sparse irq_desc[] array: core kernel and x86 changes
[deliverable/linux.git] / arch / x86 / Kconfig
1 # x86 configuration
2 mainmenu "Linux Kernel Configuration for x86"
3
4 # Select 32 or 64 bit
5 config 64BIT
6 bool "64-bit kernel" if ARCH = "x86"
7 default ARCH = "x86_64"
8 help
9 Say yes to build a 64-bit kernel - formerly known as x86_64
10 Say no to build a 32-bit kernel - formerly known as i386
11
12 config X86_32
13 def_bool !64BIT
14
15 config X86_64
16 def_bool 64BIT
17
18 ### Arch settings
19 config X86
20 def_bool y
21 select HAVE_AOUT if X86_32
22 select HAVE_UNSTABLE_SCHED_CLOCK
23 select HAVE_IDE
24 select HAVE_OPROFILE
25 select HAVE_IOREMAP_PROT
26 select HAVE_KPROBES
27 select ARCH_WANT_OPTIONAL_GPIOLIB
28 select HAVE_KRETPROBES
29 select HAVE_FTRACE_MCOUNT_RECORD
30 select HAVE_DYNAMIC_FTRACE
31 select HAVE_FUNCTION_TRACER
32 select HAVE_KVM if ((X86_32 && !X86_VOYAGER && !X86_VISWS && !X86_NUMAQ) || X86_64)
33 select HAVE_ARCH_KGDB if !X86_VOYAGER
34 select HAVE_ARCH_TRACEHOOK
35 select HAVE_GENERIC_DMA_COHERENT if X86_32
36 select HAVE_EFFICIENT_UNALIGNED_ACCESS
37
38 config ARCH_DEFCONFIG
39 string
40 default "arch/x86/configs/i386_defconfig" if X86_32
41 default "arch/x86/configs/x86_64_defconfig" if X86_64
42
43 config GENERIC_TIME
44 def_bool y
45
46 config GENERIC_CMOS_UPDATE
47 def_bool y
48
49 config CLOCKSOURCE_WATCHDOG
50 def_bool y
51
52 config GENERIC_CLOCKEVENTS
53 def_bool y
54
55 config GENERIC_CLOCKEVENTS_BROADCAST
56 def_bool y
57 depends on X86_64 || (X86_32 && X86_LOCAL_APIC)
58
59 config LOCKDEP_SUPPORT
60 def_bool y
61
62 config STACKTRACE_SUPPORT
63 def_bool y
64
65 config HAVE_LATENCYTOP_SUPPORT
66 def_bool y
67
68 config FAST_CMPXCHG_LOCAL
69 bool
70 default y
71
72 config MMU
73 def_bool y
74
75 config ZONE_DMA
76 def_bool y
77
78 config SBUS
79 bool
80
81 config GENERIC_ISA_DMA
82 def_bool y
83
84 config GENERIC_IOMAP
85 def_bool y
86
87 config GENERIC_BUG
88 def_bool y
89 depends on BUG
90
91 config GENERIC_HWEIGHT
92 def_bool y
93
94 config GENERIC_GPIO
95 bool
96
97 config ARCH_MAY_HAVE_PC_FDC
98 def_bool y
99
100 config RWSEM_GENERIC_SPINLOCK
101 def_bool !X86_XADD
102
103 config RWSEM_XCHGADD_ALGORITHM
104 def_bool X86_XADD
105
106 config ARCH_HAS_CPU_IDLE_WAIT
107 def_bool y
108
109 config GENERIC_CALIBRATE_DELAY
110 def_bool y
111
112 config GENERIC_TIME_VSYSCALL
113 bool
114 default X86_64
115
116 config ARCH_HAS_CPU_RELAX
117 def_bool y
118
119 config ARCH_HAS_DEFAULT_IDLE
120 def_bool y
121
122 config ARCH_HAS_CACHE_LINE_SIZE
123 def_bool y
124
125 config HAVE_SETUP_PER_CPU_AREA
126 def_bool X86_64_SMP || (X86_SMP && !X86_VOYAGER)
127
128 config HAVE_CPUMASK_OF_CPU_MAP
129 def_bool X86_64_SMP
130
131 config ARCH_HIBERNATION_POSSIBLE
132 def_bool y
133 depends on !SMP || !X86_VOYAGER
134
135 config ARCH_SUSPEND_POSSIBLE
136 def_bool y
137 depends on !X86_VOYAGER
138
139 config ZONE_DMA32
140 bool
141 default X86_64
142
143 config ARCH_POPULATES_NODE_MAP
144 def_bool y
145
146 config AUDIT_ARCH
147 bool
148 default X86_64
149
150 config ARCH_SUPPORTS_OPTIMIZED_INLINING
151 def_bool y
152
153 # Use the generic interrupt handling code in kernel/irq/:
154 config GENERIC_HARDIRQS
155 bool
156 default y
157
158 config GENERIC_IRQ_PROBE
159 bool
160 default y
161
162 config GENERIC_PENDING_IRQ
163 bool
164 depends on GENERIC_HARDIRQS && SMP
165 default y
166
167 config X86_SMP
168 bool
169 depends on SMP && ((X86_32 && !X86_VOYAGER) || X86_64)
170 default y
171
172 config USE_GENERIC_SMP_HELPERS
173 def_bool y
174 depends on SMP
175
176 config X86_32_SMP
177 def_bool y
178 depends on X86_32 && SMP
179
180 config X86_64_SMP
181 def_bool y
182 depends on X86_64 && SMP
183
184 config X86_HT
185 bool
186 depends on SMP
187 depends on (X86_32 && !X86_VOYAGER) || X86_64
188 default y
189
190 config X86_BIOS_REBOOT
191 bool
192 depends on !X86_VOYAGER
193 default y
194
195 config X86_TRAMPOLINE
196 bool
197 depends on X86_SMP || (X86_VOYAGER && SMP) || (64BIT && ACPI_SLEEP)
198 default y
199
200 config KTIME_SCALAR
201 def_bool X86_32
202 source "init/Kconfig"
203 source "kernel/Kconfig.freezer"
204
205 menu "Processor type and features"
206
207 source "kernel/time/Kconfig"
208
209 config SMP
210 bool "Symmetric multi-processing support"
211 ---help---
212 This enables support for systems with more than one CPU. If you have
213 a system with only one CPU, like most personal computers, say N. If
214 you have a system with more than one CPU, say Y.
215
216 If you say N here, the kernel will run on single and multiprocessor
217 machines, but will use only one CPU of a multiprocessor machine. If
218 you say Y here, the kernel will run on many, but not all,
219 singleprocessor machines. On a singleprocessor machine, the kernel
220 will run faster if you say N here.
221
222 Note that if you say Y here and choose architecture "586" or
223 "Pentium" under "Processor family", the kernel will not work on 486
224 architectures. Similarly, multiprocessor kernels for the "PPro"
225 architecture may not work on all Pentium based boards.
226
227 People using multiprocessor machines who say Y here should also say
228 Y to "Enhanced Real Time Clock Support", below. The "Advanced Power
229 Management" code will be disabled if you say Y here.
230
231 See also <file:Documentation/i386/IO-APIC.txt>,
232 <file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at
233 <http://www.tldp.org/docs.html#howto>.
234
235 If you don't know what to do here, say N.
236
237 config X86_HAS_BOOT_CPU_ID
238 def_bool y
239 depends on X86_VOYAGER
240
241 config SPARSE_IRQ
242 bool "Support sparse irq numbering"
243 depends on PCI_MSI || HT_IRQ
244 default y
245 help
246 This enables support for sparse irq, esp for msi/msi-x. You may need
247 if you have lots of cards supports msi-x installed.
248
249 If you don't know what to do here, say Y.
250
251 config X86_FIND_SMP_CONFIG
252 def_bool y
253 depends on X86_MPPARSE || X86_VOYAGER
254
255 if ACPI
256 config X86_MPPARSE
257 def_bool y
258 bool "Enable MPS table"
259 depends on X86_LOCAL_APIC
260 help
261 For old smp systems that do not have proper acpi support. Newer systems
262 (esp with 64bit cpus) with acpi support, MADT and DSDT will override it
263 endif
264
265 if !ACPI
266 config X86_MPPARSE
267 def_bool y
268 depends on X86_LOCAL_APIC
269 endif
270
271 choice
272 prompt "Subarchitecture Type"
273 default X86_PC
274
275 config X86_PC
276 bool "PC-compatible"
277 help
278 Choose this option if your computer is a standard PC or compatible.
279
280 config X86_ELAN
281 bool "AMD Elan"
282 depends on X86_32
283 help
284 Select this for an AMD Elan processor.
285
286 Do not use this option for K6/Athlon/Opteron processors!
287
288 If unsure, choose "PC-compatible" instead.
289
290 config X86_VOYAGER
291 bool "Voyager (NCR)"
292 depends on X86_32 && (SMP || BROKEN) && !PCI
293 help
294 Voyager is an MCA-based 32-way capable SMP architecture proprietary
295 to NCR Corp. Machine classes 345x/35xx/4100/51xx are Voyager-based.
296
297 *** WARNING ***
298
299 If you do not specifically know you have a Voyager based machine,
300 say N here, otherwise the kernel you build will not be bootable.
301
302 config X86_GENERICARCH
303 bool "Generic architecture"
304 depends on X86_32
305 help
306 This option compiles in the NUMAQ, Summit, bigsmp, ES7000, default
307 subarchitectures. It is intended for a generic binary kernel.
308 if you select them all, kernel will probe it one by one. and will
309 fallback to default.
310
311 if X86_GENERICARCH
312
313 config X86_NUMAQ
314 bool "NUMAQ (IBM/Sequent)"
315 depends on SMP && X86_32 && PCI && X86_MPPARSE
316 select NUMA
317 help
318 This option is used for getting Linux to run on a NUMAQ (IBM/Sequent)
319 NUMA multiquad box. This changes the way that processors are
320 bootstrapped, and uses Clustered Logical APIC addressing mode instead
321 of Flat Logical. You will need a new lynxer.elf file to flash your
322 firmware with - send email to <Martin.Bligh@us.ibm.com>.
323
324 config X86_SUMMIT
325 bool "Summit/EXA (IBM x440)"
326 depends on X86_32 && SMP
327 help
328 This option is needed for IBM systems that use the Summit/EXA chipset.
329 In particular, it is needed for the x440.
330
331 config X86_ES7000
332 bool "Support for Unisys ES7000 IA32 series"
333 depends on X86_32 && SMP
334 help
335 Support for Unisys ES7000 systems. Say 'Y' here if this kernel is
336 supposed to run on an IA32-based Unisys ES7000 system.
337
338 config X86_BIGSMP
339 bool "Support for big SMP systems with more than 8 CPUs"
340 depends on X86_32 && SMP
341 help
342 This option is needed for the systems that have more than 8 CPUs
343 and if the system is not of any sub-arch type above.
344
345 endif
346
347 config X86_VSMP
348 bool "Support for ScaleMP vSMP"
349 select PARAVIRT
350 depends on X86_64 && PCI
351 help
352 Support for ScaleMP vSMP systems. Say 'Y' here if this kernel is
353 supposed to run on these EM64T-based machines. Only choose this option
354 if you have one of these machines.
355
356 endchoice
357
358 config X86_VISWS
359 bool "SGI 320/540 (Visual Workstation)"
360 depends on X86_32 && PCI && !X86_VOYAGER && X86_MPPARSE && PCI_GODIRECT
361 help
362 The SGI Visual Workstation series is an IA32-based workstation
363 based on SGI systems chips with some legacy PC hardware attached.
364
365 Say Y here to create a kernel to run on the SGI 320 or 540.
366
367 A kernel compiled for the Visual Workstation will run on general
368 PCs as well. See <file:Documentation/sgi-visws.txt> for details.
369
370 config X86_RDC321X
371 bool "RDC R-321x SoC"
372 depends on X86_32
373 select M486
374 select X86_REBOOTFIXUPS
375 help
376 This option is needed for RDC R-321x system-on-chip, also known
377 as R-8610-(G).
378 If you don't have one of these chips, you should say N here.
379
380 config SCHED_NO_NO_OMIT_FRAME_POINTER
381 def_bool y
382 prompt "Single-depth WCHAN output"
383 depends on X86_32
384 help
385 Calculate simpler /proc/<PID>/wchan values. If this option
386 is disabled then wchan values will recurse back to the
387 caller function. This provides more accurate wchan values,
388 at the expense of slightly more scheduling overhead.
389
390 If in doubt, say "Y".
391
392 menuconfig PARAVIRT_GUEST
393 bool "Paravirtualized guest support"
394 help
395 Say Y here to get to see options related to running Linux under
396 various hypervisors. This option alone does not add any kernel code.
397
398 If you say N, all options in this submenu will be skipped and disabled.
399
400 if PARAVIRT_GUEST
401
402 source "arch/x86/xen/Kconfig"
403
404 config VMI
405 bool "VMI Guest support"
406 select PARAVIRT
407 depends on X86_32
408 depends on !X86_VOYAGER
409 help
410 VMI provides a paravirtualized interface to the VMware ESX server
411 (it could be used by other hypervisors in theory too, but is not
412 at the moment), by linking the kernel to a GPL-ed ROM module
413 provided by the hypervisor.
414
415 config KVM_CLOCK
416 bool "KVM paravirtualized clock"
417 select PARAVIRT
418 select PARAVIRT_CLOCK
419 depends on !X86_VOYAGER
420 help
421 Turning on this option will allow you to run a paravirtualized clock
422 when running over the KVM hypervisor. Instead of relying on a PIT
423 (or probably other) emulation by the underlying device model, the host
424 provides the guest with timing infrastructure such as time of day, and
425 system time
426
427 config KVM_GUEST
428 bool "KVM Guest support"
429 select PARAVIRT
430 depends on !X86_VOYAGER
431 help
432 This option enables various optimizations for running under the KVM
433 hypervisor.
434
435 source "arch/x86/lguest/Kconfig"
436
437 config PARAVIRT
438 bool "Enable paravirtualization code"
439 depends on !X86_VOYAGER
440 help
441 This changes the kernel so it can modify itself when it is run
442 under a hypervisor, potentially improving performance significantly
443 over full virtualization. However, when run without a hypervisor
444 the kernel is theoretically slower and slightly larger.
445
446 config PARAVIRT_CLOCK
447 bool
448 default n
449
450 endif
451
452 config PARAVIRT_DEBUG
453 bool "paravirt-ops debugging"
454 depends on PARAVIRT && DEBUG_KERNEL
455 help
456 Enable to debug paravirt_ops internals. Specifically, BUG if
457 a paravirt_op is missing when it is called.
458
459 config MEMTEST
460 bool "Memtest"
461 help
462 This option adds a kernel parameter 'memtest', which allows memtest
463 to be set.
464 memtest=0, mean disabled; -- default
465 memtest=1, mean do 1 test pattern;
466 ...
467 memtest=4, mean do 4 test patterns.
468 If you are unsure how to answer this question, answer N.
469
470 config X86_SUMMIT_NUMA
471 def_bool y
472 depends on X86_32 && NUMA && X86_GENERICARCH
473
474 config X86_CYCLONE_TIMER
475 def_bool y
476 depends on X86_GENERICARCH
477
478 config ES7000_CLUSTERED_APIC
479 def_bool y
480 depends on SMP && X86_ES7000 && MPENTIUMIII
481
482 source "arch/x86/Kconfig.cpu"
483
484 config HPET_TIMER
485 def_bool X86_64
486 prompt "HPET Timer Support" if X86_32
487 help
488 Use the IA-PC HPET (High Precision Event Timer) to manage
489 time in preference to the PIT and RTC, if a HPET is
490 present.
491 HPET is the next generation timer replacing legacy 8254s.
492 The HPET provides a stable time base on SMP
493 systems, unlike the TSC, but it is more expensive to access,
494 as it is off-chip. You can find the HPET spec at
495 <http://www.intel.com/hardwaredesign/hpetspec.htm>.
496
497 You can safely choose Y here. However, HPET will only be
498 activated if the platform and the BIOS support this feature.
499 Otherwise the 8254 will be used for timing services.
500
501 Choose N to continue using the legacy 8254 timer.
502
503 config HPET_EMULATE_RTC
504 def_bool y
505 depends on HPET_TIMER && (RTC=y || RTC=m || RTC_DRV_CMOS=m || RTC_DRV_CMOS=y)
506
507 # Mark as embedded because too many people got it wrong.
508 # The code disables itself when not needed.
509 config DMI
510 default y
511 bool "Enable DMI scanning" if EMBEDDED
512 help
513 Enabled scanning of DMI to identify machine quirks. Say Y
514 here unless you have verified that your setup is not
515 affected by entries in the DMI blacklist. Required by PNP
516 BIOS code.
517
518 config GART_IOMMU
519 bool "GART IOMMU support" if EMBEDDED
520 default y
521 select SWIOTLB
522 select AGP
523 depends on X86_64 && PCI
524 help
525 Support for full DMA access of devices with 32bit memory access only
526 on systems with more than 3GB. This is usually needed for USB,
527 sound, many IDE/SATA chipsets and some other devices.
528 Provides a driver for the AMD Athlon64/Opteron/Turion/Sempron GART
529 based hardware IOMMU and a software bounce buffer based IOMMU used
530 on Intel systems and as fallback.
531 The code is only active when needed (enough memory and limited
532 device) unless CONFIG_IOMMU_DEBUG or iommu=force is specified
533 too.
534
535 config CALGARY_IOMMU
536 bool "IBM Calgary IOMMU support"
537 select SWIOTLB
538 depends on X86_64 && PCI && EXPERIMENTAL
539 help
540 Support for hardware IOMMUs in IBM's xSeries x366 and x460
541 systems. Needed to run systems with more than 3GB of memory
542 properly with 32-bit PCI devices that do not support DAC
543 (Double Address Cycle). Calgary also supports bus level
544 isolation, where all DMAs pass through the IOMMU. This
545 prevents them from going anywhere except their intended
546 destination. This catches hard-to-find kernel bugs and
547 mis-behaving drivers and devices that do not use the DMA-API
548 properly to set up their DMA buffers. The IOMMU can be
549 turned off at boot time with the iommu=off parameter.
550 Normally the kernel will make the right choice by itself.
551 If unsure, say Y.
552
553 config CALGARY_IOMMU_ENABLED_BY_DEFAULT
554 def_bool y
555 prompt "Should Calgary be enabled by default?"
556 depends on CALGARY_IOMMU
557 help
558 Should Calgary be enabled by default? if you choose 'y', Calgary
559 will be used (if it exists). If you choose 'n', Calgary will not be
560 used even if it exists. If you choose 'n' and would like to use
561 Calgary anyway, pass 'iommu=calgary' on the kernel command line.
562 If unsure, say Y.
563
564 config AMD_IOMMU
565 bool "AMD IOMMU support"
566 select SWIOTLB
567 select PCI_MSI
568 depends on X86_64 && PCI && ACPI
569 help
570 With this option you can enable support for AMD IOMMU hardware in
571 your system. An IOMMU is a hardware component which provides
572 remapping of DMA memory accesses from devices. With an AMD IOMMU you
573 can isolate the the DMA memory of different devices and protect the
574 system from misbehaving device drivers or hardware.
575
576 You can find out if your system has an AMD IOMMU if you look into
577 your BIOS for an option to enable it or if you have an IVRS ACPI
578 table.
579
580 # need this always selected by IOMMU for the VIA workaround
581 config SWIOTLB
582 bool
583 help
584 Support for software bounce buffers used on x86-64 systems
585 which don't have a hardware IOMMU (e.g. the current generation
586 of Intel's x86-64 CPUs). Using this PCI devices which can only
587 access 32-bits of memory can be used on systems with more than
588 3 GB of memory. If unsure, say Y.
589
590 config IOMMU_HELPER
591 def_bool (CALGARY_IOMMU || GART_IOMMU || SWIOTLB || AMD_IOMMU)
592
593 config MAXSMP
594 bool "Configure Maximum number of SMP Processors and NUMA Nodes"
595 depends on X86_64 && SMP && BROKEN
596 default n
597 help
598 Configure maximum number of CPUS and NUMA Nodes for this architecture.
599 If unsure, say N.
600
601 config NR_CPUS
602 int "Maximum number of CPUs (2-512)" if !MAXSMP
603 range 2 512
604 depends on SMP
605 default "4096" if MAXSMP
606 default "32" if X86_NUMAQ || X86_SUMMIT || X86_BIGSMP || X86_ES7000
607 default "8"
608 help
609 This allows you to specify the maximum number of CPUs which this
610 kernel will support. The maximum supported value is 512 and the
611 minimum value which makes sense is 2.
612
613 This is purely to save memory - each supported CPU adds
614 approximately eight kilobytes to the kernel image.
615
616 config SCHED_SMT
617 bool "SMT (Hyperthreading) scheduler support"
618 depends on X86_HT
619 help
620 SMT scheduler support improves the CPU scheduler's decision making
621 when dealing with Intel Pentium 4 chips with HyperThreading at a
622 cost of slightly increased overhead in some places. If unsure say
623 N here.
624
625 config SCHED_MC
626 def_bool y
627 prompt "Multi-core scheduler support"
628 depends on X86_HT
629 help
630 Multi-core scheduler support improves the CPU scheduler's decision
631 making when dealing with multi-core CPU chips at a cost of slightly
632 increased overhead in some places. If unsure say N here.
633
634 source "kernel/Kconfig.preempt"
635
636 config X86_UP_APIC
637 bool "Local APIC support on uniprocessors"
638 depends on X86_32 && !SMP && !(X86_VOYAGER || X86_GENERICARCH)
639 help
640 A local APIC (Advanced Programmable Interrupt Controller) is an
641 integrated interrupt controller in the CPU. If you have a single-CPU
642 system which has a processor with a local APIC, you can say Y here to
643 enable and use it. If you say Y here even though your machine doesn't
644 have a local APIC, then the kernel will still run with no slowdown at
645 all. The local APIC supports CPU-generated self-interrupts (timer,
646 performance counters), and the NMI watchdog which detects hard
647 lockups.
648
649 config X86_UP_IOAPIC
650 bool "IO-APIC support on uniprocessors"
651 depends on X86_UP_APIC
652 help
653 An IO-APIC (I/O Advanced Programmable Interrupt Controller) is an
654 SMP-capable replacement for PC-style interrupt controllers. Most
655 SMP systems and many recent uniprocessor systems have one.
656
657 If you have a single-CPU system with an IO-APIC, you can say Y here
658 to use it. If you say Y here even though your machine doesn't have
659 an IO-APIC, then the kernel will still run with no slowdown at all.
660
661 config X86_LOCAL_APIC
662 def_bool y
663 depends on X86_64 || (X86_32 && (X86_UP_APIC || (SMP && !X86_VOYAGER) || X86_GENERICARCH))
664
665 config X86_IO_APIC
666 def_bool y
667 depends on X86_64 || (X86_32 && (X86_UP_IOAPIC || (SMP && !X86_VOYAGER) || X86_GENERICARCH))
668
669 config X86_VISWS_APIC
670 def_bool y
671 depends on X86_32 && X86_VISWS
672
673 config X86_MCE
674 bool "Machine Check Exception"
675 depends on !X86_VOYAGER
676 ---help---
677 Machine Check Exception support allows the processor to notify the
678 kernel if it detects a problem (e.g. overheating, component failure).
679 The action the kernel takes depends on the severity of the problem,
680 ranging from a warning message on the console, to halting the machine.
681 Your processor must be a Pentium or newer to support this - check the
682 flags in /proc/cpuinfo for mce. Note that some older Pentium systems
683 have a design flaw which leads to false MCE events - hence MCE is
684 disabled on all P5 processors, unless explicitly enabled with "mce"
685 as a boot argument. Similarly, if MCE is built in and creates a
686 problem on some new non-standard machine, you can boot with "nomce"
687 to disable it. MCE support simply ignores non-MCE processors like
688 the 386 and 486, so nearly everyone can say Y here.
689
690 config X86_MCE_INTEL
691 def_bool y
692 prompt "Intel MCE features"
693 depends on X86_64 && X86_MCE && X86_LOCAL_APIC
694 help
695 Additional support for intel specific MCE features such as
696 the thermal monitor.
697
698 config X86_MCE_AMD
699 def_bool y
700 prompt "AMD MCE features"
701 depends on X86_64 && X86_MCE && X86_LOCAL_APIC
702 help
703 Additional support for AMD specific MCE features such as
704 the DRAM Error Threshold.
705
706 config X86_MCE_NONFATAL
707 tristate "Check for non-fatal errors on AMD Athlon/Duron / Intel Pentium 4"
708 depends on X86_32 && X86_MCE
709 help
710 Enabling this feature starts a timer that triggers every 5 seconds which
711 will look at the machine check registers to see if anything happened.
712 Non-fatal problems automatically get corrected (but still logged).
713 Disable this if you don't want to see these messages.
714 Seeing the messages this option prints out may be indicative of dying
715 or out-of-spec (ie, overclocked) hardware.
716 This option only does something on certain CPUs.
717 (AMD Athlon/Duron and Intel Pentium 4)
718
719 config X86_MCE_P4THERMAL
720 bool "check for P4 thermal throttling interrupt."
721 depends on X86_32 && X86_MCE && (X86_UP_APIC || SMP)
722 help
723 Enabling this feature will cause a message to be printed when the P4
724 enters thermal throttling.
725
726 config VM86
727 bool "Enable VM86 support" if EMBEDDED
728 default y
729 depends on X86_32
730 help
731 This option is required by programs like DOSEMU to run 16-bit legacy
732 code on X86 processors. It also may be needed by software like
733 XFree86 to initialize some video cards via BIOS. Disabling this
734 option saves about 6k.
735
736 config TOSHIBA
737 tristate "Toshiba Laptop support"
738 depends on X86_32
739 ---help---
740 This adds a driver to safely access the System Management Mode of
741 the CPU on Toshiba portables with a genuine Toshiba BIOS. It does
742 not work on models with a Phoenix BIOS. The System Management Mode
743 is used to set the BIOS and power saving options on Toshiba portables.
744
745 For information on utilities to make use of this driver see the
746 Toshiba Linux utilities web site at:
747 <http://www.buzzard.org.uk/toshiba/>.
748
749 Say Y if you intend to run this kernel on a Toshiba portable.
750 Say N otherwise.
751
752 config I8K
753 tristate "Dell laptop support"
754 ---help---
755 This adds a driver to safely access the System Management Mode
756 of the CPU on the Dell Inspiron 8000. The System Management Mode
757 is used to read cpu temperature and cooling fan status and to
758 control the fans on the I8K portables.
759
760 This driver has been tested only on the Inspiron 8000 but it may
761 also work with other Dell laptops. You can force loading on other
762 models by passing the parameter `force=1' to the module. Use at
763 your own risk.
764
765 For information on utilities to make use of this driver see the
766 I8K Linux utilities web site at:
767 <http://people.debian.org/~dz/i8k/>
768
769 Say Y if you intend to run this kernel on a Dell Inspiron 8000.
770 Say N otherwise.
771
772 config X86_REBOOTFIXUPS
773 bool "Enable X86 board specific fixups for reboot"
774 depends on X86_32
775 ---help---
776 This enables chipset and/or board specific fixups to be done
777 in order to get reboot to work correctly. This is only needed on
778 some combinations of hardware and BIOS. The symptom, for which
779 this config is intended, is when reboot ends with a stalled/hung
780 system.
781
782 Currently, the only fixup is for the Geode machines using
783 CS5530A and CS5536 chipsets and the RDC R-321x SoC.
784
785 Say Y if you want to enable the fixup. Currently, it's safe to
786 enable this option even if you don't need it.
787 Say N otherwise.
788
789 config MICROCODE
790 tristate "/dev/cpu/microcode - microcode support"
791 select FW_LOADER
792 ---help---
793 If you say Y here, you will be able to update the microcode on
794 certain Intel and AMD processors. The Intel support is for the
795 IA32 family, e.g. Pentium Pro, Pentium II, Pentium III,
796 Pentium 4, Xeon etc. The AMD support is for family 0x10 and
797 0x11 processors, e.g. Opteron, Phenom and Turion 64 Ultra.
798 You will obviously need the actual microcode binary data itself
799 which is not shipped with the Linux kernel.
800
801 This option selects the general module only, you need to select
802 at least one vendor specific module as well.
803
804 To compile this driver as a module, choose M here: the
805 module will be called microcode.
806
807 config MICROCODE_INTEL
808 bool "Intel microcode patch loading support"
809 depends on MICROCODE
810 default MICROCODE
811 select FW_LOADER
812 --help---
813 This options enables microcode patch loading support for Intel
814 processors.
815
816 For latest news and information on obtaining all the required
817 Intel ingredients for this driver, check:
818 <http://www.urbanmyth.org/microcode/>.
819
820 config MICROCODE_AMD
821 bool "AMD microcode patch loading support"
822 depends on MICROCODE
823 select FW_LOADER
824 --help---
825 If you select this option, microcode patch loading support for AMD
826 processors will be enabled.
827
828 config MICROCODE_OLD_INTERFACE
829 def_bool y
830 depends on MICROCODE
831
832 config X86_MSR
833 tristate "/dev/cpu/*/msr - Model-specific register support"
834 help
835 This device gives privileged processes access to the x86
836 Model-Specific Registers (MSRs). It is a character device with
837 major 202 and minors 0 to 31 for /dev/cpu/0/msr to /dev/cpu/31/msr.
838 MSR accesses are directed to a specific CPU on multi-processor
839 systems.
840
841 config X86_CPUID
842 tristate "/dev/cpu/*/cpuid - CPU information support"
843 help
844 This device gives processes access to the x86 CPUID instruction to
845 be executed on a specific processor. It is a character device
846 with major 203 and minors 0 to 31 for /dev/cpu/0/cpuid to
847 /dev/cpu/31/cpuid.
848
849 choice
850 prompt "High Memory Support"
851 default HIGHMEM4G if !X86_NUMAQ
852 default HIGHMEM64G if X86_NUMAQ
853 depends on X86_32
854
855 config NOHIGHMEM
856 bool "off"
857 depends on !X86_NUMAQ
858 ---help---
859 Linux can use up to 64 Gigabytes of physical memory on x86 systems.
860 However, the address space of 32-bit x86 processors is only 4
861 Gigabytes large. That means that, if you have a large amount of
862 physical memory, not all of it can be "permanently mapped" by the
863 kernel. The physical memory that's not permanently mapped is called
864 "high memory".
865
866 If you are compiling a kernel which will never run on a machine with
867 more than 1 Gigabyte total physical RAM, answer "off" here (default
868 choice and suitable for most users). This will result in a "3GB/1GB"
869 split: 3GB are mapped so that each process sees a 3GB virtual memory
870 space and the remaining part of the 4GB virtual memory space is used
871 by the kernel to permanently map as much physical memory as
872 possible.
873
874 If the machine has between 1 and 4 Gigabytes physical RAM, then
875 answer "4GB" here.
876
877 If more than 4 Gigabytes is used then answer "64GB" here. This
878 selection turns Intel PAE (Physical Address Extension) mode on.
879 PAE implements 3-level paging on IA32 processors. PAE is fully
880 supported by Linux, PAE mode is implemented on all recent Intel
881 processors (Pentium Pro and better). NOTE: If you say "64GB" here,
882 then the kernel will not boot on CPUs that don't support PAE!
883
884 The actual amount of total physical memory will either be
885 auto detected or can be forced by using a kernel command line option
886 such as "mem=256M". (Try "man bootparam" or see the documentation of
887 your boot loader (lilo or loadlin) about how to pass options to the
888 kernel at boot time.)
889
890 If unsure, say "off".
891
892 config HIGHMEM4G
893 bool "4GB"
894 depends on !X86_NUMAQ
895 help
896 Select this if you have a 32-bit processor and between 1 and 4
897 gigabytes of physical RAM.
898
899 config HIGHMEM64G
900 bool "64GB"
901 depends on !M386 && !M486
902 select X86_PAE
903 help
904 Select this if you have a 32-bit processor and more than 4
905 gigabytes of physical RAM.
906
907 endchoice
908
909 choice
910 depends on EXPERIMENTAL
911 prompt "Memory split" if EMBEDDED
912 default VMSPLIT_3G
913 depends on X86_32
914 help
915 Select the desired split between kernel and user memory.
916
917 If the address range available to the kernel is less than the
918 physical memory installed, the remaining memory will be available
919 as "high memory". Accessing high memory is a little more costly
920 than low memory, as it needs to be mapped into the kernel first.
921 Note that increasing the kernel address space limits the range
922 available to user programs, making the address space there
923 tighter. Selecting anything other than the default 3G/1G split
924 will also likely make your kernel incompatible with binary-only
925 kernel modules.
926
927 If you are not absolutely sure what you are doing, leave this
928 option alone!
929
930 config VMSPLIT_3G
931 bool "3G/1G user/kernel split"
932 config VMSPLIT_3G_OPT
933 depends on !X86_PAE
934 bool "3G/1G user/kernel split (for full 1G low memory)"
935 config VMSPLIT_2G
936 bool "2G/2G user/kernel split"
937 config VMSPLIT_2G_OPT
938 depends on !X86_PAE
939 bool "2G/2G user/kernel split (for full 2G low memory)"
940 config VMSPLIT_1G
941 bool "1G/3G user/kernel split"
942 endchoice
943
944 config PAGE_OFFSET
945 hex
946 default 0xB0000000 if VMSPLIT_3G_OPT
947 default 0x80000000 if VMSPLIT_2G
948 default 0x78000000 if VMSPLIT_2G_OPT
949 default 0x40000000 if VMSPLIT_1G
950 default 0xC0000000
951 depends on X86_32
952
953 config HIGHMEM
954 def_bool y
955 depends on X86_32 && (HIGHMEM64G || HIGHMEM4G)
956
957 config X86_PAE
958 bool "PAE (Physical Address Extension) Support"
959 depends on X86_32 && !HIGHMEM4G
960 help
961 PAE is required for NX support, and furthermore enables
962 larger swapspace support for non-overcommit purposes. It
963 has the cost of more pagetable lookup overhead, and also
964 consumes more pagetable space per process.
965
966 config ARCH_PHYS_ADDR_T_64BIT
967 def_bool X86_64 || X86_PAE
968
969 # Common NUMA Features
970 config NUMA
971 bool "Numa Memory Allocation and Scheduler Support (EXPERIMENTAL)"
972 depends on SMP
973 depends on X86_64 || (X86_32 && HIGHMEM64G && (X86_NUMAQ || X86_BIGSMP || X86_SUMMIT && ACPI) && EXPERIMENTAL)
974 default n if X86_PC
975 default y if (X86_NUMAQ || X86_SUMMIT || X86_BIGSMP)
976 help
977 Enable NUMA (Non Uniform Memory Access) support.
978 The kernel will try to allocate memory used by a CPU on the
979 local memory controller of the CPU and add some more
980 NUMA awareness to the kernel.
981
982 For 32-bit this is currently highly experimental and should be only
983 used for kernel development. It might also cause boot failures.
984 For 64-bit this is recommended on all multiprocessor Opteron systems.
985 If the system is EM64T, you should say N unless your system is
986 EM64T NUMA.
987
988 comment "NUMA (Summit) requires SMP, 64GB highmem support, ACPI"
989 depends on X86_32 && X86_SUMMIT && (!HIGHMEM64G || !ACPI)
990
991 config K8_NUMA
992 def_bool y
993 prompt "Old style AMD Opteron NUMA detection"
994 depends on X86_64 && NUMA && PCI
995 help
996 Enable K8 NUMA node topology detection. You should say Y here if
997 you have a multi processor AMD K8 system. This uses an old
998 method to read the NUMA configuration directly from the builtin
999 Northbridge of Opteron. It is recommended to use X86_64_ACPI_NUMA
1000 instead, which also takes priority if both are compiled in.
1001
1002 config X86_64_ACPI_NUMA
1003 def_bool y
1004 prompt "ACPI NUMA detection"
1005 depends on X86_64 && NUMA && ACPI && PCI
1006 select ACPI_NUMA
1007 help
1008 Enable ACPI SRAT based node topology detection.
1009
1010 # Some NUMA nodes have memory ranges that span
1011 # other nodes. Even though a pfn is valid and
1012 # between a node's start and end pfns, it may not
1013 # reside on that node. See memmap_init_zone()
1014 # for details.
1015 config NODES_SPAN_OTHER_NODES
1016 def_bool y
1017 depends on X86_64_ACPI_NUMA
1018
1019 config NUMA_EMU
1020 bool "NUMA emulation"
1021 depends on X86_64 && NUMA
1022 help
1023 Enable NUMA emulation. A flat machine will be split
1024 into virtual nodes when booted with "numa=fake=N", where N is the
1025 number of nodes. This is only useful for debugging.
1026
1027 config NODES_SHIFT
1028 int "Maximum NUMA Nodes (as a power of 2)" if !MAXSMP
1029 range 1 9 if X86_64
1030 default "9" if MAXSMP
1031 default "6" if X86_64
1032 default "4" if X86_NUMAQ
1033 default "3"
1034 depends on NEED_MULTIPLE_NODES
1035 help
1036 Specify the maximum number of NUMA Nodes available on the target
1037 system. Increases memory reserved to accomodate various tables.
1038
1039 config HAVE_ARCH_BOOTMEM_NODE
1040 def_bool y
1041 depends on X86_32 && NUMA
1042
1043 config ARCH_HAVE_MEMORY_PRESENT
1044 def_bool y
1045 depends on X86_32 && DISCONTIGMEM
1046
1047 config NEED_NODE_MEMMAP_SIZE
1048 def_bool y
1049 depends on X86_32 && (DISCONTIGMEM || SPARSEMEM)
1050
1051 config HAVE_ARCH_ALLOC_REMAP
1052 def_bool y
1053 depends on X86_32 && NUMA
1054
1055 config ARCH_FLATMEM_ENABLE
1056 def_bool y
1057 depends on X86_32 && ARCH_SELECT_MEMORY_MODEL && !NUMA
1058
1059 config ARCH_DISCONTIGMEM_ENABLE
1060 def_bool y
1061 depends on NUMA && X86_32
1062
1063 config ARCH_DISCONTIGMEM_DEFAULT
1064 def_bool y
1065 depends on NUMA && X86_32
1066
1067 config ARCH_SPARSEMEM_DEFAULT
1068 def_bool y
1069 depends on X86_64
1070
1071 config ARCH_SPARSEMEM_ENABLE
1072 def_bool y
1073 depends on X86_64 || NUMA || (EXPERIMENTAL && X86_PC) || X86_GENERICARCH
1074 select SPARSEMEM_STATIC if X86_32
1075 select SPARSEMEM_VMEMMAP_ENABLE if X86_64
1076
1077 config ARCH_SELECT_MEMORY_MODEL
1078 def_bool y
1079 depends on ARCH_SPARSEMEM_ENABLE
1080
1081 config ARCH_MEMORY_PROBE
1082 def_bool X86_64
1083 depends on MEMORY_HOTPLUG
1084
1085 source "mm/Kconfig"
1086
1087 config HIGHPTE
1088 bool "Allocate 3rd-level pagetables from highmem"
1089 depends on X86_32 && (HIGHMEM4G || HIGHMEM64G)
1090 help
1091 The VM uses one page table entry for each page of physical memory.
1092 For systems with a lot of RAM, this can be wasteful of precious
1093 low memory. Setting this option will put user-space page table
1094 entries in high memory.
1095
1096 config X86_CHECK_BIOS_CORRUPTION
1097 bool "Check for low memory corruption"
1098 help
1099 Periodically check for memory corruption in low memory, which
1100 is suspected to be caused by BIOS. Even when enabled in the
1101 configuration, it is disabled at runtime. Enable it by
1102 setting "memory_corruption_check=1" on the kernel command
1103 line. By default it scans the low 64k of memory every 60
1104 seconds; see the memory_corruption_check_size and
1105 memory_corruption_check_period parameters in
1106 Documentation/kernel-parameters.txt to adjust this.
1107
1108 When enabled with the default parameters, this option has
1109 almost no overhead, as it reserves a relatively small amount
1110 of memory and scans it infrequently. It both detects corruption
1111 and prevents it from affecting the running system.
1112
1113 It is, however, intended as a diagnostic tool; if repeatable
1114 BIOS-originated corruption always affects the same memory,
1115 you can use memmap= to prevent the kernel from using that
1116 memory.
1117
1118 config X86_BOOTPARAM_MEMORY_CORRUPTION_CHECK
1119 bool "Set the default setting of memory_corruption_check"
1120 depends on X86_CHECK_BIOS_CORRUPTION
1121 default y
1122 help
1123 Set whether the default state of memory_corruption_check is
1124 on or off.
1125
1126 config X86_RESERVE_LOW_64K
1127 bool "Reserve low 64K of RAM on AMI/Phoenix BIOSen"
1128 default y
1129 help
1130 Reserve the first 64K of physical RAM on BIOSes that are known
1131 to potentially corrupt that memory range. A numbers of BIOSes are
1132 known to utilize this area during suspend/resume, so it must not
1133 be used by the kernel.
1134
1135 Set this to N if you are absolutely sure that you trust the BIOS
1136 to get all its memory reservations and usages right.
1137
1138 If you have doubts about the BIOS (e.g. suspend/resume does not
1139 work or there's kernel crashes after certain hardware hotplug
1140 events) and it's not AMI or Phoenix, then you might want to enable
1141 X86_CHECK_BIOS_CORRUPTION=y to allow the kernel to check typical
1142 corruption patterns.
1143
1144 Say Y if unsure.
1145
1146 config MATH_EMULATION
1147 bool
1148 prompt "Math emulation" if X86_32
1149 ---help---
1150 Linux can emulate a math coprocessor (used for floating point
1151 operations) if you don't have one. 486DX and Pentium processors have
1152 a math coprocessor built in, 486SX and 386 do not, unless you added
1153 a 487DX or 387, respectively. (The messages during boot time can
1154 give you some hints here ["man dmesg"].) Everyone needs either a
1155 coprocessor or this emulation.
1156
1157 If you don't have a math coprocessor, you need to say Y here; if you
1158 say Y here even though you have a coprocessor, the coprocessor will
1159 be used nevertheless. (This behavior can be changed with the kernel
1160 command line option "no387", which comes handy if your coprocessor
1161 is broken. Try "man bootparam" or see the documentation of your boot
1162 loader (lilo or loadlin) about how to pass options to the kernel at
1163 boot time.) This means that it is a good idea to say Y here if you
1164 intend to use this kernel on different machines.
1165
1166 More information about the internals of the Linux math coprocessor
1167 emulation can be found in <file:arch/x86/math-emu/README>.
1168
1169 If you are not sure, say Y; apart from resulting in a 66 KB bigger
1170 kernel, it won't hurt.
1171
1172 config MTRR
1173 bool "MTRR (Memory Type Range Register) support"
1174 ---help---
1175 On Intel P6 family processors (Pentium Pro, Pentium II and later)
1176 the Memory Type Range Registers (MTRRs) may be used to control
1177 processor access to memory ranges. This is most useful if you have
1178 a video (VGA) card on a PCI or AGP bus. Enabling write-combining
1179 allows bus write transfers to be combined into a larger transfer
1180 before bursting over the PCI/AGP bus. This can increase performance
1181 of image write operations 2.5 times or more. Saying Y here creates a
1182 /proc/mtrr file which may be used to manipulate your processor's
1183 MTRRs. Typically the X server should use this.
1184
1185 This code has a reasonably generic interface so that similar
1186 control registers on other processors can be easily supported
1187 as well:
1188
1189 The Cyrix 6x86, 6x86MX and M II processors have Address Range
1190 Registers (ARRs) which provide a similar functionality to MTRRs. For
1191 these, the ARRs are used to emulate the MTRRs.
1192 The AMD K6-2 (stepping 8 and above) and K6-3 processors have two
1193 MTRRs. The Centaur C6 (WinChip) has 8 MCRs, allowing
1194 write-combining. All of these processors are supported by this code
1195 and it makes sense to say Y here if you have one of them.
1196
1197 Saying Y here also fixes a problem with buggy SMP BIOSes which only
1198 set the MTRRs for the boot CPU and not for the secondary CPUs. This
1199 can lead to all sorts of problems, so it's good to say Y here.
1200
1201 You can safely say Y even if your machine doesn't have MTRRs, you'll
1202 just add about 9 KB to your kernel.
1203
1204 See <file:Documentation/x86/mtrr.txt> for more information.
1205
1206 config MTRR_SANITIZER
1207 def_bool y
1208 prompt "MTRR cleanup support"
1209 depends on MTRR
1210 help
1211 Convert MTRR layout from continuous to discrete, so X drivers can
1212 add writeback entries.
1213
1214 Can be disabled with disable_mtrr_cleanup on the kernel command line.
1215 The largest mtrr entry size for a continous block can be set with
1216 mtrr_chunk_size.
1217
1218 If unsure, say Y.
1219
1220 config MTRR_SANITIZER_ENABLE_DEFAULT
1221 int "MTRR cleanup enable value (0-1)"
1222 range 0 1
1223 default "0"
1224 depends on MTRR_SANITIZER
1225 help
1226 Enable mtrr cleanup default value
1227
1228 config MTRR_SANITIZER_SPARE_REG_NR_DEFAULT
1229 int "MTRR cleanup spare reg num (0-7)"
1230 range 0 7
1231 default "1"
1232 depends on MTRR_SANITIZER
1233 help
1234 mtrr cleanup spare entries default, it can be changed via
1235 mtrr_spare_reg_nr=N on the kernel command line.
1236
1237 config X86_PAT
1238 bool
1239 prompt "x86 PAT support"
1240 depends on MTRR
1241 help
1242 Use PAT attributes to setup page level cache control.
1243
1244 PATs are the modern equivalents of MTRRs and are much more
1245 flexible than MTRRs.
1246
1247 Say N here if you see bootup problems (boot crash, boot hang,
1248 spontaneous reboots) or a non-working video driver.
1249
1250 If unsure, say Y.
1251
1252 config EFI
1253 bool "EFI runtime service support"
1254 depends on ACPI
1255 ---help---
1256 This enables the kernel to use EFI runtime services that are
1257 available (such as the EFI variable services).
1258
1259 This option is only useful on systems that have EFI firmware.
1260 In addition, you should use the latest ELILO loader available
1261 at <http://elilo.sourceforge.net> in order to take advantage
1262 of EFI runtime services. However, even with this option, the
1263 resultant kernel should continue to boot on existing non-EFI
1264 platforms.
1265
1266 config SECCOMP
1267 def_bool y
1268 prompt "Enable seccomp to safely compute untrusted bytecode"
1269 help
1270 This kernel feature is useful for number crunching applications
1271 that may need to compute untrusted bytecode during their
1272 execution. By using pipes or other transports made available to
1273 the process as file descriptors supporting the read/write
1274 syscalls, it's possible to isolate those applications in
1275 their own address space using seccomp. Once seccomp is
1276 enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
1277 and the task is only allowed to execute a few safe syscalls
1278 defined by each seccomp mode.
1279
1280 If unsure, say Y. Only embedded should say N here.
1281
1282 config CC_STACKPROTECTOR
1283 bool "Enable -fstack-protector buffer overflow detection (EXPERIMENTAL)"
1284 depends on X86_64 && EXPERIMENTAL && BROKEN
1285 help
1286 This option turns on the -fstack-protector GCC feature. This
1287 feature puts, at the beginning of critical functions, a canary
1288 value on the stack just before the return address, and validates
1289 the value just before actually returning. Stack based buffer
1290 overflows (that need to overwrite this return address) now also
1291 overwrite the canary, which gets detected and the attack is then
1292 neutralized via a kernel panic.
1293
1294 This feature requires gcc version 4.2 or above, or a distribution
1295 gcc with the feature backported. Older versions are automatically
1296 detected and for those versions, this configuration option is ignored.
1297
1298 config CC_STACKPROTECTOR_ALL
1299 bool "Use stack-protector for all functions"
1300 depends on CC_STACKPROTECTOR
1301 help
1302 Normally, GCC only inserts the canary value protection for
1303 functions that use large-ish on-stack buffers. By enabling
1304 this option, GCC will be asked to do this for ALL functions.
1305
1306 source kernel/Kconfig.hz
1307
1308 config KEXEC
1309 bool "kexec system call"
1310 depends on X86_BIOS_REBOOT
1311 help
1312 kexec is a system call that implements the ability to shutdown your
1313 current kernel, and to start another kernel. It is like a reboot
1314 but it is independent of the system firmware. And like a reboot
1315 you can start any kernel with it, not just Linux.
1316
1317 The name comes from the similarity to the exec system call.
1318
1319 It is an ongoing process to be certain the hardware in a machine
1320 is properly shutdown, so do not be surprised if this code does not
1321 initially work for you. It may help to enable device hotplugging
1322 support. As of this writing the exact hardware interface is
1323 strongly in flux, so no good recommendation can be made.
1324
1325 config CRASH_DUMP
1326 bool "kernel crash dumps"
1327 depends on X86_64 || (X86_32 && HIGHMEM)
1328 help
1329 Generate crash dump after being started by kexec.
1330 This should be normally only set in special crash dump kernels
1331 which are loaded in the main kernel with kexec-tools into
1332 a specially reserved region and then later executed after
1333 a crash by kdump/kexec. The crash dump kernel must be compiled
1334 to a memory address not used by the main kernel or BIOS using
1335 PHYSICAL_START, or it must be built as a relocatable image
1336 (CONFIG_RELOCATABLE=y).
1337 For more details see Documentation/kdump/kdump.txt
1338
1339 config KEXEC_JUMP
1340 bool "kexec jump (EXPERIMENTAL)"
1341 depends on EXPERIMENTAL
1342 depends on KEXEC && HIBERNATION && X86_32
1343 help
1344 Jump between original kernel and kexeced kernel and invoke
1345 code in physical address mode via KEXEC
1346
1347 config PHYSICAL_START
1348 hex "Physical address where the kernel is loaded" if (EMBEDDED || CRASH_DUMP)
1349 default "0x1000000" if X86_NUMAQ
1350 default "0x200000" if X86_64
1351 default "0x100000"
1352 help
1353 This gives the physical address where the kernel is loaded.
1354
1355 If kernel is a not relocatable (CONFIG_RELOCATABLE=n) then
1356 bzImage will decompress itself to above physical address and
1357 run from there. Otherwise, bzImage will run from the address where
1358 it has been loaded by the boot loader and will ignore above physical
1359 address.
1360
1361 In normal kdump cases one does not have to set/change this option
1362 as now bzImage can be compiled as a completely relocatable image
1363 (CONFIG_RELOCATABLE=y) and be used to load and run from a different
1364 address. This option is mainly useful for the folks who don't want
1365 to use a bzImage for capturing the crash dump and want to use a
1366 vmlinux instead. vmlinux is not relocatable hence a kernel needs
1367 to be specifically compiled to run from a specific memory area
1368 (normally a reserved region) and this option comes handy.
1369
1370 So if you are using bzImage for capturing the crash dump, leave
1371 the value here unchanged to 0x100000 and set CONFIG_RELOCATABLE=y.
1372 Otherwise if you plan to use vmlinux for capturing the crash dump
1373 change this value to start of the reserved region (Typically 16MB
1374 0x1000000). In other words, it can be set based on the "X" value as
1375 specified in the "crashkernel=YM@XM" command line boot parameter
1376 passed to the panic-ed kernel. Typically this parameter is set as
1377 crashkernel=64M@16M. Please take a look at
1378 Documentation/kdump/kdump.txt for more details about crash dumps.
1379
1380 Usage of bzImage for capturing the crash dump is recommended as
1381 one does not have to build two kernels. Same kernel can be used
1382 as production kernel and capture kernel. Above option should have
1383 gone away after relocatable bzImage support is introduced. But it
1384 is present because there are users out there who continue to use
1385 vmlinux for dump capture. This option should go away down the
1386 line.
1387
1388 Don't change this unless you know what you are doing.
1389
1390 config RELOCATABLE
1391 bool "Build a relocatable kernel (EXPERIMENTAL)"
1392 depends on EXPERIMENTAL
1393 help
1394 This builds a kernel image that retains relocation information
1395 so it can be loaded someplace besides the default 1MB.
1396 The relocations tend to make the kernel binary about 10% larger,
1397 but are discarded at runtime.
1398
1399 One use is for the kexec on panic case where the recovery kernel
1400 must live at a different physical address than the primary
1401 kernel.
1402
1403 Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address
1404 it has been loaded at and the compile time physical address
1405 (CONFIG_PHYSICAL_START) is ignored.
1406
1407 config PHYSICAL_ALIGN
1408 hex
1409 prompt "Alignment value to which kernel should be aligned" if X86_32
1410 default "0x100000" if X86_32
1411 default "0x200000" if X86_64
1412 range 0x2000 0x400000
1413 help
1414 This value puts the alignment restrictions on physical address
1415 where kernel is loaded and run from. Kernel is compiled for an
1416 address which meets above alignment restriction.
1417
1418 If bootloader loads the kernel at a non-aligned address and
1419 CONFIG_RELOCATABLE is set, kernel will move itself to nearest
1420 address aligned to above value and run from there.
1421
1422 If bootloader loads the kernel at a non-aligned address and
1423 CONFIG_RELOCATABLE is not set, kernel will ignore the run time
1424 load address and decompress itself to the address it has been
1425 compiled for and run from there. The address for which kernel is
1426 compiled already meets above alignment restrictions. Hence the
1427 end result is that kernel runs from a physical address meeting
1428 above alignment restrictions.
1429
1430 Don't change this unless you know what you are doing.
1431
1432 config HOTPLUG_CPU
1433 bool "Support for hot-pluggable CPUs"
1434 depends on SMP && HOTPLUG && !X86_VOYAGER
1435 ---help---
1436 Say Y here to allow turning CPUs off and on. CPUs can be
1437 controlled through /sys/devices/system/cpu.
1438 ( Note: power management support will enable this option
1439 automatically on SMP systems. )
1440 Say N if you want to disable CPU hotplug.
1441
1442 config COMPAT_VDSO
1443 def_bool y
1444 prompt "Compat VDSO support"
1445 depends on X86_32 || IA32_EMULATION
1446 help
1447 Map the 32-bit VDSO to the predictable old-style address too.
1448 ---help---
1449 Say N here if you are running a sufficiently recent glibc
1450 version (2.3.3 or later), to remove the high-mapped
1451 VDSO mapping and to exclusively use the randomized VDSO.
1452
1453 If unsure, say Y.
1454
1455 config CMDLINE_BOOL
1456 bool "Built-in kernel command line"
1457 default n
1458 help
1459 Allow for specifying boot arguments to the kernel at
1460 build time. On some systems (e.g. embedded ones), it is
1461 necessary or convenient to provide some or all of the
1462 kernel boot arguments with the kernel itself (that is,
1463 to not rely on the boot loader to provide them.)
1464
1465 To compile command line arguments into the kernel,
1466 set this option to 'Y', then fill in the
1467 the boot arguments in CONFIG_CMDLINE.
1468
1469 Systems with fully functional boot loaders (i.e. non-embedded)
1470 should leave this option set to 'N'.
1471
1472 config CMDLINE
1473 string "Built-in kernel command string"
1474 depends on CMDLINE_BOOL
1475 default ""
1476 help
1477 Enter arguments here that should be compiled into the kernel
1478 image and used at boot time. If the boot loader provides a
1479 command line at boot time, it is appended to this string to
1480 form the full kernel command line, when the system boots.
1481
1482 However, you can use the CONFIG_CMDLINE_OVERRIDE option to
1483 change this behavior.
1484
1485 In most cases, the command line (whether built-in or provided
1486 by the boot loader) should specify the device for the root
1487 file system.
1488
1489 config CMDLINE_OVERRIDE
1490 bool "Built-in command line overrides boot loader arguments"
1491 default n
1492 depends on CMDLINE_BOOL
1493 help
1494 Set this option to 'Y' to have the kernel ignore the boot loader
1495 command line, and use ONLY the built-in command line.
1496
1497 This is used to work around broken boot loaders. This should
1498 be set to 'N' under normal conditions.
1499
1500 endmenu
1501
1502 config ARCH_ENABLE_MEMORY_HOTPLUG
1503 def_bool y
1504 depends on X86_64 || (X86_32 && HIGHMEM)
1505
1506 config HAVE_ARCH_EARLY_PFN_TO_NID
1507 def_bool X86_64
1508 depends on NUMA
1509
1510 menu "Power management and ACPI options"
1511 depends on !X86_VOYAGER
1512
1513 config ARCH_HIBERNATION_HEADER
1514 def_bool y
1515 depends on X86_64 && HIBERNATION
1516
1517 source "kernel/power/Kconfig"
1518
1519 source "drivers/acpi/Kconfig"
1520
1521 config X86_APM_BOOT
1522 bool
1523 default y
1524 depends on APM || APM_MODULE
1525
1526 menuconfig APM
1527 tristate "APM (Advanced Power Management) BIOS support"
1528 depends on X86_32 && PM_SLEEP
1529 ---help---
1530 APM is a BIOS specification for saving power using several different
1531 techniques. This is mostly useful for battery powered laptops with
1532 APM compliant BIOSes. If you say Y here, the system time will be
1533 reset after a RESUME operation, the /proc/apm device will provide
1534 battery status information, and user-space programs will receive
1535 notification of APM "events" (e.g. battery status change).
1536
1537 If you select "Y" here, you can disable actual use of the APM
1538 BIOS by passing the "apm=off" option to the kernel at boot time.
1539
1540 Note that the APM support is almost completely disabled for
1541 machines with more than one CPU.
1542
1543 In order to use APM, you will need supporting software. For location
1544 and more information, read <file:Documentation/power/pm.txt> and the
1545 Battery Powered Linux mini-HOWTO, available from
1546 <http://www.tldp.org/docs.html#howto>.
1547
1548 This driver does not spin down disk drives (see the hdparm(8)
1549 manpage ("man 8 hdparm") for that), and it doesn't turn off
1550 VESA-compliant "green" monitors.
1551
1552 This driver does not support the TI 4000M TravelMate and the ACER
1553 486/DX4/75 because they don't have compliant BIOSes. Many "green"
1554 desktop machines also don't have compliant BIOSes, and this driver
1555 may cause those machines to panic during the boot phase.
1556
1557 Generally, if you don't have a battery in your machine, there isn't
1558 much point in using this driver and you should say N. If you get
1559 random kernel OOPSes or reboots that don't seem to be related to
1560 anything, try disabling/enabling this option (or disabling/enabling
1561 APM in your BIOS).
1562
1563 Some other things you should try when experiencing seemingly random,
1564 "weird" problems:
1565
1566 1) make sure that you have enough swap space and that it is
1567 enabled.
1568 2) pass the "no-hlt" option to the kernel
1569 3) switch on floating point emulation in the kernel and pass
1570 the "no387" option to the kernel
1571 4) pass the "floppy=nodma" option to the kernel
1572 5) pass the "mem=4M" option to the kernel (thereby disabling
1573 all but the first 4 MB of RAM)
1574 6) make sure that the CPU is not over clocked.
1575 7) read the sig11 FAQ at <http://www.bitwizard.nl/sig11/>
1576 8) disable the cache from your BIOS settings
1577 9) install a fan for the video card or exchange video RAM
1578 10) install a better fan for the CPU
1579 11) exchange RAM chips
1580 12) exchange the motherboard.
1581
1582 To compile this driver as a module, choose M here: the
1583 module will be called apm.
1584
1585 if APM
1586
1587 config APM_IGNORE_USER_SUSPEND
1588 bool "Ignore USER SUSPEND"
1589 help
1590 This option will ignore USER SUSPEND requests. On machines with a
1591 compliant APM BIOS, you want to say N. However, on the NEC Versa M
1592 series notebooks, it is necessary to say Y because of a BIOS bug.
1593
1594 config APM_DO_ENABLE
1595 bool "Enable PM at boot time"
1596 ---help---
1597 Enable APM features at boot time. From page 36 of the APM BIOS
1598 specification: "When disabled, the APM BIOS does not automatically
1599 power manage devices, enter the Standby State, enter the Suspend
1600 State, or take power saving steps in response to CPU Idle calls."
1601 This driver will make CPU Idle calls when Linux is idle (unless this
1602 feature is turned off -- see "Do CPU IDLE calls", below). This
1603 should always save battery power, but more complicated APM features
1604 will be dependent on your BIOS implementation. You may need to turn
1605 this option off if your computer hangs at boot time when using APM
1606 support, or if it beeps continuously instead of suspending. Turn
1607 this off if you have a NEC UltraLite Versa 33/C or a Toshiba
1608 T400CDT. This is off by default since most machines do fine without
1609 this feature.
1610
1611 config APM_CPU_IDLE
1612 bool "Make CPU Idle calls when idle"
1613 help
1614 Enable calls to APM CPU Idle/CPU Busy inside the kernel's idle loop.
1615 On some machines, this can activate improved power savings, such as
1616 a slowed CPU clock rate, when the machine is idle. These idle calls
1617 are made after the idle loop has run for some length of time (e.g.,
1618 333 mS). On some machines, this will cause a hang at boot time or
1619 whenever the CPU becomes idle. (On machines with more than one CPU,
1620 this option does nothing.)
1621
1622 config APM_DISPLAY_BLANK
1623 bool "Enable console blanking using APM"
1624 help
1625 Enable console blanking using the APM. Some laptops can use this to
1626 turn off the LCD backlight when the screen blanker of the Linux
1627 virtual console blanks the screen. Note that this is only used by
1628 the virtual console screen blanker, and won't turn off the backlight
1629 when using the X Window system. This also doesn't have anything to
1630 do with your VESA-compliant power-saving monitor. Further, this
1631 option doesn't work for all laptops -- it might not turn off your
1632 backlight at all, or it might print a lot of errors to the console,
1633 especially if you are using gpm.
1634
1635 config APM_ALLOW_INTS
1636 bool "Allow interrupts during APM BIOS calls"
1637 help
1638 Normally we disable external interrupts while we are making calls to
1639 the APM BIOS as a measure to lessen the effects of a badly behaving
1640 BIOS implementation. The BIOS should reenable interrupts if it
1641 needs to. Unfortunately, some BIOSes do not -- especially those in
1642 many of the newer IBM Thinkpads. If you experience hangs when you
1643 suspend, try setting this to Y. Otherwise, say N.
1644
1645 config APM_REAL_MODE_POWER_OFF
1646 bool "Use real mode APM BIOS call to power off"
1647 help
1648 Use real mode APM BIOS calls to switch off the computer. This is
1649 a work-around for a number of buggy BIOSes. Switch this option on if
1650 your computer crashes instead of powering off properly.
1651
1652 endif # APM
1653
1654 source "arch/x86/kernel/cpu/cpufreq/Kconfig"
1655
1656 source "drivers/cpuidle/Kconfig"
1657
1658 source "drivers/idle/Kconfig"
1659
1660 endmenu
1661
1662
1663 menu "Bus options (PCI etc.)"
1664
1665 config PCI
1666 bool "PCI support"
1667 default y
1668 select ARCH_SUPPORTS_MSI if (X86_LOCAL_APIC && X86_IO_APIC)
1669 help
1670 Find out whether you have a PCI motherboard. PCI is the name of a
1671 bus system, i.e. the way the CPU talks to the other stuff inside
1672 your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
1673 VESA. If you have PCI, say Y, otherwise N.
1674
1675 choice
1676 prompt "PCI access mode"
1677 depends on X86_32 && PCI
1678 default PCI_GOANY
1679 ---help---
1680 On PCI systems, the BIOS can be used to detect the PCI devices and
1681 determine their configuration. However, some old PCI motherboards
1682 have BIOS bugs and may crash if this is done. Also, some embedded
1683 PCI-based systems don't have any BIOS at all. Linux can also try to
1684 detect the PCI hardware directly without using the BIOS.
1685
1686 With this option, you can specify how Linux should detect the
1687 PCI devices. If you choose "BIOS", the BIOS will be used,
1688 if you choose "Direct", the BIOS won't be used, and if you
1689 choose "MMConfig", then PCI Express MMCONFIG will be used.
1690 If you choose "Any", the kernel will try MMCONFIG, then the
1691 direct access method and falls back to the BIOS if that doesn't
1692 work. If unsure, go with the default, which is "Any".
1693
1694 config PCI_GOBIOS
1695 bool "BIOS"
1696
1697 config PCI_GOMMCONFIG
1698 bool "MMConfig"
1699
1700 config PCI_GODIRECT
1701 bool "Direct"
1702
1703 config PCI_GOOLPC
1704 bool "OLPC"
1705 depends on OLPC
1706
1707 config PCI_GOANY
1708 bool "Any"
1709
1710 endchoice
1711
1712 config PCI_BIOS
1713 def_bool y
1714 depends on X86_32 && PCI && (PCI_GOBIOS || PCI_GOANY)
1715
1716 # x86-64 doesn't support PCI BIOS access from long mode so always go direct.
1717 config PCI_DIRECT
1718 def_bool y
1719 depends on PCI && (X86_64 || (PCI_GODIRECT || PCI_GOANY || PCI_GOOLPC))
1720
1721 config PCI_MMCONFIG
1722 def_bool y
1723 depends on X86_32 && PCI && ACPI && (PCI_GOMMCONFIG || PCI_GOANY)
1724
1725 config PCI_OLPC
1726 def_bool y
1727 depends on PCI && OLPC && (PCI_GOOLPC || PCI_GOANY)
1728
1729 config PCI_DOMAINS
1730 def_bool y
1731 depends on PCI
1732
1733 config PCI_MMCONFIG
1734 bool "Support mmconfig PCI config space access"
1735 depends on X86_64 && PCI && ACPI
1736
1737 config DMAR
1738 bool "Support for DMA Remapping Devices (EXPERIMENTAL)"
1739 depends on X86_64 && PCI_MSI && ACPI && EXPERIMENTAL
1740 help
1741 DMA remapping (DMAR) devices support enables independent address
1742 translations for Direct Memory Access (DMA) from devices.
1743 These DMA remapping devices are reported via ACPI tables
1744 and include PCI device scope covered by these DMA
1745 remapping devices.
1746
1747 config DMAR_GFX_WA
1748 def_bool y
1749 prompt "Support for Graphics workaround"
1750 depends on DMAR
1751 help
1752 Current Graphics drivers tend to use physical address
1753 for DMA and avoid using DMA APIs. Setting this config
1754 option permits the IOMMU driver to set a unity map for
1755 all the OS-visible memory. Hence the driver can continue
1756 to use physical addresses for DMA.
1757
1758 config DMAR_FLOPPY_WA
1759 def_bool y
1760 depends on DMAR
1761 help
1762 Floppy disk drivers are know to bypass DMA API calls
1763 thereby failing to work when IOMMU is enabled. This
1764 workaround will setup a 1:1 mapping for the first
1765 16M to make floppy (an ISA device) work.
1766
1767 config INTR_REMAP
1768 bool "Support for Interrupt Remapping (EXPERIMENTAL)"
1769 depends on X86_64 && X86_IO_APIC && PCI_MSI && ACPI && EXPERIMENTAL
1770 help
1771 Supports Interrupt remapping for IO-APIC and MSI devices.
1772 To use x2apic mode in the CPU's which support x2APIC enhancements or
1773 to support platforms with CPU's having > 8 bit APIC ID, say Y.
1774
1775 source "drivers/pci/pcie/Kconfig"
1776
1777 source "drivers/pci/Kconfig"
1778
1779 # x86_64 have no ISA slots, but do have ISA-style DMA.
1780 config ISA_DMA_API
1781 def_bool y
1782
1783 if X86_32
1784
1785 config ISA
1786 bool "ISA support"
1787 depends on !X86_VOYAGER
1788 help
1789 Find out whether you have ISA slots on your motherboard. ISA is the
1790 name of a bus system, i.e. the way the CPU talks to the other stuff
1791 inside your box. Other bus systems are PCI, EISA, MicroChannel
1792 (MCA) or VESA. ISA is an older system, now being displaced by PCI;
1793 newer boards don't support it. If you have ISA, say Y, otherwise N.
1794
1795 config EISA
1796 bool "EISA support"
1797 depends on ISA
1798 ---help---
1799 The Extended Industry Standard Architecture (EISA) bus was
1800 developed as an open alternative to the IBM MicroChannel bus.
1801
1802 The EISA bus provided some of the features of the IBM MicroChannel
1803 bus while maintaining backward compatibility with cards made for
1804 the older ISA bus. The EISA bus saw limited use between 1988 and
1805 1995 when it was made obsolete by the PCI bus.
1806
1807 Say Y here if you are building a kernel for an EISA-based machine.
1808
1809 Otherwise, say N.
1810
1811 source "drivers/eisa/Kconfig"
1812
1813 config MCA
1814 bool "MCA support" if !X86_VOYAGER
1815 default y if X86_VOYAGER
1816 help
1817 MicroChannel Architecture is found in some IBM PS/2 machines and
1818 laptops. It is a bus system similar to PCI or ISA. See
1819 <file:Documentation/mca.txt> (and especially the web page given
1820 there) before attempting to build an MCA bus kernel.
1821
1822 source "drivers/mca/Kconfig"
1823
1824 config SCx200
1825 tristate "NatSemi SCx200 support"
1826 depends on !X86_VOYAGER
1827 help
1828 This provides basic support for National Semiconductor's
1829 (now AMD's) Geode processors. The driver probes for the
1830 PCI-IDs of several on-chip devices, so its a good dependency
1831 for other scx200_* drivers.
1832
1833 If compiled as a module, the driver is named scx200.
1834
1835 config SCx200HR_TIMER
1836 tristate "NatSemi SCx200 27MHz High-Resolution Timer Support"
1837 depends on SCx200 && GENERIC_TIME
1838 default y
1839 help
1840 This driver provides a clocksource built upon the on-chip
1841 27MHz high-resolution timer. Its also a workaround for
1842 NSC Geode SC-1100's buggy TSC, which loses time when the
1843 processor goes idle (as is done by the scheduler). The
1844 other workaround is idle=poll boot option.
1845
1846 config GEODE_MFGPT_TIMER
1847 def_bool y
1848 prompt "Geode Multi-Function General Purpose Timer (MFGPT) events"
1849 depends on MGEODE_LX && GENERIC_TIME && GENERIC_CLOCKEVENTS
1850 help
1851 This driver provides a clock event source based on the MFGPT
1852 timer(s) in the CS5535 and CS5536 companion chip for the geode.
1853 MFGPTs have a better resolution and max interval than the
1854 generic PIT, and are suitable for use as high-res timers.
1855
1856 config OLPC
1857 bool "One Laptop Per Child support"
1858 default n
1859 help
1860 Add support for detecting the unique features of the OLPC
1861 XO hardware.
1862
1863 endif # X86_32
1864
1865 config K8_NB
1866 def_bool y
1867 depends on AGP_AMD64 || (X86_64 && (GART_IOMMU || (PCI && NUMA)))
1868
1869 source "drivers/pcmcia/Kconfig"
1870
1871 source "drivers/pci/hotplug/Kconfig"
1872
1873 endmenu
1874
1875
1876 menu "Executable file formats / Emulations"
1877
1878 source "fs/Kconfig.binfmt"
1879
1880 config IA32_EMULATION
1881 bool "IA32 Emulation"
1882 depends on X86_64
1883 select COMPAT_BINFMT_ELF
1884 help
1885 Include code to run 32-bit programs under a 64-bit kernel. You should
1886 likely turn this on, unless you're 100% sure that you don't have any
1887 32-bit programs left.
1888
1889 config IA32_AOUT
1890 tristate "IA32 a.out support"
1891 depends on IA32_EMULATION
1892 help
1893 Support old a.out binaries in the 32bit emulation.
1894
1895 config COMPAT
1896 def_bool y
1897 depends on IA32_EMULATION
1898
1899 config COMPAT_FOR_U64_ALIGNMENT
1900 def_bool COMPAT
1901 depends on X86_64
1902
1903 config SYSVIPC_COMPAT
1904 def_bool y
1905 depends on COMPAT && SYSVIPC
1906
1907 endmenu
1908
1909
1910 config HAVE_ATOMIC_IOMAP
1911 def_bool y
1912 depends on X86_32
1913
1914 source "net/Kconfig"
1915
1916 source "drivers/Kconfig"
1917
1918 source "drivers/firmware/Kconfig"
1919
1920 source "fs/Kconfig"
1921
1922 source "arch/x86/Kconfig.debug"
1923
1924 source "security/Kconfig"
1925
1926 source "crypto/Kconfig"
1927
1928 source "arch/x86/kvm/Kconfig"
1929
1930 source "lib/Kconfig"
This page took 0.06976 seconds and 5 git commands to generate.