state of memory_corruption_check is
1286 on or off.
1287
1288 config X86_RESERVE_LOW_64K
1289 bool "Reserve low 64K of RAM on AMI/Phoenix BIOSen"
1290 default y
1291 ---help---
1292 Reserve the first 64K of physical RAM on BIOSes that are known
1293 to potentially corrupt that memory range. A numbers of BIOSes are
1294 known to utilize this area during suspend/resume, so it must not
1295 be used by the kernel.
1296
1297 Set this to N if you are absolutely sure that you trust the BIOS
1298 to get all its memory reservations and usages right.
1299
1300 If you have doubts about the BIOS (e.g. suspend/resume does not
1301 work or there's kernel crashes after certain hardware hotplug
1302 events) and it's not AMI or Phoenix, then you might want to enable
1303 X86_CHECK_BIOS_CORRUPTION=y to allow the kernel to check typical
1304 corruption patterns.
1305
1306 Say Y if unsure.
1307
1308 config MATH_EMULATION
1309 bool
1310 prompt "Math emulation" if X86_32
1311 ---help---
1312 Linux can emulate a math coprocessor (used for floating point
1313 operations) if you don't have one. 486DX and Pentium processors have
1314 a math coprocessor built in, 486SX and 386 do not, unless you added
1315 a 487DX or 387, respectively. (The messages during boot time can
1316 give you some hints here ["man dmesg"].) Everyone needs either a
1317 coprocessor or this emulation.
1318
1319 If you don't have a math coprocessor, you need to say Y here; if you
1320 say Y here even though you have a coprocessor, the coprocessor will
1321 be used nevertheless. (This behavior can be changed with the kernel
1322 command line option "no387", which comes handy if your coprocessor
1323 is broken. Try "man bootparam" or see the documentation of your boot
1324 loader (lilo or loadlin) about how to pass options to the kernel at
1325 boot time.) This means that it is a good idea to say Y here if you
1326 intend to use this kernel on different machines.
1327
1328 More information about the internals of the Linux math coprocessor
1329 emulation can be found in <file:arch/x86/math-emu/README>.
1330
1331 If you are not sure, say Y; apart from resulting in a 66 KB bigger
1332 kernel, it won't hurt.
1333
1334 config MTRR
1335 bool
1336 default y
1337 prompt "MTRR (Memory Type Range Register) support" if EMBEDDED
1338 ---help---
1339 On Intel P6 family processors (Pentium Pro, Pentium II and later)
1340 the Memory Type Range Registers (MTRRs) may be used to control
1341 processor access to memory ranges. This is most useful if you have
1342 a video (VGA) card on a PCI or AGP bus. Enabling write-combining
1343 allows bus write transfers to be combined into a larger transfer
1344 before bursting over the PCI/AGP bus. This can increase performance
1345 of image write operations 2.5 times or more. Saying Y here creates a
1346 /proc/mtrr file which may be used to manipulate your processor's
1347 MTRRs. Typically the X server should use this.
1348
1349 This code has a reasonably generic interface so that similar
1350 control registers on other processors can be easily supported
1351 as well:
1352
1353 The Cyrix 6x86, 6x86MX and M II processors have Address Range
1354 Registers (ARRs) which provide a similar functionality to MTRRs. For
1355 these, the ARRs are used to emulate the MTRRs.
1356 The AMD K6-2 (stepping 8 and above) and K6-3 processors have two
1357 MTRRs. The Centaur C6 (WinChip) has 8 MCRs, allowing
1358 write-combining. All of these processors are supported by this code
1359 and it makes sense to say Y here if you have one of them.
1360
1361 Saying Y here also fixes a problem with buggy SMP BIOSes which only
1362 set the MTRRs for the boot CPU and not for the secondary CPUs. This
1363 can lead to all sorts of problems, so it's good to say Y here.
1364
1365 You can safely say Y even if your machine doesn't have MTRRs, you'll
1366 just add about 9 KB to your kernel.
1367
1368 See <file:Documentation/x86/mtrr.txt> for more information.
1369
1370 config MTRR_SANITIZER
1371 def_bool y
1372 prompt "MTRR cleanup support"
1373 depends on MTRR
1374 ---help---
1375 Convert MTRR layout from continuous to discrete, so X drivers can
1376 add writeback entries.
1377
1378 Can be disabled with disable_mtrr_cleanup on the kernel command line.
1379 The largest mtrr entry size for a continuous block can be set with
1380 mtrr_chunk_size.
1381
1382 If unsure, say Y.
1383
1384 config MTRR_SANITIZER_ENABLE_DEFAULT
1385 int "MTRR cleanup enable value (0-1)"
1386 range 0 1
1387 default "0"
1388 depends on MTRR_SANITIZER
1389 ---help---
1390 Enable mtrr cleanup default value
1391
1392 config MTRR_SANITIZER_SPARE_REG_NR_DEFAULT
1393 int "MTRR cleanup spare reg num (0-7)"
1394 range 0 7
1395 default "1"
1396 depends on MTRR_SANITIZER
1397 ---help---
1398 mtrr cleanup spare entries default, it can be changed via
1399 mtrr_spare_reg_nr=N on the kernel command line.
1400
1401 config X86_PAT
1402 bool
1403 default y
1404 prompt "x86 PAT support" if EMBEDDED
1405 depends on MTRR
1406 ---help---
1407 Use PAT attributes to setup page level cache control.
1408
1409 PATs are the modern equivalents of MTRRs and are much more
1410 flexible than MTRRs.
1411
1412 Say N here if you see bootup problems (boot crash, boot hang,
1413 spontaneous reboots) or a non-working video driver.
1414
1415 If unsure, say Y.
1416
1417 config ARCH_USES_PG_UNCACHED
1418 def_bool y
1419 depends on X86_PAT
1420
1421 config EFI
1422 bool "EFI runtime service support"
1423 depends on ACPI
1424 ---help---
1425 This enables the kernel to use EFI runtime services that are
1426 available (such as the EFI variable services).
1427
1428 This option is only useful on systems that have EFI firmware.
1429 In addition, you should use the latest ELILO loader available
1430 at <http://elilo.sourceforge.net> in order to take advantage
1431 of EFI runtime services. However, even with this option, the
1432 resultant kernel should continue to boot on existing non-EFI
1433 platforms.
1434
1435 config SECCOMP
1436 def_bool y
1437 prompt "Enable seccomp to safely compute untrusted bytecode"
1438 ---help---
1439 This kernel feature is useful for number crunching applications
1440 that may need to compute untrusted bytecode during their
1441 execution. By using pipes or other transports made available to
1442 the process as file descriptors supporting the read/write
1443 syscalls, it's possible to isolate those applications in
1444 their own address space using seccomp. Once seccomp is
1445 enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
1446 and the task is only allowed to execute a few safe syscalls
1447 defined by each seccomp mode.
1448
1449 If unsure, say Y. Only embedded should say N here.
1450
1451 config CC_STACKPROTECTOR
1452 bool "Enable -fstack-protector buffer overflow detection (EXPERIMENTAL)"
1453 ---help---
1454 This option turns on the -fstack-protector GCC feature. This
1455 feature puts, at the beginning of functions, a canary value on
1456 the stack just before the return address, and validates
1457 the value just before actually returning. Stack based buffer
1458 overflows (that need to overwrite this return address) now also
1459 overwrite the canary, which gets detected and the attack is then
1460 neutralized via a kernel panic.
1461
1462 This feature requires gcc version 4.2 or above, or a distribution
1463 gcc with the feature backported. Older versions are automatically
1464 detected and for those versions, this configuration option is
1465 ignored. (and a warning is printed during bootup)
1466
1467 source kernel/Kconfig.hz
1468
1469 config KEXEC
1470 bool "kexec system call"
1471 ---help---
1472 kexec is a system call that implements the ability to shutdown your
1473 current kernel, and to start another kernel. It is like a reboot
1474 but it is independent of the system firmware. And like a reboot
1475 you can start any kernel with it, not just Linux.
1476
1477 The name comes from the similarity to the exec system call.
1478
1479 It is an ongoing process to be certain the hardware in a machine
1480 is properly shutdown, so do not be surprised if this code does not
1481 initially work for you. It may help to enable device hotplugging
1482 support. As of this writing the exact hardware interface is
1483 strongly in flux, so no good recommendation can be made.
1484
1485 config CRASH_DUMP
1486 bool "kernel crash dumps"
1487 depends on X86_64 || (X86_32 && HIGHMEM)
1488 ---help---
1489 Generate crash dump after being started by kexec.
1490 This should be normally only set in special crash dump kernels
1491 which are loaded in the main kernel with kexec-tools into
1492 a specially reserved region and then later executed after
1493 a crash by kdump/kexec. The crash dump kernel must be compiled
1494 to a memory address not used by the main kernel or BIOS using
1495 PHYSICAL_START, or it must be built as a relocatable image
1496 (CONFIG_RELOCATABLE=y).
1497 For more details see Documentation/kdump/kdump.txt
1498
1499 config KEXEC_JUMP
1500 bool "kexec jump (EXPERIMENTAL)"
1501 depends on EXPERIMENTAL
1502 depends on KEXEC && HIBERNATION
1503 ---help---
1504 Jump between original kernel and kexeced kernel and invoke
1505 code in physical address mode via KEXEC
1506
1507 config PHYSICAL_START
1508 hex "Physical address where the kernel is loaded" if (EMBEDDED || CRASH_DUMP)
1509 default "0x1000000"
1510 ---help---
1511 This gives the physical address where the kernel is loaded.
1512
1513 If kernel is a not relocatable (CONFIG_RELOCATABLE=n) then
1514 bzImage will decompress itself to above physical address and
1515 run from there. Otherwise, bzImage will run from the address where
1516 it has been loaded by the boot loader and will ignore above physical
1517 address.
1518
1519 In normal kdump cases one does not have to set/change this option
1520 as now bzImage can be compiled as a completely relocatable image
1521 (CONFIG_RELOCATABLE=y) and be used to load and run from a different
1522 address. This option is mainly useful for the folks who don't want
1523 to use a bzImage for capturing the crash dump and want to use a
1524 vmlinux instead. vmlinux is not relocatable hence a kernel needs
1525 to be specifically compiled to run from a specific memory area
1526 (normally a reserved region) and this option comes handy.
1527
1528 So if you are using bzImage for capturing the crash dump,
1529 leave the value here unchanged to 0x1000000 and set
1530 CONFIG_RELOCATABLE=y. Otherwise if you plan to use vmlinux
1531 for capturing the crash dump change this value to start of
1532 the reserved region. In other words, it can be set based on
1533 the "X" value as specified in the "crashkernel=YM@XM"
1534 command line boot parameter passed to the panic-ed
1535 kernel. Please take a look at Documentation/kdump/kdump.txt
1536 for more details about crash dumps.
1537
1538 Usage of bzImage for capturing the crash dump is recommended as
1539 one does not have to build two kernels. Same kernel can be used
1540 as production kernel and capture kernel. Above option should have
1541 gone away after relocatable bzImage support is introduced. But it
1542 is present because there are users out there who continue to use
1543 vmlinux for dump capture. This option should go away down the
1544 line.
1545
1546 Don't change this unless you know what you are doing.
1547
1548 config RELOCATABLE
1549 bool "Build a relocatable kernel"
1550 default y
1551 ---help---
1552 This builds a kernel image that retains relocation information
1553 so it can be loaded someplace besides the default 1MB.
1554 The relocations tend to make the kernel binary about 10% larger,
1555 but are discarded at runtime.
1556
1557 One use is for the kexec on panic case where the recovery kernel
1558 must live at a different physical address than the primary
1559 kernel.
1560
1561 Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address
1562 it has been loaded at and the compile time physical address
1563 (CONFIG_PHYSICAL_START) is ignored.
1564
1565 # Relocation on x86-32 needs some additional build support
1566 config X86_NEED_RELOCS
1567 def_bool y
1568 depends on X86_32 && RELOCATABLE
1569
1570 config PHYSICAL_ALIGN
1571 hex
1572 prompt "Alignment value to which kernel should be aligned" if X86_32
1573 default "0x1000000"
1574 range 0x2000 0x1000000
1575 ---help---
1576 This value puts the alignment restrictions on physical address
1577 where kernel is loaded and run from. Kernel is compiled for an
1578 address which meets above alignment restriction.
1579
1580 If bootloader loads the kernel at a non-aligned address and
1581 CONFIG_RELOCATABLE is set, kernel will move itself to nearest
1582 address aligned to above value and run from there.
1583
1584 If bootloader loads the kernel at a non-aligned address and
1585 CONFIG_RELOCATABLE is not set, kernel will ignore the run time
1586 load address and decompress itself to the address it has been
1587 compiled for and run from there. The address for which kernel is
1588 compiled already meets above alignment restrictions. Hence the
1589 end result is that kernel runs from a physical address meeting
1590 above alignment restrictions.
1591
1592 Don't change this unless you know what you are doing.
1593
1594 config HOTPLUG_CPU
1595 bool "Support for hot-pluggable CPUs"
1596 depends on SMP && HOTPLUG
1597 ---help---
1598 Say Y here to allow turning CPUs off and on. CPUs can be
1599 controlled through /sys/devices/system/cpu.
1600 ( Note: power management support will enable this option
1601 automatically on SMP systems. )
1602 Say N if you want to disable CPU hotplug.
1603
1604 config COMPAT_VDSO
1605 def_bool y
1606 prompt "Compat VDSO support"
1607 depends on X86_32 || IA32_EMULATION
1608 ---help---
1609 Map the 32-bit VDSO to the predictable old-style address too.
1610
1611 Say N here if you are running a sufficiently recent glibc
1612 version (2.3.3 or later), to remove the high-mapped
1613 VDSO mapping and to exclusively use the randomized VDSO.
1614
1615 If unsure, say Y.
1616
1617 config CMDLINE_BOOL
1618 bool "Built-in kernel command line"
1619 default n
1620 ---help---
1621 Allow for specifying boot arguments to the kernel at
1622 build time. On some systems (e.g. embedded ones), it is
1623 necessary or convenient to provide some or all of the
1624 kernel boot arguments with the kernel itself (that is,
1625 to not rely on the boot loader to provide them.)
1626
1627 To compile command line arguments into the kernel,
1628 set this option to 'Y', then fill in the
1629 the boot arguments in CONFIG_CMDLINE.
1630
1631 Systems with fully functional boot loaders (i.e. non-embedded)
1632 should leave this option set to 'N'.
1633
1634 config CMDLINE
1635 string "Built-in kernel command string"
1636 depends on CMDLINE_BOOL
1637 default ""
1638 ---help---
1639 Enter arguments here that should be compiled into the kernel
1640 image and used at boot time. If the boot loader provides a
1641 command line at boot time, it is appended to this string to
1642 form the full kernel command line, when the system boots.
1643
1644 However, you can use the CONFIG_CMDLINE_OVERRIDE option to
1645 change this behavior.
1646
1647 In most cases, the command line (whether built-in or provided
1648 by the boot loader) should specify the device for the root
1649 file system.
1650
1651 config CMDLINE_OVERRIDE
1652 bool "Built-in command line overrides boot loader arguments"
1653 default n
1654 depends on CMDLINE_BOOL
1655 ---help---
1656 Set this option to 'Y' to have the kernel ignore the boot loader
1657 command line, and use ONLY the built-in command line.
1658
1659 This is used to work around broken boot loaders. This should
1660 be set to 'N' under normal conditions.
1661
1662 endmenu
1663
1664 config ARCH_ENABLE_MEMORY_HOTPLUG
1665 def_bool y
1666 depends on X86_64 || (X86_32 && HIGHMEM)
1667
1668 config ARCH_ENABLE_MEMORY_HOTREMOVE
1669 def_bool y
1670 depends on MEMORY_HOTPLUG
1671
1672 config HAVE_ARCH_EARLY_PFN_TO_NID
1673 def_bool X86_64
1674 depends on NUMA
1675
1676 menu "Power management and ACPI options"
1677
1678 config ARCH_HIBERNATION_HEADER
1679 def_bool y
1680 depends on X86_64 && HIBERNATION
1681
1682 source "kernel/power/Kconfig"
1683
1684 source "drivers/acpi/Kconfig"
1685
1686 source "drivers/sfi/Kconfig"
1687
1688 config X86_APM_BOOT
1689 bool
1690 default y
1691 depends on APM || APM_MODULE
1692
1693 menuconfig APM
1694 tristate "APM (Advanced Power Management) BIOS support"
1695 depends on X86_32 && PM_SLEEP
1696 ---help---
1697 APM is a BIOS specification for saving power using several different
1698 techniques. This is mostly useful for battery powered laptops with
1699 APM compliant BIOSes. If you say Y here, the system time will be
1700 reset after a RESUME operation, the /proc/apm device will provide
1701 battery status information, and user-space programs will receive
1702 notification of APM "events" (e.g. battery status change).
1703
1704 If you select "Y" here, you can disable actual use of the APM
1705 BIOS by passing the "apm=off" option to the kernel at boot time.
1706
1707 Note that the APM support is almost completely disabled for
1708 machines with more than one CPU.
1709
1710 In order to use APM, you will need supporting software. For location
1711 and more information, read <file:Documentation/power/pm.txt> and the
1712 Battery Powered Linux mini-HOWTO, available from
1713 <http://www.tldp.org/docs.html#howto>.
1714
1715 This driver does not spin down disk drives (see the hdparm(8)
1716 manpage ("man 8 hdparm") for that), and it doesn't turn off
1717 VESA-compliant "green" monitors.
1718
1719 This driver does not support the TI 4000M TravelMate and the ACER
1720 486/DX4/75 because they don't have compliant BIOSes. Many "green"
1721 desktop machines also don't have compliant BIOSes, and this driver
1722 may cause those machines to panic during the boot phase.
1723
1724 Generally, if you don't have a battery in your machine, there isn't
1725 much point in using this driver and you should say N. If you get
1726 random kernel OOPSes or reboots that don't seem to be related to
1727 anything, try disabling/enabling this option (or disabling/enabling
1728 APM in your BIOS).
1729
1730 Some other things you should try when experiencing seemingly random,
1731 "weird" problems:
1732
1733 1) make sure that you have enough swap space and that it is
1734 enabled.
1735 2) pass the "no-hlt" option to the kernel
1736 3) switch on floating point emulation in the kernel and pass
1737 the "no387" option to the kernel
1738 4) pass the "floppy=nodma" option to the kernel
1739 5) pass the "mem=4M" option to the kernel (thereby disabling
1740 all but the first 4 MB of RAM)
1741 6) make sure that the CPU is not over clocked.
1742 7) read the sig11 FAQ at <http://www.bitwizard.nl/sig11/>
1743 8) disable the cache from your BIOS settings
1744 9) install a fan for the video card or exchange video RAM
1745 10) install a better fan for the CPU
1746 11) exchange RAM chips
1747 12) exchange the motherboard.
1748
1749 To compile this driver as a module, choose M here: the
1750 module will be called apm.
1751
1752 if APM
1753
1754 config APM_IGNORE_USER_SUSPEND
1755 bool "Ignore USER SUSPEND"
1756 ---help---
1757 This option will ignore USER SUSPEND requests. On machines with a
1758 compliant APM BIOS, you want to say N. However, on the NEC Versa M
1759 series notebooks, it is necessary to say Y because of a BIOS bug.
1760
1761 config APM_DO_ENABLE
1762 bool "Enable PM at boot time"
1763 ---help---
1764 Enable APM features at boot time. From page 36 of the APM BIOS
1765 specification: "When disabled, the APM BIOS does not automatically
1766 power manage devices, enter the Standby State, enter the Suspend
1767 State, or take power saving steps in response to CPU Idle calls."
1768 This driver will make CPU Idle calls when Linux is idle (unless this
1769 feature is turned off -- see "Do CPU IDLE calls", below). This
1770 should always save battery power, but more complicated APM features
1771 will be dependent on your BIOS implementation. You may need to turn
1772 this option off if your computer hangs at boot time when using APM
1773 support, or if it beeps continuously instead of suspending. Turn
1774 this off if you have a NEC UltraLite Versa 33/C or a Toshiba
1775 T400CDT. This is off by default since most machines do fine without
1776 this feature.
1777
1778 config APM_CPU_IDLE
1779 bool "Make CPU Idle calls when idle"
1780 ---help---
1781 Enable calls to APM CPU Idle/CPU Busy inside the kernel's idle loop.
1782 On some machines, this can activate improved power savings, such as
1783 a slowed CPU clock rate, when the machine is idle. These idle calls
1784 are made after the idle loop has run for some length of time (e.g.,
1785 333 mS). On some machines, this will cause a hang at boot time or
1786 whenever the CPU becomes idle. (On machines with more than one CPU,
1787 this option does nothing.)
1788
1789 config APM_DISPLAY_BLANK
1790 bool "Enable console blanking using APM"
1791 ---help---
1792 Enable console blanking using the APM. Some laptops can use this to
1793 turn off the LCD backlight when the screen blanker of the Linux
1794 virtual console blanks the screen. Note that this is only used by
1795 the virtual console screen blanker, and won't turn off the backlight
1796 when using the X Window system. This also doesn't have anything to
1797 do with your VESA-compliant power-saving monitor. Further, this
1798 option doesn't work for all laptops -- it might not turn off your
1799 backlight at all, or it might print a lot of errors to the console,
1800 especially if you are using gpm.
1801
1802 config APM_ALLOW_INTS
1803 bool "Allow interrupts during APM BIOS calls"
1804 ---help---
1805 Normally we disable external interrupts while we are making calls to
1806 the APM BIOS as a measure to lessen the effects of a badly behaving
1807 BIOS implementation. The BIOS should reenable interrupts if it
1808 needs to. Unfortunately, some BIOSes do not -- especially those in
1809 many of the newer IBM Thinkpads. If you experience hangs when you
1810 suspend, try setting this to Y. Otherwise, say N.
1811
1812 endif # APM
1813
1814 source "arch/x86/kernel/cpu/cpufreq/Kconfig"
1815
1816 source "drivers/cpuidle/Kconfig"
1817
1818 source "drivers/idle/Kconfig"
1819
1820 endmenu
1821
1822
1823 menu "Bus options (PCI etc.)"
1824
1825 config PCI
1826 bool "PCI support"
1827 default y
1828 select ARCH_SUPPORTS_MSI if (X86_LOCAL_APIC && X86_IO_APIC)
1829 ---help---
1830 Find out whether you have a PCI motherboard. PCI is the name of a
1831 bus system, i.e. the way the CPU talks to the other stuff inside
1832 your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
1833 VESA. If you have PCI, say Y, otherwise N.
1834
1835 choice
1836 prompt "PCI access mode"
1837 depends on X86_32 && PCI
1838 default PCI_GOANY
1839 ---help---
1840 On PCI systems, the BIOS can be used to detect the PCI devices and
1841 determine their configuration. However, some old PCI motherboards
1842 have BIOS bugs and may crash if this is done. Also, some embedded
1843 PCI-based systems don't have any BIOS at all. Linux can also try to
1844 detect the PCI hardware directly without using the BIOS.
1845
1846 With this option, you can specify how Linux should detect the
1847 PCI devices. If you choose "BIOS", the BIOS will be used,
1848 if you choose "Direct", the BIOS won't be used, and if you
1849 choose "MMConfig", then PCI Express MMCONFIG will be used.
1850 If you choose "Any", the kernel will try MMCONFIG, then the
1851 direct access method and falls back to the BIOS if that doesn't
1852 work. If unsure, go with the default, which is "Any".
1853
1854 config PCI_GOBIOS
1855 bool "BIOS"
1856
1857 config PCI_GOMMCONFIG
1858 bool "MMConfig"
1859
1860 config PCI_GODIRECT
1861 bool "Direct"
1862
1863 config PCI_GOOLPC
1864 bool "OLPC"
1865 depends on OLPC
1866
1867 config PCI_GOANY
1868 bool "Any"
1869
1870 endchoice
1871
1872 config PCI_BIOS
1873 def_bool y
1874 depends on X86_32 && PCI && (PCI_GOBIOS || PCI_GOANY)
1875
1876 # x86-64 doesn't support PCI BIOS access from long mode so always go direct.
1877 config PCI_DIRECT
1878 def_bool y
1879 depends on PCI && (X86_64 || (PCI_GODIRECT || PCI_GOANY || PCI_GOOLPC))
1880
1881 config PCI_MMCONFIG
1882 def_bool y
1883 depends on X86_32 && PCI && (ACPI || SFI) && (PCI_GOMMCONFIG || PCI_GOANY)
1884
1885 config PCI_OLPC
1886 def_bool y
1887 depends on PCI && OLPC && (PCI_GOOLPC || PCI_GOANY)
1888
1889 config PCI_DOMAINS
1890 def_bool y
1891 depends on PCI
1892
1893 config PCI_MMCONFIG
1894 bool "Support mmconfig PCI config space access"
1895 depends on X86_64 && PCI && ACPI
1896
1897 config DMAR
1898 bool "Support for DMA Remapping Devices (EXPERIMENTAL)"
1899 depends on PCI_MSI && ACPI && EXPERIMENTAL
1900 help
1901 DMA remapping (DMAR) devices support enables independent address
1902 translations for Direct Memory Access (DMA) from devices.
1903 These DMA remapping devices are reported via ACPI tables
1904 and include PCI device scope covered by these DMA
1905 remapping devices.
1906
1907 config DMAR_DEFAULT_ON
1908 def_bool y
1909 prompt "Enable DMA Remapping Devices by default"
1910 depends on DMAR
1911 help
1912 Selecting this option will enable a DMAR device at boot time if
1913 one is found. If this option is not selected, DMAR support can
1914 be enabled by passing intel_iommu=on to the kernel. It is
1915 recommended you say N here while the DMAR code remains
1916 experimental.
1917
1918 config DMAR_BROKEN_GFX_WA
1919 def_bool n
1920 prompt "Workaround broken graphics drivers (going away soon)"
1921 depends on DMAR && BROKEN
1922 ---help---
1923 Current Graphics drivers tend to use physical address
1924 for DMA and avoid using DMA APIs. Setting this config
1925 option permits the IOMMU driver to set a unity map for
1926 all the OS-visible memory. Hence the driver can continue
1927 to use physical addresses for DMA, at least until this
1928 option is removed in the 2.6.32 kernel.
1929
1930 config DMAR_FLOPPY_WA
1931 def_bool y
1932 depends on DMAR
1933 ---help---
1934 Floppy disk drivers are known to bypass DMA API calls
1935 thereby failing to work when IOMMU is enabled. This
1936 workaround will setup a 1:1 mapping for the first
1937 16MiB to make floppy (an ISA device) work.
1938
1939 config INTR_REMAP
1940 bool "Support for Interrupt Remapping (EXPERIMENTAL)"
1941 depends on X86_64 && X86_IO_APIC && PCI_MSI && ACPI && EXPERIMENTAL
1942 ---help---
1943 Supports Interrupt remapping for IO-APIC and MSI devices.
1944 To use x2apic mode in the CPU's which support x2APIC enhancements or
1945 to support platforms with CPU's having > 8 bit APIC ID, say Y.
1946
1947 source "drivers/pci/pcie/Kconfig"
1948
1949 source "drivers/pci/Kconfig"
1950
1951 # x86_64 have no ISA slots, but do have ISA-style DMA.
1952 config ISA_DMA_API
1953 def_bool y
1954
1955 if X86_32
1956
1957 config ISA
1958 bool "ISA support"
1959 ---help---
1960 Find out whether you have ISA slots on your motherboard. ISA is the
1961 name of a bus system, i.e. the way the CPU talks to the other stuff
1962 inside your box. Other bus systems are PCI, EISA, MicroChannel
1963 (MCA) or VESA. ISA is an older system, now being displaced by PCI;
1964 newer boards don't support it. If you have ISA, say Y, otherwise N.
1965
1966 config EISA
1967 bool "EISA support"
1968 depends on ISA
1969 ---help---
1970 The Extended Industry Standard Architecture (EISA) bus was
1971 developed as an open alternative to the IBM MicroChannel bus.
1972
1973 The EISA bus provided some of the features of the IBM MicroChannel
1974 bus while maintaining backward compatibility with cards made for
1975 the older ISA bus. The EISA bus saw limited use between 1988 and
1976 1995 when it was made obsolete by the PCI bus.
1977
1978 Say Y here if you are building a kernel for an EISA-based machine.
1979
1980 Otherwise, say N.
1981
1982 source "drivers/eisa/Kconfig"
1983
1984 config MCA
1985 bool "MCA support"
1986 ---help---
1987 MicroChannel Architecture is found in some IBM PS/2 machines and
1988 laptops. It is a bus system similar to PCI or ISA. See
1989 <file:Documentation/mca.txt> (and especially the web page given
1990 there) before attempting to build an MCA bus kernel.
1991
1992 source "drivers/mca/Kconfig"
1993
1994 config SCx200
1995 tristate "NatSemi SCx200 support"
1996 ---help---
1997 This provides basic support for National Semiconductor's
1998 (now AMD's) Geode processors. The driver probes for the
1999 PCI-IDs of several on-chip devices, so its a good dependency
2000 for other scx200_* drivers.
2001
2002 If compiled as a module, the driver is named scx200.
2003
2004 config SCx200HR_TIMER
2005 tristate "NatSemi SCx200 27MHz High-Resolution Timer Support"
2006 depends on SCx200 && GENERIC_TIME
2007 default y
2008 ---help---
2009 This driver provides a clocksource built upon the on-chip
2010 27MHz high-resolution timer. Its also a workaround for
2011 NSC Geode SC-1100's buggy TSC, which loses time when the
2012 processor goes idle (as is done by the scheduler). The
2013 other workaround is idle=poll boot option.
2014
2015 config GEODE_MFGPT_TIMER
2016 def_bool y
2017 prompt "Geode Multi-Function General Purpose Timer (MFGPT) events"
2018 depends on MGEODE_LX && GENERIC_TIME && GENERIC_CLOCKEVENTS
2019 ---help---
2020 This driver provides a clock event source based on the MFGPT
2021 timer(s) in the CS5535 and CS5536 companion chip for the geode.
2022 MFGPTs have a better resolution and max interval than the
2023 generic PIT, and are suitable for use as high-res timers.
2024
2025 config OLPC
2026 bool "One Laptop Per Child support"
2027 default n
2028 ---help---
2029 Add support for detecting the unique features of the OLPC
2030 XO hardware.
2031
2032 endif # X86_32
2033
2034 config K8_NB
2035 def_bool y
2036 depends on AGP_AMD64 || (X86_64 && (GART_IOMMU || (PCI && NUMA)))
2037
2038 source "drivers/pcmcia/Kconfig"
2039
2040 source "drivers/pci/hotplug/Kconfig"
2041
2042 endmenu
2043
2044
2045 menu "Executable file formats / Emulations"
2046
2047 source "fs/Kconfig.binfmt"
2048
2049 config IA32_EMULATION
2050 bool "IA32 Emulation"
2051 depends on X86_64
2052 select COMPAT_BINFMT_ELF
2053 ---help---
2054 Include code to run 32-bit programs under a 64-bit kernel. You should
2055 likely turn this on, unless you're 100% sure that you don't have any
2056 32-bit programs left.
2057
2058 config IA32_AOUT
2059 tristate "IA32 a.out support"
2060 depends on IA32_EMULATION
2061 ---help---
2062 Support old a.out binaries in the 32bit emulation.
2063
2064 config COMPAT
2065 def_bool y
2066 depends on IA32_EMULATION
2067
2068 config COMPAT_FOR_U64_ALIGNMENT
2069 def_bool COMPAT
2070 depends on X86_64
2071
2072 config SYSVIPC_COMPAT
2073 def_bool y
2074 depends on COMPAT && SYSVIPC
2075
2076 endmenu
2077
2078
2079 config HAVE_ATOMIC_IOMAP
2080 def_bool y
2081 depends on X86_32
2082
2083 source "net/Kconfig"
2084
2085 source "drivers/Kconfig"
2086
2087 source "drivers/firmware/Kconfig"
2088
2089 source "fs/Kconfig"
2090
2091 source "arch/x86/Kconfig.debug"
2092
2093 source "security/Kconfig"
2094
2095 source "crypto/Kconfig"
2096
2097 source "arch/x86/kvm/Kconfig"
2098
2099 source "lib/Kconfig"
This page took 0.070667 seconds and 4 git commands to generate.