Merge tag 'xfs-for-linus-4.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / arch / x86 / Kconfig
1 # Select 32 or 64 bit
2 config 64BIT
3 bool "64-bit kernel" if ARCH = "x86"
4 default ARCH != "i386"
5 ---help---
6 Say yes to build a 64-bit kernel - formerly known as x86_64
7 Say no to build a 32-bit kernel - formerly known as i386
8
9 config X86_32
10 def_bool y
11 depends on !64BIT
12
13 config X86_64
14 def_bool y
15 depends on 64BIT
16
17 ### Arch settings
18 config X86
19 def_bool y
20 select ACPI_LEGACY_TABLES_LOOKUP if ACPI
21 select ACPI_SYSTEM_POWER_STATES_SUPPORT if ACPI
22 select ANON_INODES
23 select ARCH_CLOCKSOURCE_DATA
24 select ARCH_DISCARD_MEMBLOCK
25 select ARCH_HAS_ATOMIC64_DEC_IF_POSITIVE
26 select ARCH_HAS_DEBUG_STRICT_USER_COPY_CHECKS
27 select ARCH_HAS_DEVMEM_IS_ALLOWED
28 select ARCH_HAS_ELF_RANDOMIZE
29 select ARCH_HAS_FAST_MULTIPLIER
30 select ARCH_HAS_GCOV_PROFILE_ALL
31 select ARCH_HAS_PMEM_API if X86_64
32 select ARCH_HAS_MMIO_FLUSH
33 select ARCH_HAS_SG_CHAIN
34 select ARCH_HAS_UBSAN_SANITIZE_ALL
35 select ARCH_HAVE_NMI_SAFE_CMPXCHG
36 select ARCH_MIGHT_HAVE_ACPI_PDC if ACPI
37 select ARCH_MIGHT_HAVE_PC_PARPORT
38 select ARCH_MIGHT_HAVE_PC_SERIO
39 select ARCH_SUPPORTS_ATOMIC_RMW
40 select ARCH_SUPPORTS_DEFERRED_STRUCT_PAGE_INIT
41 select ARCH_SUPPORTS_INT128 if X86_64
42 select ARCH_SUPPORTS_NUMA_BALANCING if X86_64
43 select ARCH_USE_BUILTIN_BSWAP
44 select ARCH_USE_CMPXCHG_LOCKREF if X86_64
45 select ARCH_USE_QUEUED_RWLOCKS
46 select ARCH_USE_QUEUED_SPINLOCKS
47 select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH if SMP
48 select ARCH_WANTS_DYNAMIC_TASK_STRUCT
49 select ARCH_WANT_FRAME_POINTERS
50 select ARCH_WANT_IPC_PARSE_VERSION if X86_32
51 select ARCH_WANT_OPTIONAL_GPIOLIB
52 select BUILDTIME_EXTABLE_SORT
53 select CLKEVT_I8253
54 select CLKSRC_I8253 if X86_32
55 select CLOCKSOURCE_VALIDATE_LAST_CYCLE
56 select CLOCKSOURCE_WATCHDOG
57 select CLONE_BACKWARDS if X86_32
58 select COMPAT_OLD_SIGACTION if IA32_EMULATION
59 select DCACHE_WORD_ACCESS
60 select EDAC_ATOMIC_SCRUB
61 select EDAC_SUPPORT
62 select GENERIC_CLOCKEVENTS
63 select GENERIC_CLOCKEVENTS_BROADCAST if X86_64 || (X86_32 && X86_LOCAL_APIC)
64 select GENERIC_CLOCKEVENTS_MIN_ADJUST
65 select GENERIC_CMOS_UPDATE
66 select GENERIC_CPU_AUTOPROBE
67 select GENERIC_EARLY_IOREMAP
68 select GENERIC_FIND_FIRST_BIT
69 select GENERIC_IOMAP
70 select GENERIC_IRQ_PROBE
71 select GENERIC_IRQ_SHOW
72 select GENERIC_PENDING_IRQ if SMP
73 select GENERIC_SMP_IDLE_THREAD
74 select GENERIC_STRNCPY_FROM_USER
75 select GENERIC_STRNLEN_USER
76 select GENERIC_TIME_VSYSCALL
77 select HAVE_ACPI_APEI if ACPI
78 select HAVE_ACPI_APEI_NMI if ACPI
79 select HAVE_ALIGNED_STRUCT_PAGE if SLUB
80 select HAVE_AOUT if X86_32
81 select HAVE_ARCH_AUDITSYSCALL
82 select HAVE_ARCH_HUGE_VMAP if X86_64 || X86_PAE
83 select HAVE_ARCH_JUMP_LABEL
84 select HAVE_ARCH_KASAN if X86_64 && SPARSEMEM_VMEMMAP
85 select HAVE_ARCH_KGDB
86 select HAVE_ARCH_KMEMCHECK
87 select HAVE_ARCH_MMAP_RND_BITS if MMU
88 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if MMU && COMPAT
89 select HAVE_ARCH_SECCOMP_FILTER
90 select HAVE_ARCH_SOFT_DIRTY if X86_64
91 select HAVE_ARCH_TRACEHOOK
92 select HAVE_ARCH_TRANSPARENT_HUGEPAGE
93 select HAVE_BPF_JIT if X86_64
94 select HAVE_CC_STACKPROTECTOR
95 select HAVE_CMPXCHG_DOUBLE
96 select HAVE_CMPXCHG_LOCAL
97 select HAVE_CONTEXT_TRACKING if X86_64
98 select HAVE_COPY_THREAD_TLS
99 select HAVE_C_RECORDMCOUNT
100 select HAVE_DEBUG_KMEMLEAK
101 select HAVE_DEBUG_STACKOVERFLOW
102 select HAVE_DMA_API_DEBUG
103 select HAVE_DMA_CONTIGUOUS
104 select HAVE_DYNAMIC_FTRACE
105 select HAVE_DYNAMIC_FTRACE_WITH_REGS
106 select HAVE_EFFICIENT_UNALIGNED_ACCESS
107 select HAVE_FENTRY if X86_64
108 select HAVE_FTRACE_MCOUNT_RECORD
109 select HAVE_FUNCTION_GRAPH_FP_TEST
110 select HAVE_FUNCTION_GRAPH_TRACER
111 select HAVE_FUNCTION_TRACER
112 select HAVE_GENERIC_DMA_COHERENT if X86_32
113 select HAVE_HW_BREAKPOINT
114 select HAVE_IDE
115 select HAVE_IOREMAP_PROT
116 select HAVE_IRQ_EXIT_ON_IRQ_STACK if X86_64
117 select HAVE_IRQ_TIME_ACCOUNTING
118 select HAVE_KERNEL_BZIP2
119 select HAVE_KERNEL_GZIP
120 select HAVE_KERNEL_LZ4
121 select HAVE_KERNEL_LZMA
122 select HAVE_KERNEL_LZO
123 select HAVE_KERNEL_XZ
124 select HAVE_KPROBES
125 select HAVE_KPROBES_ON_FTRACE
126 select HAVE_KRETPROBES
127 select HAVE_KVM
128 select HAVE_LIVEPATCH if X86_64
129 select HAVE_MEMBLOCK
130 select HAVE_MEMBLOCK_NODE_MAP
131 select HAVE_MIXED_BREAKPOINTS_REGS
132 select HAVE_OPROFILE
133 select HAVE_OPTPROBES
134 select HAVE_PCSPKR_PLATFORM
135 select HAVE_PERF_EVENTS
136 select HAVE_PERF_EVENTS_NMI
137 select HAVE_PERF_REGS
138 select HAVE_PERF_USER_STACK_DUMP
139 select HAVE_REGS_AND_STACK_ACCESS_API
140 select HAVE_SYSCALL_TRACEPOINTS
141 select HAVE_UID16 if X86_32 || IA32_EMULATION
142 select HAVE_UNSTABLE_SCHED_CLOCK
143 select HAVE_USER_RETURN_NOTIFIER
144 select IRQ_FORCED_THREADING
145 select MODULES_USE_ELF_RELA if X86_64
146 select MODULES_USE_ELF_REL if X86_32
147 select OLD_SIGACTION if X86_32
148 select OLD_SIGSUSPEND3 if X86_32 || IA32_EMULATION
149 select PERF_EVENTS
150 select RTC_LIB
151 select SPARSE_IRQ
152 select SRCU
153 select SYSCTL_EXCEPTION_TRACE
154 select USER_STACKTRACE_SUPPORT
155 select VIRT_TO_BUS
156 select X86_DEV_DMA_OPS if X86_64
157 select X86_FEATURE_NAMES if PROC_FS
158 select HAVE_STACK_VALIDATION if X86_64
159 select ARCH_USES_HIGH_VMA_FLAGS if X86_INTEL_MEMORY_PROTECTION_KEYS
160 select ARCH_HAS_PKEYS if X86_INTEL_MEMORY_PROTECTION_KEYS
161
162 config INSTRUCTION_DECODER
163 def_bool y
164 depends on KPROBES || PERF_EVENTS || UPROBES
165
166 config PERF_EVENTS_INTEL_UNCORE
167 def_bool y
168 depends on PERF_EVENTS && CPU_SUP_INTEL && PCI
169
170 config OUTPUT_FORMAT
171 string
172 default "elf32-i386" if X86_32
173 default "elf64-x86-64" if X86_64
174
175 config ARCH_DEFCONFIG
176 string
177 default "arch/x86/configs/i386_defconfig" if X86_32
178 default "arch/x86/configs/x86_64_defconfig" if X86_64
179
180 config LOCKDEP_SUPPORT
181 def_bool y
182
183 config STACKTRACE_SUPPORT
184 def_bool y
185
186 config MMU
187 def_bool y
188
189 config ARCH_MMAP_RND_BITS_MIN
190 default 28 if 64BIT
191 default 8
192
193 config ARCH_MMAP_RND_BITS_MAX
194 default 32 if 64BIT
195 default 16
196
197 config ARCH_MMAP_RND_COMPAT_BITS_MIN
198 default 8
199
200 config ARCH_MMAP_RND_COMPAT_BITS_MAX
201 default 16
202
203 config SBUS
204 bool
205
206 config NEED_DMA_MAP_STATE
207 def_bool y
208 depends on X86_64 || INTEL_IOMMU || DMA_API_DEBUG || SWIOTLB
209
210 config NEED_SG_DMA_LENGTH
211 def_bool y
212
213 config GENERIC_ISA_DMA
214 def_bool y
215 depends on ISA_DMA_API
216
217 config GENERIC_BUG
218 def_bool y
219 depends on BUG
220 select GENERIC_BUG_RELATIVE_POINTERS if X86_64
221
222 config GENERIC_BUG_RELATIVE_POINTERS
223 bool
224
225 config GENERIC_HWEIGHT
226 def_bool y
227
228 config ARCH_MAY_HAVE_PC_FDC
229 def_bool y
230 depends on ISA_DMA_API
231
232 config RWSEM_XCHGADD_ALGORITHM
233 def_bool y
234
235 config GENERIC_CALIBRATE_DELAY
236 def_bool y
237
238 config ARCH_HAS_CPU_RELAX
239 def_bool y
240
241 config ARCH_HAS_CACHE_LINE_SIZE
242 def_bool y
243
244 config HAVE_SETUP_PER_CPU_AREA
245 def_bool y
246
247 config NEED_PER_CPU_EMBED_FIRST_CHUNK
248 def_bool y
249
250 config NEED_PER_CPU_PAGE_FIRST_CHUNK
251 def_bool y
252
253 config ARCH_HIBERNATION_POSSIBLE
254 def_bool y
255
256 config ARCH_SUSPEND_POSSIBLE
257 def_bool y
258
259 config ARCH_WANT_HUGE_PMD_SHARE
260 def_bool y
261
262 config ARCH_WANT_GENERAL_HUGETLB
263 def_bool y
264
265 config ZONE_DMA32
266 def_bool y if X86_64
267
268 config AUDIT_ARCH
269 def_bool y if X86_64
270
271 config ARCH_SUPPORTS_OPTIMIZED_INLINING
272 def_bool y
273
274 config ARCH_SUPPORTS_DEBUG_PAGEALLOC
275 def_bool y
276
277 config KASAN_SHADOW_OFFSET
278 hex
279 depends on KASAN
280 default 0xdffffc0000000000
281
282 config HAVE_INTEL_TXT
283 def_bool y
284 depends on INTEL_IOMMU && ACPI
285
286 config X86_32_SMP
287 def_bool y
288 depends on X86_32 && SMP
289
290 config X86_64_SMP
291 def_bool y
292 depends on X86_64 && SMP
293
294 config X86_32_LAZY_GS
295 def_bool y
296 depends on X86_32 && !CC_STACKPROTECTOR
297
298 config ARCH_HWEIGHT_CFLAGS
299 string
300 default "-fcall-saved-ecx -fcall-saved-edx" if X86_32
301 default "-fcall-saved-rdi -fcall-saved-rsi -fcall-saved-rdx -fcall-saved-rcx -fcall-saved-r8 -fcall-saved-r9 -fcall-saved-r10 -fcall-saved-r11" if X86_64
302
303 config ARCH_SUPPORTS_UPROBES
304 def_bool y
305
306 config FIX_EARLYCON_MEM
307 def_bool y
308
309 config DEBUG_RODATA
310 def_bool y
311
312 config PGTABLE_LEVELS
313 int
314 default 4 if X86_64
315 default 3 if X86_PAE
316 default 2
317
318 source "init/Kconfig"
319 source "kernel/Kconfig.freezer"
320
321 menu "Processor type and features"
322
323 config ZONE_DMA
324 bool "DMA memory allocation support" if EXPERT
325 default y
326 help
327 DMA memory allocation support allows devices with less than 32-bit
328 addressing to allocate within the first 16MB of address space.
329 Disable if no such devices will be used.
330
331 If unsure, say Y.
332
333 config SMP
334 bool "Symmetric multi-processing support"
335 ---help---
336 This enables support for systems with more than one CPU. If you have
337 a system with only one CPU, say N. If you have a system with more
338 than one CPU, say Y.
339
340 If you say N here, the kernel will run on uni- and multiprocessor
341 machines, but will use only one CPU of a multiprocessor machine. If
342 you say Y here, the kernel will run on many, but not all,
343 uniprocessor machines. On a uniprocessor machine, the kernel
344 will run faster if you say N here.
345
346 Note that if you say Y here and choose architecture "586" or
347 "Pentium" under "Processor family", the kernel will not work on 486
348 architectures. Similarly, multiprocessor kernels for the "PPro"
349 architecture may not work on all Pentium based boards.
350
351 People using multiprocessor machines who say Y here should also say
352 Y to "Enhanced Real Time Clock Support", below. The "Advanced Power
353 Management" code will be disabled if you say Y here.
354
355 See also <file:Documentation/x86/i386/IO-APIC.txt>,
356 <file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at
357 <http://www.tldp.org/docs.html#howto>.
358
359 If you don't know what to do here, say N.
360
361 config X86_FEATURE_NAMES
362 bool "Processor feature human-readable names" if EMBEDDED
363 default y
364 ---help---
365 This option compiles in a table of x86 feature bits and corresponding
366 names. This is required to support /proc/cpuinfo and a few kernel
367 messages. You can disable this to save space, at the expense of
368 making those few kernel messages show numeric feature bits instead.
369
370 If in doubt, say Y.
371
372 config X86_FAST_FEATURE_TESTS
373 bool "Fast CPU feature tests" if EMBEDDED
374 default y
375 ---help---
376 Some fast-paths in the kernel depend on the capabilities of the CPU.
377 Say Y here for the kernel to patch in the appropriate code at runtime
378 based on the capabilities of the CPU. The infrastructure for patching
379 code at runtime takes up some additional space; space-constrained
380 embedded systems may wish to say N here to produce smaller, slightly
381 slower code.
382
383 config X86_X2APIC
384 bool "Support x2apic"
385 depends on X86_LOCAL_APIC && X86_64 && (IRQ_REMAP || HYPERVISOR_GUEST)
386 ---help---
387 This enables x2apic support on CPUs that have this feature.
388
389 This allows 32-bit apic IDs (so it can support very large systems),
390 and accesses the local apic via MSRs not via mmio.
391
392 If you don't know what to do here, say N.
393
394 config X86_MPPARSE
395 bool "Enable MPS table" if ACPI || SFI
396 default y
397 depends on X86_LOCAL_APIC
398 ---help---
399 For old smp systems that do not have proper acpi support. Newer systems
400 (esp with 64bit cpus) with acpi support, MADT and DSDT will override it
401
402 config X86_BIGSMP
403 bool "Support for big SMP systems with more than 8 CPUs"
404 depends on X86_32 && SMP
405 ---help---
406 This option is needed for the systems that have more than 8 CPUs
407
408 config GOLDFISH
409 def_bool y
410 depends on X86_GOLDFISH
411
412 if X86_32
413 config X86_EXTENDED_PLATFORM
414 bool "Support for extended (non-PC) x86 platforms"
415 default y
416 ---help---
417 If you disable this option then the kernel will only support
418 standard PC platforms. (which covers the vast majority of
419 systems out there.)
420
421 If you enable this option then you'll be able to select support
422 for the following (non-PC) 32 bit x86 platforms:
423 Goldfish (Android emulator)
424 AMD Elan
425 RDC R-321x SoC
426 SGI 320/540 (Visual Workstation)
427 STA2X11-based (e.g. Northville)
428 Moorestown MID devices
429
430 If you have one of these systems, or if you want to build a
431 generic distribution kernel, say Y here - otherwise say N.
432 endif
433
434 if X86_64
435 config X86_EXTENDED_PLATFORM
436 bool "Support for extended (non-PC) x86 platforms"
437 default y
438 ---help---
439 If you disable this option then the kernel will only support
440 standard PC platforms. (which covers the vast majority of
441 systems out there.)
442
443 If you enable this option then you'll be able to select support
444 for the following (non-PC) 64 bit x86 platforms:
445 Numascale NumaChip
446 ScaleMP vSMP
447 SGI Ultraviolet
448
449 If you have one of these systems, or if you want to build a
450 generic distribution kernel, say Y here - otherwise say N.
451 endif
452 # This is an alphabetically sorted list of 64 bit extended platforms
453 # Please maintain the alphabetic order if and when there are additions
454 config X86_NUMACHIP
455 bool "Numascale NumaChip"
456 depends on X86_64
457 depends on X86_EXTENDED_PLATFORM
458 depends on NUMA
459 depends on SMP
460 depends on X86_X2APIC
461 depends on PCI_MMCONFIG
462 ---help---
463 Adds support for Numascale NumaChip large-SMP systems. Needed to
464 enable more than ~168 cores.
465 If you don't have one of these, you should say N here.
466
467 config X86_VSMP
468 bool "ScaleMP vSMP"
469 select HYPERVISOR_GUEST
470 select PARAVIRT
471 depends on X86_64 && PCI
472 depends on X86_EXTENDED_PLATFORM
473 depends on SMP
474 ---help---
475 Support for ScaleMP vSMP systems. Say 'Y' here if this kernel is
476 supposed to run on these EM64T-based machines. Only choose this option
477 if you have one of these machines.
478
479 config X86_UV
480 bool "SGI Ultraviolet"
481 depends on X86_64
482 depends on X86_EXTENDED_PLATFORM
483 depends on NUMA
484 depends on EFI
485 depends on X86_X2APIC
486 depends on PCI
487 ---help---
488 This option is needed in order to support SGI Ultraviolet systems.
489 If you don't have one of these, you should say N here.
490
491 # Following is an alphabetically sorted list of 32 bit extended platforms
492 # Please maintain the alphabetic order if and when there are additions
493
494 config X86_GOLDFISH
495 bool "Goldfish (Virtual Platform)"
496 depends on X86_EXTENDED_PLATFORM
497 ---help---
498 Enable support for the Goldfish virtual platform used primarily
499 for Android development. Unless you are building for the Android
500 Goldfish emulator say N here.
501
502 config X86_INTEL_CE
503 bool "CE4100 TV platform"
504 depends on PCI
505 depends on PCI_GODIRECT
506 depends on X86_IO_APIC
507 depends on X86_32
508 depends on X86_EXTENDED_PLATFORM
509 select X86_REBOOTFIXUPS
510 select OF
511 select OF_EARLY_FLATTREE
512 ---help---
513 Select for the Intel CE media processor (CE4100) SOC.
514 This option compiles in support for the CE4100 SOC for settop
515 boxes and media devices.
516
517 config X86_INTEL_MID
518 bool "Intel MID platform support"
519 depends on X86_EXTENDED_PLATFORM
520 depends on X86_PLATFORM_DEVICES
521 depends on PCI
522 depends on X86_64 || (PCI_GOANY && X86_32)
523 depends on X86_IO_APIC
524 select SFI
525 select I2C
526 select DW_APB_TIMER
527 select APB_TIMER
528 select INTEL_SCU_IPC
529 select MFD_INTEL_MSIC
530 ---help---
531 Select to build a kernel capable of supporting Intel MID (Mobile
532 Internet Device) platform systems which do not have the PCI legacy
533 interfaces. If you are building for a PC class system say N here.
534
535 Intel MID platforms are based on an Intel processor and chipset which
536 consume less power than most of the x86 derivatives.
537
538 config X86_INTEL_QUARK
539 bool "Intel Quark platform support"
540 depends on X86_32
541 depends on X86_EXTENDED_PLATFORM
542 depends on X86_PLATFORM_DEVICES
543 depends on X86_TSC
544 depends on PCI
545 depends on PCI_GOANY
546 depends on X86_IO_APIC
547 select IOSF_MBI
548 select INTEL_IMR
549 select COMMON_CLK
550 ---help---
551 Select to include support for Quark X1000 SoC.
552 Say Y here if you have a Quark based system such as the Arduino
553 compatible Intel Galileo.
554
555 config X86_INTEL_LPSS
556 bool "Intel Low Power Subsystem Support"
557 depends on X86 && ACPI
558 select COMMON_CLK
559 select PINCTRL
560 select IOSF_MBI
561 ---help---
562 Select to build support for Intel Low Power Subsystem such as
563 found on Intel Lynxpoint PCH. Selecting this option enables
564 things like clock tree (common clock framework) and pincontrol
565 which are needed by the LPSS peripheral drivers.
566
567 config X86_AMD_PLATFORM_DEVICE
568 bool "AMD ACPI2Platform devices support"
569 depends on ACPI
570 select COMMON_CLK
571 select PINCTRL
572 ---help---
573 Select to interpret AMD specific ACPI device to platform device
574 such as I2C, UART, GPIO found on AMD Carrizo and later chipsets.
575 I2C and UART depend on COMMON_CLK to set clock. GPIO driver is
576 implemented under PINCTRL subsystem.
577
578 config IOSF_MBI
579 tristate "Intel SoC IOSF Sideband support for SoC platforms"
580 depends on PCI
581 ---help---
582 This option enables sideband register access support for Intel SoC
583 platforms. On these platforms the IOSF sideband is used in lieu of
584 MSR's for some register accesses, mostly but not limited to thermal
585 and power. Drivers may query the availability of this device to
586 determine if they need the sideband in order to work on these
587 platforms. The sideband is available on the following SoC products.
588 This list is not meant to be exclusive.
589 - BayTrail
590 - Braswell
591 - Quark
592
593 You should say Y if you are running a kernel on one of these SoC's.
594
595 config IOSF_MBI_DEBUG
596 bool "Enable IOSF sideband access through debugfs"
597 depends on IOSF_MBI && DEBUG_FS
598 ---help---
599 Select this option to expose the IOSF sideband access registers (MCR,
600 MDR, MCRX) through debugfs to write and read register information from
601 different units on the SoC. This is most useful for obtaining device
602 state information for debug and analysis. As this is a general access
603 mechanism, users of this option would have specific knowledge of the
604 device they want to access.
605
606 If you don't require the option or are in doubt, say N.
607
608 config X86_RDC321X
609 bool "RDC R-321x SoC"
610 depends on X86_32
611 depends on X86_EXTENDED_PLATFORM
612 select M486
613 select X86_REBOOTFIXUPS
614 ---help---
615 This option is needed for RDC R-321x system-on-chip, also known
616 as R-8610-(G).
617 If you don't have one of these chips, you should say N here.
618
619 config X86_32_NON_STANDARD
620 bool "Support non-standard 32-bit SMP architectures"
621 depends on X86_32 && SMP
622 depends on X86_EXTENDED_PLATFORM
623 ---help---
624 This option compiles in the bigsmp and STA2X11 default
625 subarchitectures. It is intended for a generic binary
626 kernel. If you select them all, kernel will probe it one by
627 one and will fallback to default.
628
629 # Alphabetically sorted list of Non standard 32 bit platforms
630
631 config X86_SUPPORTS_MEMORY_FAILURE
632 def_bool y
633 # MCE code calls memory_failure():
634 depends on X86_MCE
635 # On 32-bit this adds too big of NODES_SHIFT and we run out of page flags:
636 # On 32-bit SPARSEMEM adds too big of SECTIONS_WIDTH:
637 depends on X86_64 || !SPARSEMEM
638 select ARCH_SUPPORTS_MEMORY_FAILURE
639
640 config STA2X11
641 bool "STA2X11 Companion Chip Support"
642 depends on X86_32_NON_STANDARD && PCI
643 select X86_DEV_DMA_OPS
644 select X86_DMA_REMAP
645 select SWIOTLB
646 select MFD_STA2X11
647 select ARCH_REQUIRE_GPIOLIB
648 default n
649 ---help---
650 This adds support for boards based on the STA2X11 IO-Hub,
651 a.k.a. "ConneXt". The chip is used in place of the standard
652 PC chipset, so all "standard" peripherals are missing. If this
653 option is selected the kernel will still be able to boot on
654 standard PC machines.
655
656 config X86_32_IRIS
657 tristate "Eurobraille/Iris poweroff module"
658 depends on X86_32
659 ---help---
660 The Iris machines from EuroBraille do not have APM or ACPI support
661 to shut themselves down properly. A special I/O sequence is
662 needed to do so, which is what this module does at
663 kernel shutdown.
664
665 This is only for Iris machines from EuroBraille.
666
667 If unused, say N.
668
669 config SCHED_OMIT_FRAME_POINTER
670 def_bool y
671 prompt "Single-depth WCHAN output"
672 depends on X86
673 ---help---
674 Calculate simpler /proc/<PID>/wchan values. If this option
675 is disabled then wchan values will recurse back to the
676 caller function. This provides more accurate wchan values,
677 at the expense of slightly more scheduling overhead.
678
679 If in doubt, say "Y".
680
681 menuconfig HYPERVISOR_GUEST
682 bool "Linux guest support"
683 ---help---
684 Say Y here to enable options for running Linux under various hyper-
685 visors. This option enables basic hypervisor detection and platform
686 setup.
687
688 If you say N, all options in this submenu will be skipped and
689 disabled, and Linux guest support won't be built in.
690
691 if HYPERVISOR_GUEST
692
693 config PARAVIRT
694 bool "Enable paravirtualization code"
695 ---help---
696 This changes the kernel so it can modify itself when it is run
697 under a hypervisor, potentially improving performance significantly
698 over full virtualization. However, when run without a hypervisor
699 the kernel is theoretically slower and slightly larger.
700
701 config PARAVIRT_DEBUG
702 bool "paravirt-ops debugging"
703 depends on PARAVIRT && DEBUG_KERNEL
704 ---help---
705 Enable to debug paravirt_ops internals. Specifically, BUG if
706 a paravirt_op is missing when it is called.
707
708 config PARAVIRT_SPINLOCKS
709 bool "Paravirtualization layer for spinlocks"
710 depends on PARAVIRT && SMP
711 select UNINLINE_SPIN_UNLOCK if !QUEUED_SPINLOCKS
712 ---help---
713 Paravirtualized spinlocks allow a pvops backend to replace the
714 spinlock implementation with something virtualization-friendly
715 (for example, block the virtual CPU rather than spinning).
716
717 It has a minimal impact on native kernels and gives a nice performance
718 benefit on paravirtualized KVM / Xen kernels.
719
720 If you are unsure how to answer this question, answer Y.
721
722 config QUEUED_LOCK_STAT
723 bool "Paravirt queued spinlock statistics"
724 depends on PARAVIRT_SPINLOCKS && DEBUG_FS && QUEUED_SPINLOCKS
725 ---help---
726 Enable the collection of statistical data on the slowpath
727 behavior of paravirtualized queued spinlocks and report
728 them on debugfs.
729
730 source "arch/x86/xen/Kconfig"
731
732 config KVM_GUEST
733 bool "KVM Guest support (including kvmclock)"
734 depends on PARAVIRT
735 select PARAVIRT_CLOCK
736 default y
737 ---help---
738 This option enables various optimizations for running under the KVM
739 hypervisor. It includes a paravirtualized clock, so that instead
740 of relying on a PIT (or probably other) emulation by the
741 underlying device model, the host provides the guest with
742 timing infrastructure such as time of day, and system time
743
744 config KVM_DEBUG_FS
745 bool "Enable debug information for KVM Guests in debugfs"
746 depends on KVM_GUEST && DEBUG_FS
747 default n
748 ---help---
749 This option enables collection of various statistics for KVM guest.
750 Statistics are displayed in debugfs filesystem. Enabling this option
751 may incur significant overhead.
752
753 source "arch/x86/lguest/Kconfig"
754
755 config PARAVIRT_TIME_ACCOUNTING
756 bool "Paravirtual steal time accounting"
757 depends on PARAVIRT
758 default n
759 ---help---
760 Select this option to enable fine granularity task steal time
761 accounting. Time spent executing other tasks in parallel with
762 the current vCPU is discounted from the vCPU power. To account for
763 that, there can be a small performance impact.
764
765 If in doubt, say N here.
766
767 config PARAVIRT_CLOCK
768 bool
769
770 endif #HYPERVISOR_GUEST
771
772 config NO_BOOTMEM
773 def_bool y
774
775 source "arch/x86/Kconfig.cpu"
776
777 config HPET_TIMER
778 def_bool X86_64
779 prompt "HPET Timer Support" if X86_32
780 ---help---
781 Use the IA-PC HPET (High Precision Event Timer) to manage
782 time in preference to the PIT and RTC, if a HPET is
783 present.
784 HPET is the next generation timer replacing legacy 8254s.
785 The HPET provides a stable time base on SMP
786 systems, unlike the TSC, but it is more expensive to access,
787 as it is off-chip. The interface used is documented
788 in the HPET spec, revision 1.
789
790 You can safely choose Y here. However, HPET will only be
791 activated if the platform and the BIOS support this feature.
792 Otherwise the 8254 will be used for timing services.
793
794 Choose N to continue using the legacy 8254 timer.
795
796 config HPET_EMULATE_RTC
797 def_bool y
798 depends on HPET_TIMER && (RTC=y || RTC=m || RTC_DRV_CMOS=m || RTC_DRV_CMOS=y)
799
800 config APB_TIMER
801 def_bool y if X86_INTEL_MID
802 prompt "Intel MID APB Timer Support" if X86_INTEL_MID
803 select DW_APB_TIMER
804 depends on X86_INTEL_MID && SFI
805 help
806 APB timer is the replacement for 8254, HPET on X86 MID platforms.
807 The APBT provides a stable time base on SMP
808 systems, unlike the TSC, but it is more expensive to access,
809 as it is off-chip. APB timers are always running regardless of CPU
810 C states, they are used as per CPU clockevent device when possible.
811
812 # Mark as expert because too many people got it wrong.
813 # The code disables itself when not needed.
814 config DMI
815 default y
816 select DMI_SCAN_MACHINE_NON_EFI_FALLBACK
817 bool "Enable DMI scanning" if EXPERT
818 ---help---
819 Enabled scanning of DMI to identify machine quirks. Say Y
820 here unless you have verified that your setup is not
821 affected by entries in the DMI blacklist. Required by PNP
822 BIOS code.
823
824 config GART_IOMMU
825 bool "Old AMD GART IOMMU support"
826 select SWIOTLB
827 depends on X86_64 && PCI && AMD_NB
828 ---help---
829 Provides a driver for older AMD Athlon64/Opteron/Turion/Sempron
830 GART based hardware IOMMUs.
831
832 The GART supports full DMA access for devices with 32-bit access
833 limitations, on systems with more than 3 GB. This is usually needed
834 for USB, sound, many IDE/SATA chipsets and some other devices.
835
836 Newer systems typically have a modern AMD IOMMU, supported via
837 the CONFIG_AMD_IOMMU=y config option.
838
839 In normal configurations this driver is only active when needed:
840 there's more than 3 GB of memory and the system contains a
841 32-bit limited device.
842
843 If unsure, say Y.
844
845 config CALGARY_IOMMU
846 bool "IBM Calgary IOMMU support"
847 select SWIOTLB
848 depends on X86_64 && PCI
849 ---help---
850 Support for hardware IOMMUs in IBM's xSeries x366 and x460
851 systems. Needed to run systems with more than 3GB of memory
852 properly with 32-bit PCI devices that do not support DAC
853 (Double Address Cycle). Calgary also supports bus level
854 isolation, where all DMAs pass through the IOMMU. This
855 prevents them from going anywhere except their intended
856 destination. This catches hard-to-find kernel bugs and
857 mis-behaving drivers and devices that do not use the DMA-API
858 properly to set up their DMA buffers. The IOMMU can be
859 turned off at boot time with the iommu=off parameter.
860 Normally the kernel will make the right choice by itself.
861 If unsure, say Y.
862
863 config CALGARY_IOMMU_ENABLED_BY_DEFAULT
864 def_bool y
865 prompt "Should Calgary be enabled by default?"
866 depends on CALGARY_IOMMU
867 ---help---
868 Should Calgary be enabled by default? if you choose 'y', Calgary
869 will be used (if it exists). If you choose 'n', Calgary will not be
870 used even if it exists. If you choose 'n' and would like to use
871 Calgary anyway, pass 'iommu=calgary' on the kernel command line.
872 If unsure, say Y.
873
874 # need this always selected by IOMMU for the VIA workaround
875 config SWIOTLB
876 def_bool y if X86_64
877 ---help---
878 Support for software bounce buffers used on x86-64 systems
879 which don't have a hardware IOMMU. Using this PCI devices
880 which can only access 32-bits of memory can be used on systems
881 with more than 3 GB of memory.
882 If unsure, say Y.
883
884 config IOMMU_HELPER
885 def_bool y
886 depends on CALGARY_IOMMU || GART_IOMMU || SWIOTLB || AMD_IOMMU
887
888 config MAXSMP
889 bool "Enable Maximum number of SMP Processors and NUMA Nodes"
890 depends on X86_64 && SMP && DEBUG_KERNEL
891 select CPUMASK_OFFSTACK
892 ---help---
893 Enable maximum number of CPUS and NUMA Nodes for this architecture.
894 If unsure, say N.
895
896 config NR_CPUS
897 int "Maximum number of CPUs" if SMP && !MAXSMP
898 range 2 8 if SMP && X86_32 && !X86_BIGSMP
899 range 2 512 if SMP && !MAXSMP && !CPUMASK_OFFSTACK
900 range 2 8192 if SMP && !MAXSMP && CPUMASK_OFFSTACK && X86_64
901 default "1" if !SMP
902 default "8192" if MAXSMP
903 default "32" if SMP && X86_BIGSMP
904 default "8" if SMP && X86_32
905 default "64" if SMP
906 ---help---
907 This allows you to specify the maximum number of CPUs which this
908 kernel will support. If CPUMASK_OFFSTACK is enabled, the maximum
909 supported value is 8192, otherwise the maximum value is 512. The
910 minimum value which makes sense is 2.
911
912 This is purely to save memory - each supported CPU adds
913 approximately eight kilobytes to the kernel image.
914
915 config SCHED_SMT
916 bool "SMT (Hyperthreading) scheduler support"
917 depends on SMP
918 ---help---
919 SMT scheduler support improves the CPU scheduler's decision making
920 when dealing with Intel Pentium 4 chips with HyperThreading at a
921 cost of slightly increased overhead in some places. If unsure say
922 N here.
923
924 config SCHED_MC
925 def_bool y
926 prompt "Multi-core scheduler support"
927 depends on SMP
928 ---help---
929 Multi-core scheduler support improves the CPU scheduler's decision
930 making when dealing with multi-core CPU chips at a cost of slightly
931 increased overhead in some places. If unsure say N here.
932
933 source "kernel/Kconfig.preempt"
934
935 config UP_LATE_INIT
936 def_bool y
937 depends on !SMP && X86_LOCAL_APIC
938
939 config X86_UP_APIC
940 bool "Local APIC support on uniprocessors" if !PCI_MSI
941 default PCI_MSI
942 depends on X86_32 && !SMP && !X86_32_NON_STANDARD
943 ---help---
944 A local APIC (Advanced Programmable Interrupt Controller) is an
945 integrated interrupt controller in the CPU. If you have a single-CPU
946 system which has a processor with a local APIC, you can say Y here to
947 enable and use it. If you say Y here even though your machine doesn't
948 have a local APIC, then the kernel will still run with no slowdown at
949 all. The local APIC supports CPU-generated self-interrupts (timer,
950 performance counters), and the NMI watchdog which detects hard
951 lockups.
952
953 config X86_UP_IOAPIC
954 bool "IO-APIC support on uniprocessors"
955 depends on X86_UP_APIC
956 ---help---
957 An IO-APIC (I/O Advanced Programmable Interrupt Controller) is an
958 SMP-capable replacement for PC-style interrupt controllers. Most
959 SMP systems and many recent uniprocessor systems have one.
960
961 If you have a single-CPU system with an IO-APIC, you can say Y here
962 to use it. If you say Y here even though your machine doesn't have
963 an IO-APIC, then the kernel will still run with no slowdown at all.
964
965 config X86_LOCAL_APIC
966 def_bool y
967 depends on X86_64 || SMP || X86_32_NON_STANDARD || X86_UP_APIC || PCI_MSI
968 select IRQ_DOMAIN_HIERARCHY
969 select PCI_MSI_IRQ_DOMAIN if PCI_MSI
970
971 config X86_IO_APIC
972 def_bool y
973 depends on X86_LOCAL_APIC || X86_UP_IOAPIC
974
975 config X86_REROUTE_FOR_BROKEN_BOOT_IRQS
976 bool "Reroute for broken boot IRQs"
977 depends on X86_IO_APIC
978 ---help---
979 This option enables a workaround that fixes a source of
980 spurious interrupts. This is recommended when threaded
981 interrupt handling is used on systems where the generation of
982 superfluous "boot interrupts" cannot be disabled.
983
984 Some chipsets generate a legacy INTx "boot IRQ" when the IRQ
985 entry in the chipset's IO-APIC is masked (as, e.g. the RT
986 kernel does during interrupt handling). On chipsets where this
987 boot IRQ generation cannot be disabled, this workaround keeps
988 the original IRQ line masked so that only the equivalent "boot
989 IRQ" is delivered to the CPUs. The workaround also tells the
990 kernel to set up the IRQ handler on the boot IRQ line. In this
991 way only one interrupt is delivered to the kernel. Otherwise
992 the spurious second interrupt may cause the kernel to bring
993 down (vital) interrupt lines.
994
995 Only affects "broken" chipsets. Interrupt sharing may be
996 increased on these systems.
997
998 config X86_MCE
999 bool "Machine Check / overheating reporting"
1000 select GENERIC_ALLOCATOR
1001 default y
1002 ---help---
1003 Machine Check support allows the processor to notify the
1004 kernel if it detects a problem (e.g. overheating, data corruption).
1005 The action the kernel takes depends on the severity of the problem,
1006 ranging from warning messages to halting the machine.
1007
1008 config X86_MCE_INTEL
1009 def_bool y
1010 prompt "Intel MCE features"
1011 depends on X86_MCE && X86_LOCAL_APIC
1012 ---help---
1013 Additional support for intel specific MCE features such as
1014 the thermal monitor.
1015
1016 config X86_MCE_AMD
1017 def_bool y
1018 prompt "AMD MCE features"
1019 depends on X86_MCE && X86_LOCAL_APIC
1020 ---help---
1021 Additional support for AMD specific MCE features such as
1022 the DRAM Error Threshold.
1023
1024 config X86_ANCIENT_MCE
1025 bool "Support for old Pentium 5 / WinChip machine checks"
1026 depends on X86_32 && X86_MCE
1027 ---help---
1028 Include support for machine check handling on old Pentium 5 or WinChip
1029 systems. These typically need to be enabled explicitly on the command
1030 line.
1031
1032 config X86_MCE_THRESHOLD
1033 depends on X86_MCE_AMD || X86_MCE_INTEL
1034 def_bool y
1035
1036 config X86_MCE_INJECT
1037 depends on X86_MCE
1038 tristate "Machine check injector support"
1039 ---help---
1040 Provide support for injecting machine checks for testing purposes.
1041 If you don't know what a machine check is and you don't do kernel
1042 QA it is safe to say n.
1043
1044 config X86_THERMAL_VECTOR
1045 def_bool y
1046 depends on X86_MCE_INTEL
1047
1048 config X86_LEGACY_VM86
1049 bool "Legacy VM86 support"
1050 default n
1051 depends on X86_32
1052 ---help---
1053 This option allows user programs to put the CPU into V8086
1054 mode, which is an 80286-era approximation of 16-bit real mode.
1055
1056 Some very old versions of X and/or vbetool require this option
1057 for user mode setting. Similarly, DOSEMU will use it if
1058 available to accelerate real mode DOS programs. However, any
1059 recent version of DOSEMU, X, or vbetool should be fully
1060 functional even without kernel VM86 support, as they will all
1061 fall back to software emulation. Nevertheless, if you are using
1062 a 16-bit DOS program where 16-bit performance matters, vm86
1063 mode might be faster than emulation and you might want to
1064 enable this option.
1065
1066 Note that any app that works on a 64-bit kernel is unlikely to
1067 need this option, as 64-bit kernels don't, and can't, support
1068 V8086 mode. This option is also unrelated to 16-bit protected
1069 mode and is not needed to run most 16-bit programs under Wine.
1070
1071 Enabling this option increases the complexity of the kernel
1072 and slows down exception handling a tiny bit.
1073
1074 If unsure, say N here.
1075
1076 config VM86
1077 bool
1078 default X86_LEGACY_VM86
1079
1080 config X86_16BIT
1081 bool "Enable support for 16-bit segments" if EXPERT
1082 default y
1083 depends on MODIFY_LDT_SYSCALL
1084 ---help---
1085 This option is required by programs like Wine to run 16-bit
1086 protected mode legacy code on x86 processors. Disabling
1087 this option saves about 300 bytes on i386, or around 6K text
1088 plus 16K runtime memory on x86-64,
1089
1090 config X86_ESPFIX32
1091 def_bool y
1092 depends on X86_16BIT && X86_32
1093
1094 config X86_ESPFIX64
1095 def_bool y
1096 depends on X86_16BIT && X86_64
1097
1098 config X86_VSYSCALL_EMULATION
1099 bool "Enable vsyscall emulation" if EXPERT
1100 default y
1101 depends on X86_64
1102 ---help---
1103 This enables emulation of the legacy vsyscall page. Disabling
1104 it is roughly equivalent to booting with vsyscall=none, except
1105 that it will also disable the helpful warning if a program
1106 tries to use a vsyscall. With this option set to N, offending
1107 programs will just segfault, citing addresses of the form
1108 0xffffffffff600?00.
1109
1110 This option is required by many programs built before 2013, and
1111 care should be used even with newer programs if set to N.
1112
1113 Disabling this option saves about 7K of kernel size and
1114 possibly 4K of additional runtime pagetable memory.
1115
1116 config TOSHIBA
1117 tristate "Toshiba Laptop support"
1118 depends on X86_32
1119 ---help---
1120 This adds a driver to safely access the System Management Mode of
1121 the CPU on Toshiba portables with a genuine Toshiba BIOS. It does
1122 not work on models with a Phoenix BIOS. The System Management Mode
1123 is used to set the BIOS and power saving options on Toshiba portables.
1124
1125 For information on utilities to make use of this driver see the
1126 Toshiba Linux utilities web site at:
1127 <http://www.buzzard.org.uk/toshiba/>.
1128
1129 Say Y if you intend to run this kernel on a Toshiba portable.
1130 Say N otherwise.
1131
1132 config I8K
1133 tristate "Dell i8k legacy laptop support"
1134 select HWMON
1135 select SENSORS_DELL_SMM
1136 ---help---
1137 This option enables legacy /proc/i8k userspace interface in hwmon
1138 dell-smm-hwmon driver. Character file /proc/i8k reports bios version,
1139 temperature and allows controlling fan speeds of Dell laptops via
1140 System Management Mode. For old Dell laptops (like Dell Inspiron 8000)
1141 it reports also power and hotkey status. For fan speed control is
1142 needed userspace package i8kutils.
1143
1144 Say Y if you intend to run this kernel on old Dell laptops or want to
1145 use userspace package i8kutils.
1146 Say N otherwise.
1147
1148 config X86_REBOOTFIXUPS
1149 bool "Enable X86 board specific fixups for reboot"
1150 depends on X86_32
1151 ---help---
1152 This enables chipset and/or board specific fixups to be done
1153 in order to get reboot to work correctly. This is only needed on
1154 some combinations of hardware and BIOS. The symptom, for which
1155 this config is intended, is when reboot ends with a stalled/hung
1156 system.
1157
1158 Currently, the only fixup is for the Geode machines using
1159 CS5530A and CS5536 chipsets and the RDC R-321x SoC.
1160
1161 Say Y if you want to enable the fixup. Currently, it's safe to
1162 enable this option even if you don't need it.
1163 Say N otherwise.
1164
1165 config MICROCODE
1166 bool "CPU microcode loading support"
1167 default y
1168 depends on CPU_SUP_AMD || CPU_SUP_INTEL
1169 select FW_LOADER
1170 ---help---
1171 If you say Y here, you will be able to update the microcode on
1172 Intel and AMD processors. The Intel support is for the IA32 family,
1173 e.g. Pentium Pro, Pentium II, Pentium III, Pentium 4, Xeon etc. The
1174 AMD support is for families 0x10 and later. You will obviously need
1175 the actual microcode binary data itself which is not shipped with
1176 the Linux kernel.
1177
1178 The preferred method to load microcode from a detached initrd is described
1179 in Documentation/x86/early-microcode.txt. For that you need to enable
1180 CONFIG_BLK_DEV_INITRD in order for the loader to be able to scan the
1181 initrd for microcode blobs.
1182
1183 In addition, you can build-in the microcode into the kernel. For that you
1184 need to enable FIRMWARE_IN_KERNEL and add the vendor-supplied microcode
1185 to the CONFIG_EXTRA_FIRMWARE config option.
1186
1187 config MICROCODE_INTEL
1188 bool "Intel microcode loading support"
1189 depends on MICROCODE
1190 default MICROCODE
1191 select FW_LOADER
1192 ---help---
1193 This options enables microcode patch loading support for Intel
1194 processors.
1195
1196 For the current Intel microcode data package go to
1197 <https://downloadcenter.intel.com> and search for
1198 'Linux Processor Microcode Data File'.
1199
1200 config MICROCODE_AMD
1201 bool "AMD microcode loading support"
1202 depends on MICROCODE
1203 select FW_LOADER
1204 ---help---
1205 If you select this option, microcode patch loading support for AMD
1206 processors will be enabled.
1207
1208 config MICROCODE_OLD_INTERFACE
1209 def_bool y
1210 depends on MICROCODE
1211
1212 config X86_MSR
1213 tristate "/dev/cpu/*/msr - Model-specific register support"
1214 ---help---
1215 This device gives privileged processes access to the x86
1216 Model-Specific Registers (MSRs). It is a character device with
1217 major 202 and minors 0 to 31 for /dev/cpu/0/msr to /dev/cpu/31/msr.
1218 MSR accesses are directed to a specific CPU on multi-processor
1219 systems.
1220
1221 config X86_CPUID
1222 tristate "/dev/cpu/*/cpuid - CPU information support"
1223 ---help---
1224 This device gives processes access to the x86 CPUID instruction to
1225 be executed on a specific processor. It is a character device
1226 with major 203 and minors 0 to 31 for /dev/cpu/0/cpuid to
1227 /dev/cpu/31/cpuid.
1228
1229 choice
1230 prompt "High Memory Support"
1231 default HIGHMEM4G
1232 depends on X86_32
1233
1234 config NOHIGHMEM
1235 bool "off"
1236 ---help---
1237 Linux can use up to 64 Gigabytes of physical memory on x86 systems.
1238 However, the address space of 32-bit x86 processors is only 4
1239 Gigabytes large. That means that, if you have a large amount of
1240 physical memory, not all of it can be "permanently mapped" by the
1241 kernel. The physical memory that's not permanently mapped is called
1242 "high memory".
1243
1244 If you are compiling a kernel which will never run on a machine with
1245 more than 1 Gigabyte total physical RAM, answer "off" here (default
1246 choice and suitable for most users). This will result in a "3GB/1GB"
1247 split: 3GB are mapped so that each process sees a 3GB virtual memory
1248 space and the remaining part of the 4GB virtual memory space is used
1249 by the kernel to permanently map as much physical memory as
1250 possible.
1251
1252 If the machine has between 1 and 4 Gigabytes physical RAM, then
1253 answer "4GB" here.
1254
1255 If more than 4 Gigabytes is used then answer "64GB" here. This
1256 selection turns Intel PAE (Physical Address Extension) mode on.
1257 PAE implements 3-level paging on IA32 processors. PAE is fully
1258 supported by Linux, PAE mode is implemented on all recent Intel
1259 processors (Pentium Pro and better). NOTE: If you say "64GB" here,
1260 then the kernel will not boot on CPUs that don't support PAE!
1261
1262 The actual amount of total physical memory will either be
1263 auto detected or can be forced by using a kernel command line option
1264 such as "mem=256M". (Try "man bootparam" or see the documentation of
1265 your boot loader (lilo or loadlin) about how to pass options to the
1266 kernel at boot time.)
1267
1268 If unsure, say "off".
1269
1270 config HIGHMEM4G
1271 bool "4GB"
1272 ---help---
1273 Select this if you have a 32-bit processor and between 1 and 4
1274 gigabytes of physical RAM.
1275
1276 config HIGHMEM64G
1277 bool "64GB"
1278 depends on !M486
1279 select X86_PAE
1280 ---help---
1281 Select this if you have a 32-bit processor and more than 4
1282 gigabytes of physical RAM.
1283
1284 endchoice
1285
1286 choice
1287 prompt "Memory split" if EXPERT
1288 default VMSPLIT_3G
1289 depends on X86_32
1290 ---help---
1291 Select the desired split between kernel and user memory.
1292
1293 If the address range available to the kernel is less than the
1294 physical memory installed, the remaining memory will be available
1295 as "high memory". Accessing high memory is a little more costly
1296 than low memory, as it needs to be mapped into the kernel first.
1297 Note that increasing the kernel address space limits the range
1298 available to user programs, making the address space there
1299 tighter. Selecting anything other than the default 3G/1G split
1300 will also likely make your kernel incompatible with binary-only
1301 kernel modules.
1302
1303 If you are not absolutely sure what you are doing, leave this
1304 option alone!
1305
1306 config VMSPLIT_3G
1307 bool "3G/1G user/kernel split"
1308 config VMSPLIT_3G_OPT
1309 depends on !X86_PAE
1310 bool "3G/1G user/kernel split (for full 1G low memory)"
1311 config VMSPLIT_2G
1312 bool "2G/2G user/kernel split"
1313 config VMSPLIT_2G_OPT
1314 depends on !X86_PAE
1315 bool "2G/2G user/kernel split (for full 2G low memory)"
1316 config VMSPLIT_1G
1317 bool "1G/3G user/kernel split"
1318 endchoice
1319
1320 config PAGE_OFFSET
1321 hex
1322 default 0xB0000000 if VMSPLIT_3G_OPT
1323 default 0x80000000 if VMSPLIT_2G
1324 default 0x78000000 if VMSPLIT_2G_OPT
1325 default 0x40000000 if VMSPLIT_1G
1326 default 0xC0000000
1327 depends on X86_32
1328
1329 config HIGHMEM
1330 def_bool y
1331 depends on X86_32 && (HIGHMEM64G || HIGHMEM4G)
1332
1333 config X86_PAE
1334 bool "PAE (Physical Address Extension) Support"
1335 depends on X86_32 && !HIGHMEM4G
1336 select SWIOTLB
1337 ---help---
1338 PAE is required for NX support, and furthermore enables
1339 larger swapspace support for non-overcommit purposes. It
1340 has the cost of more pagetable lookup overhead, and also
1341 consumes more pagetable space per process.
1342
1343 config ARCH_PHYS_ADDR_T_64BIT
1344 def_bool y
1345 depends on X86_64 || X86_PAE
1346
1347 config ARCH_DMA_ADDR_T_64BIT
1348 def_bool y
1349 depends on X86_64 || HIGHMEM64G
1350
1351 config X86_DIRECT_GBPAGES
1352 def_bool y
1353 depends on X86_64 && !DEBUG_PAGEALLOC && !KMEMCHECK
1354 ---help---
1355 Certain kernel features effectively disable kernel
1356 linear 1 GB mappings (even if the CPU otherwise
1357 supports them), so don't confuse the user by printing
1358 that we have them enabled.
1359
1360 # Common NUMA Features
1361 config NUMA
1362 bool "Numa Memory Allocation and Scheduler Support"
1363 depends on SMP
1364 depends on X86_64 || (X86_32 && HIGHMEM64G && X86_BIGSMP)
1365 default y if X86_BIGSMP
1366 ---help---
1367 Enable NUMA (Non Uniform Memory Access) support.
1368
1369 The kernel will try to allocate memory used by a CPU on the
1370 local memory controller of the CPU and add some more
1371 NUMA awareness to the kernel.
1372
1373 For 64-bit this is recommended if the system is Intel Core i7
1374 (or later), AMD Opteron, or EM64T NUMA.
1375
1376 For 32-bit this is only needed if you boot a 32-bit
1377 kernel on a 64-bit NUMA platform.
1378
1379 Otherwise, you should say N.
1380
1381 config AMD_NUMA
1382 def_bool y
1383 prompt "Old style AMD Opteron NUMA detection"
1384 depends on X86_64 && NUMA && PCI
1385 ---help---
1386 Enable AMD NUMA node topology detection. You should say Y here if
1387 you have a multi processor AMD system. This uses an old method to
1388 read the NUMA configuration directly from the builtin Northbridge
1389 of Opteron. It is recommended to use X86_64_ACPI_NUMA instead,
1390 which also takes priority if both are compiled in.
1391
1392 config X86_64_ACPI_NUMA
1393 def_bool y
1394 prompt "ACPI NUMA detection"
1395 depends on X86_64 && NUMA && ACPI && PCI
1396 select ACPI_NUMA
1397 ---help---
1398 Enable ACPI SRAT based node topology detection.
1399
1400 # Some NUMA nodes have memory ranges that span
1401 # other nodes. Even though a pfn is valid and
1402 # between a node's start and end pfns, it may not
1403 # reside on that node. See memmap_init_zone()
1404 # for details.
1405 config NODES_SPAN_OTHER_NODES
1406 def_bool y
1407 depends on X86_64_ACPI_NUMA
1408
1409 config NUMA_EMU
1410 bool "NUMA emulation"
1411 depends on NUMA
1412 ---help---
1413 Enable NUMA emulation. A flat machine will be split
1414 into virtual nodes when booted with "numa=fake=N", where N is the
1415 number of nodes. This is only useful for debugging.
1416
1417 config NODES_SHIFT
1418 int "Maximum NUMA Nodes (as a power of 2)" if !MAXSMP
1419 range 1 10
1420 default "10" if MAXSMP
1421 default "6" if X86_64
1422 default "3"
1423 depends on NEED_MULTIPLE_NODES
1424 ---help---
1425 Specify the maximum number of NUMA Nodes available on the target
1426 system. Increases memory reserved to accommodate various tables.
1427
1428 config ARCH_HAVE_MEMORY_PRESENT
1429 def_bool y
1430 depends on X86_32 && DISCONTIGMEM
1431
1432 config NEED_NODE_MEMMAP_SIZE
1433 def_bool y
1434 depends on X86_32 && (DISCONTIGMEM || SPARSEMEM)
1435
1436 config ARCH_FLATMEM_ENABLE
1437 def_bool y
1438 depends on X86_32 && !NUMA
1439
1440 config ARCH_DISCONTIGMEM_ENABLE
1441 def_bool y
1442 depends on NUMA && X86_32
1443
1444 config ARCH_DISCONTIGMEM_DEFAULT
1445 def_bool y
1446 depends on NUMA && X86_32
1447
1448 config ARCH_SPARSEMEM_ENABLE
1449 def_bool y
1450 depends on X86_64 || NUMA || X86_32 || X86_32_NON_STANDARD
1451 select SPARSEMEM_STATIC if X86_32
1452 select SPARSEMEM_VMEMMAP_ENABLE if X86_64
1453
1454 config ARCH_SPARSEMEM_DEFAULT
1455 def_bool y
1456 depends on X86_64
1457
1458 config ARCH_SELECT_MEMORY_MODEL
1459 def_bool y
1460 depends on ARCH_SPARSEMEM_ENABLE
1461
1462 config ARCH_MEMORY_PROBE
1463 bool "Enable sysfs memory/probe interface"
1464 depends on X86_64 && MEMORY_HOTPLUG
1465 help
1466 This option enables a sysfs memory/probe interface for testing.
1467 See Documentation/memory-hotplug.txt for more information.
1468 If you are unsure how to answer this question, answer N.
1469
1470 config ARCH_PROC_KCORE_TEXT
1471 def_bool y
1472 depends on X86_64 && PROC_KCORE
1473
1474 config ILLEGAL_POINTER_VALUE
1475 hex
1476 default 0 if X86_32
1477 default 0xdead000000000000 if X86_64
1478
1479 source "mm/Kconfig"
1480
1481 config X86_PMEM_LEGACY_DEVICE
1482 bool
1483
1484 config X86_PMEM_LEGACY
1485 tristate "Support non-standard NVDIMMs and ADR protected memory"
1486 depends on PHYS_ADDR_T_64BIT
1487 depends on BLK_DEV
1488 select X86_PMEM_LEGACY_DEVICE
1489 select LIBNVDIMM
1490 help
1491 Treat memory marked using the non-standard e820 type of 12 as used
1492 by the Intel Sandy Bridge-EP reference BIOS as protected memory.
1493 The kernel will offer these regions to the 'pmem' driver so
1494 they can be used for persistent storage.
1495
1496 Say Y if unsure.
1497
1498 config HIGHPTE
1499 bool "Allocate 3rd-level pagetables from highmem"
1500 depends on HIGHMEM
1501 ---help---
1502 The VM uses one page table entry for each page of physical memory.
1503 For systems with a lot of RAM, this can be wasteful of precious
1504 low memory. Setting this option will put user-space page table
1505 entries in high memory.
1506
1507 config X86_CHECK_BIOS_CORRUPTION
1508 bool "Check for low memory corruption"
1509 ---help---
1510 Periodically check for memory corruption in low memory, which
1511 is suspected to be caused by BIOS. Even when enabled in the
1512 configuration, it is disabled at runtime. Enable it by
1513 setting "memory_corruption_check=1" on the kernel command
1514 line. By default it scans the low 64k of memory every 60
1515 seconds; see the memory_corruption_check_size and
1516 memory_corruption_check_period parameters in
1517 Documentation/kernel-parameters.txt to adjust this.
1518
1519 When enabled with the default parameters, this option has
1520 almost no overhead, as it reserves a relatively small amount
1521 of memory and scans it infrequently. It both detects corruption
1522 and prevents it from affecting the running system.
1523
1524 It is, however, intended as a diagnostic tool; if repeatable
1525 BIOS-originated corruption always affects the same memory,
1526 you can use memmap= to prevent the kernel from using that
1527 memory.
1528
1529 config X86_BOOTPARAM_MEMORY_CORRUPTION_CHECK
1530 bool "Set the default setting of memory_corruption_check"
1531 depends on X86_CHECK_BIOS_CORRUPTION
1532 default y
1533 ---help---
1534 Set whether the default state of memory_corruption_check is
1535 on or off.
1536
1537 config X86_RESERVE_LOW
1538 int "Amount of low memory, in kilobytes, to reserve for the BIOS"
1539 default 64
1540 range 4 640
1541 ---help---
1542 Specify the amount of low memory to reserve for the BIOS.
1543
1544 The first page contains BIOS data structures that the kernel
1545 must not use, so that page must always be reserved.
1546
1547 By default we reserve the first 64K of physical RAM, as a
1548 number of BIOSes are known to corrupt that memory range
1549 during events such as suspend/resume or monitor cable
1550 insertion, so it must not be used by the kernel.
1551
1552 You can set this to 4 if you are absolutely sure that you
1553 trust the BIOS to get all its memory reservations and usages
1554 right. If you know your BIOS have problems beyond the
1555 default 64K area, you can set this to 640 to avoid using the
1556 entire low memory range.
1557
1558 If you have doubts about the BIOS (e.g. suspend/resume does
1559 not work or there's kernel crashes after certain hardware
1560 hotplug events) then you might want to enable
1561 X86_CHECK_BIOS_CORRUPTION=y to allow the kernel to check
1562 typical corruption patterns.
1563
1564 Leave this to the default value of 64 if you are unsure.
1565
1566 config MATH_EMULATION
1567 bool
1568 depends on MODIFY_LDT_SYSCALL
1569 prompt "Math emulation" if X86_32
1570 ---help---
1571 Linux can emulate a math coprocessor (used for floating point
1572 operations) if you don't have one. 486DX and Pentium processors have
1573 a math coprocessor built in, 486SX and 386 do not, unless you added
1574 a 487DX or 387, respectively. (The messages during boot time can
1575 give you some hints here ["man dmesg"].) Everyone needs either a
1576 coprocessor or this emulation.
1577
1578 If you don't have a math coprocessor, you need to say Y here; if you
1579 say Y here even though you have a coprocessor, the coprocessor will
1580 be used nevertheless. (This behavior can be changed with the kernel
1581 command line option "no387", which comes handy if your coprocessor
1582 is broken. Try "man bootparam" or see the documentation of your boot
1583 loader (lilo or loadlin) about how to pass options to the kernel at
1584 boot time.) This means that it is a good idea to say Y here if you
1585 intend to use this kernel on different machines.
1586
1587 More information about the internals of the Linux math coprocessor
1588 emulation can be found in <file:arch/x86/math-emu/README>.
1589
1590 If you are not sure, say Y; apart from resulting in a 66 KB bigger
1591 kernel, it won't hurt.
1592
1593 config MTRR
1594 def_bool y
1595 prompt "MTRR (Memory Type Range Register) support" if EXPERT
1596 ---help---
1597 On Intel P6 family processors (Pentium Pro, Pentium II and later)
1598 the Memory Type Range Registers (MTRRs) may be used to control
1599 processor access to memory ranges. This is most useful if you have
1600 a video (VGA) card on a PCI or AGP bus. Enabling write-combining
1601 allows bus write transfers to be combined into a larger transfer
1602 before bursting over the PCI/AGP bus. This can increase performance
1603 of image write operations 2.5 times or more. Saying Y here creates a
1604 /proc/mtrr file which may be used to manipulate your processor's
1605 MTRRs. Typically the X server should use this.
1606
1607 This code has a reasonably generic interface so that similar
1608 control registers on other processors can be easily supported
1609 as well:
1610
1611 The Cyrix 6x86, 6x86MX and M II processors have Address Range
1612 Registers (ARRs) which provide a similar functionality to MTRRs. For
1613 these, the ARRs are used to emulate the MTRRs.
1614 The AMD K6-2 (stepping 8 and above) and K6-3 processors have two
1615 MTRRs. The Centaur C6 (WinChip) has 8 MCRs, allowing
1616 write-combining. All of these processors are supported by this code
1617 and it makes sense to say Y here if you have one of them.
1618
1619 Saying Y here also fixes a problem with buggy SMP BIOSes which only
1620 set the MTRRs for the boot CPU and not for the secondary CPUs. This
1621 can lead to all sorts of problems, so it's good to say Y here.
1622
1623 You can safely say Y even if your machine doesn't have MTRRs, you'll
1624 just add about 9 KB to your kernel.
1625
1626 See <file:Documentation/x86/mtrr.txt> for more information.
1627
1628 config MTRR_SANITIZER
1629 def_bool y
1630 prompt "MTRR cleanup support"
1631 depends on MTRR
1632 ---help---
1633 Convert MTRR layout from continuous to discrete, so X drivers can
1634 add writeback entries.
1635
1636 Can be disabled with disable_mtrr_cleanup on the kernel command line.
1637 The largest mtrr entry size for a continuous block can be set with
1638 mtrr_chunk_size.
1639
1640 If unsure, say Y.
1641
1642 config MTRR_SANITIZER_ENABLE_DEFAULT
1643 int "MTRR cleanup enable value (0-1)"
1644 range 0 1
1645 default "0"
1646 depends on MTRR_SANITIZER
1647 ---help---
1648 Enable mtrr cleanup default value
1649
1650 config MTRR_SANITIZER_SPARE_REG_NR_DEFAULT
1651 int "MTRR cleanup spare reg num (0-7)"
1652 range 0 7
1653 default "1"
1654 depends on MTRR_SANITIZER
1655 ---help---
1656 mtrr cleanup spare entries default, it can be changed via
1657 mtrr_spare_reg_nr=N on the kernel command line.
1658
1659 config X86_PAT
1660 def_bool y
1661 prompt "x86 PAT support" if EXPERT
1662 depends on MTRR
1663 ---help---
1664 Use PAT attributes to setup page level cache control.
1665
1666 PATs are the modern equivalents of MTRRs and are much more
1667 flexible than MTRRs.
1668
1669 Say N here if you see bootup problems (boot crash, boot hang,
1670 spontaneous reboots) or a non-working video driver.
1671
1672 If unsure, say Y.
1673
1674 config ARCH_USES_PG_UNCACHED
1675 def_bool y
1676 depends on X86_PAT
1677
1678 config ARCH_RANDOM
1679 def_bool y
1680 prompt "x86 architectural random number generator" if EXPERT
1681 ---help---
1682 Enable the x86 architectural RDRAND instruction
1683 (Intel Bull Mountain technology) to generate random numbers.
1684 If supported, this is a high bandwidth, cryptographically
1685 secure hardware random number generator.
1686
1687 config X86_SMAP
1688 def_bool y
1689 prompt "Supervisor Mode Access Prevention" if EXPERT
1690 ---help---
1691 Supervisor Mode Access Prevention (SMAP) is a security
1692 feature in newer Intel processors. There is a small
1693 performance cost if this enabled and turned on; there is
1694 also a small increase in the kernel size if this is enabled.
1695
1696 If unsure, say Y.
1697
1698 config X86_INTEL_MPX
1699 prompt "Intel MPX (Memory Protection Extensions)"
1700 def_bool n
1701 depends on CPU_SUP_INTEL
1702 ---help---
1703 MPX provides hardware features that can be used in
1704 conjunction with compiler-instrumented code to check
1705 memory references. It is designed to detect buffer
1706 overflow or underflow bugs.
1707
1708 This option enables running applications which are
1709 instrumented or otherwise use MPX. It does not use MPX
1710 itself inside the kernel or to protect the kernel
1711 against bad memory references.
1712
1713 Enabling this option will make the kernel larger:
1714 ~8k of kernel text and 36 bytes of data on a 64-bit
1715 defconfig. It adds a long to the 'mm_struct' which
1716 will increase the kernel memory overhead of each
1717 process and adds some branches to paths used during
1718 exec() and munmap().
1719
1720 For details, see Documentation/x86/intel_mpx.txt
1721
1722 If unsure, say N.
1723
1724 config X86_INTEL_MEMORY_PROTECTION_KEYS
1725 prompt "Intel Memory Protection Keys"
1726 def_bool y
1727 # Note: only available in 64-bit mode
1728 depends on CPU_SUP_INTEL && X86_64
1729 ---help---
1730 Memory Protection Keys provides a mechanism for enforcing
1731 page-based protections, but without requiring modification of the
1732 page tables when an application changes protection domains.
1733
1734 For details, see Documentation/x86/protection-keys.txt
1735
1736 If unsure, say y.
1737
1738 config EFI
1739 bool "EFI runtime service support"
1740 depends on ACPI
1741 select UCS2_STRING
1742 select EFI_RUNTIME_WRAPPERS
1743 ---help---
1744 This enables the kernel to use EFI runtime services that are
1745 available (such as the EFI variable services).
1746
1747 This option is only useful on systems that have EFI firmware.
1748 In addition, you should use the latest ELILO loader available
1749 at <http://elilo.sourceforge.net> in order to take advantage
1750 of EFI runtime services. However, even with this option, the
1751 resultant kernel should continue to boot on existing non-EFI
1752 platforms.
1753
1754 config EFI_STUB
1755 bool "EFI stub support"
1756 depends on EFI && !X86_USE_3DNOW
1757 select RELOCATABLE
1758 ---help---
1759 This kernel feature allows a bzImage to be loaded directly
1760 by EFI firmware without the use of a bootloader.
1761
1762 See Documentation/efi-stub.txt for more information.
1763
1764 config EFI_MIXED
1765 bool "EFI mixed-mode support"
1766 depends on EFI_STUB && X86_64
1767 ---help---
1768 Enabling this feature allows a 64-bit kernel to be booted
1769 on a 32-bit firmware, provided that your CPU supports 64-bit
1770 mode.
1771
1772 Note that it is not possible to boot a mixed-mode enabled
1773 kernel via the EFI boot stub - a bootloader that supports
1774 the EFI handover protocol must be used.
1775
1776 If unsure, say N.
1777
1778 config SECCOMP
1779 def_bool y
1780 prompt "Enable seccomp to safely compute untrusted bytecode"
1781 ---help---
1782 This kernel feature is useful for number crunching applications
1783 that may need to compute untrusted bytecode during their
1784 execution. By using pipes or other transports made available to
1785 the process as file descriptors supporting the read/write
1786 syscalls, it's possible to isolate those applications in
1787 their own address space using seccomp. Once seccomp is
1788 enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
1789 and the task is only allowed to execute a few safe syscalls
1790 defined by each seccomp mode.
1791
1792 If unsure, say Y. Only embedded should say N here.
1793
1794 source kernel/Kconfig.hz
1795
1796 config KEXEC
1797 bool "kexec system call"
1798 select KEXEC_CORE
1799 ---help---
1800 kexec is a system call that implements the ability to shutdown your
1801 current kernel, and to start another kernel. It is like a reboot
1802 but it is independent of the system firmware. And like a reboot
1803 you can start any kernel with it, not just Linux.
1804
1805 The name comes from the similarity to the exec system call.
1806
1807 It is an ongoing process to be certain the hardware in a machine
1808 is properly shutdown, so do not be surprised if this code does not
1809 initially work for you. As of this writing the exact hardware
1810 interface is strongly in flux, so no good recommendation can be
1811 made.
1812
1813 config KEXEC_FILE
1814 bool "kexec file based system call"
1815 select KEXEC_CORE
1816 select BUILD_BIN2C
1817 depends on X86_64
1818 depends on CRYPTO=y
1819 depends on CRYPTO_SHA256=y
1820 ---help---
1821 This is new version of kexec system call. This system call is
1822 file based and takes file descriptors as system call argument
1823 for kernel and initramfs as opposed to list of segments as
1824 accepted by previous system call.
1825
1826 config KEXEC_VERIFY_SIG
1827 bool "Verify kernel signature during kexec_file_load() syscall"
1828 depends on KEXEC_FILE
1829 ---help---
1830 This option makes kernel signature verification mandatory for
1831 the kexec_file_load() syscall.
1832
1833 In addition to that option, you need to enable signature
1834 verification for the corresponding kernel image type being
1835 loaded in order for this to work.
1836
1837 config KEXEC_BZIMAGE_VERIFY_SIG
1838 bool "Enable bzImage signature verification support"
1839 depends on KEXEC_VERIFY_SIG
1840 depends on SIGNED_PE_FILE_VERIFICATION
1841 select SYSTEM_TRUSTED_KEYRING
1842 ---help---
1843 Enable bzImage signature verification support.
1844
1845 config CRASH_DUMP
1846 bool "kernel crash dumps"
1847 depends on X86_64 || (X86_32 && HIGHMEM)
1848 ---help---
1849 Generate crash dump after being started by kexec.
1850 This should be normally only set in special crash dump kernels
1851 which are loaded in the main kernel with kexec-tools into
1852 a specially reserved region and then later executed after
1853 a crash by kdump/kexec. The crash dump kernel must be compiled
1854 to a memory address not used by the main kernel or BIOS using
1855 PHYSICAL_START, or it must be built as a relocatable image
1856 (CONFIG_RELOCATABLE=y).
1857 For more details see Documentation/kdump/kdump.txt
1858
1859 config KEXEC_JUMP
1860 bool "kexec jump"
1861 depends on KEXEC && HIBERNATION
1862 ---help---
1863 Jump between original kernel and kexeced kernel and invoke
1864 code in physical address mode via KEXEC
1865
1866 config PHYSICAL_START
1867 hex "Physical address where the kernel is loaded" if (EXPERT || CRASH_DUMP)
1868 default "0x1000000"
1869 ---help---
1870 This gives the physical address where the kernel is loaded.
1871
1872 If kernel is a not relocatable (CONFIG_RELOCATABLE=n) then
1873 bzImage will decompress itself to above physical address and
1874 run from there. Otherwise, bzImage will run from the address where
1875 it has been loaded by the boot loader and will ignore above physical
1876 address.
1877
1878 In normal kdump cases one does not have to set/change this option
1879 as now bzImage can be compiled as a completely relocatable image
1880 (CONFIG_RELOCATABLE=y) and be used to load and run from a different
1881 address. This option is mainly useful for the folks who don't want
1882 to use a bzImage for capturing the crash dump and want to use a
1883 vmlinux instead. vmlinux is not relocatable hence a kernel needs
1884 to be specifically compiled to run from a specific memory area
1885 (normally a reserved region) and this option comes handy.
1886
1887 So if you are using bzImage for capturing the crash dump,
1888 leave the value here unchanged to 0x1000000 and set
1889 CONFIG_RELOCATABLE=y. Otherwise if you plan to use vmlinux
1890 for capturing the crash dump change this value to start of
1891 the reserved region. In other words, it can be set based on
1892 the "X" value as specified in the "crashkernel=YM@XM"
1893 command line boot parameter passed to the panic-ed
1894 kernel. Please take a look at Documentation/kdump/kdump.txt
1895 for more details about crash dumps.
1896
1897 Usage of bzImage for capturing the crash dump is recommended as
1898 one does not have to build two kernels. Same kernel can be used
1899 as production kernel and capture kernel. Above option should have
1900 gone away after relocatable bzImage support is introduced. But it
1901 is present because there are users out there who continue to use
1902 vmlinux for dump capture. This option should go away down the
1903 line.
1904
1905 Don't change this unless you know what you are doing.
1906
1907 config RELOCATABLE
1908 bool "Build a relocatable kernel"
1909 default y
1910 ---help---
1911 This builds a kernel image that retains relocation information
1912 so it can be loaded someplace besides the default 1MB.
1913 The relocations tend to make the kernel binary about 10% larger,
1914 but are discarded at runtime.
1915
1916 One use is for the kexec on panic case where the recovery kernel
1917 must live at a different physical address than the primary
1918 kernel.
1919
1920 Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address
1921 it has been loaded at and the compile time physical address
1922 (CONFIG_PHYSICAL_START) is used as the minimum location.
1923
1924 config RANDOMIZE_BASE
1925 bool "Randomize the address of the kernel image"
1926 depends on RELOCATABLE
1927 default n
1928 ---help---
1929 Randomizes the physical and virtual address at which the
1930 kernel image is decompressed, as a security feature that
1931 deters exploit attempts relying on knowledge of the location
1932 of kernel internals.
1933
1934 Entropy is generated using the RDRAND instruction if it is
1935 supported. If RDTSC is supported, it is used as well. If
1936 neither RDRAND nor RDTSC are supported, then randomness is
1937 read from the i8254 timer.
1938
1939 The kernel will be offset by up to RANDOMIZE_BASE_MAX_OFFSET,
1940 and aligned according to PHYSICAL_ALIGN. Since the kernel is
1941 built using 2GiB addressing, and PHYSICAL_ALGIN must be at a
1942 minimum of 2MiB, only 10 bits of entropy is theoretically
1943 possible. At best, due to page table layouts, 64-bit can use
1944 9 bits of entropy and 32-bit uses 8 bits.
1945
1946 If unsure, say N.
1947
1948 config RANDOMIZE_BASE_MAX_OFFSET
1949 hex "Maximum kASLR offset allowed" if EXPERT
1950 depends on RANDOMIZE_BASE
1951 range 0x0 0x20000000 if X86_32
1952 default "0x20000000" if X86_32
1953 range 0x0 0x40000000 if X86_64
1954 default "0x40000000" if X86_64
1955 ---help---
1956 The lesser of RANDOMIZE_BASE_MAX_OFFSET and available physical
1957 memory is used to determine the maximal offset in bytes that will
1958 be applied to the kernel when kernel Address Space Layout
1959 Randomization (kASLR) is active. This must be a multiple of
1960 PHYSICAL_ALIGN.
1961
1962 On 32-bit this is limited to 512MiB by page table layouts. The
1963 default is 512MiB.
1964
1965 On 64-bit this is limited by how the kernel fixmap page table is
1966 positioned, so this cannot be larger than 1GiB currently. Without
1967 RANDOMIZE_BASE, there is a 512MiB to 1.5GiB split between kernel
1968 and modules. When RANDOMIZE_BASE_MAX_OFFSET is above 512MiB, the
1969 modules area will shrink to compensate, up to the current maximum
1970 1GiB to 1GiB split. The default is 1GiB.
1971
1972 If unsure, leave at the default value.
1973
1974 # Relocation on x86 needs some additional build support
1975 config X86_NEED_RELOCS
1976 def_bool y
1977 depends on RANDOMIZE_BASE || (X86_32 && RELOCATABLE)
1978
1979 config PHYSICAL_ALIGN
1980 hex "Alignment value to which kernel should be aligned"
1981 default "0x200000"
1982 range 0x2000 0x1000000 if X86_32
1983 range 0x200000 0x1000000 if X86_64
1984 ---help---
1985 This value puts the alignment restrictions on physical address
1986 where kernel is loaded and run from. Kernel is compiled for an
1987 address which meets above alignment restriction.
1988
1989 If bootloader loads the kernel at a non-aligned address and
1990 CONFIG_RELOCATABLE is set, kernel will move itself to nearest
1991 address aligned to above value and run from there.
1992
1993 If bootloader loads the kernel at a non-aligned address and
1994 CONFIG_RELOCATABLE is not set, kernel will ignore the run time
1995 load address and decompress itself to the address it has been
1996 compiled for and run from there. The address for which kernel is
1997 compiled already meets above alignment restrictions. Hence the
1998 end result is that kernel runs from a physical address meeting
1999 above alignment restrictions.
2000
2001 On 32-bit this value must be a multiple of 0x2000. On 64-bit
2002 this value must be a multiple of 0x200000.
2003
2004 Don't change this unless you know what you are doing.
2005
2006 config HOTPLUG_CPU
2007 bool "Support for hot-pluggable CPUs"
2008 depends on SMP
2009 ---help---
2010 Say Y here to allow turning CPUs off and on. CPUs can be
2011 controlled through /sys/devices/system/cpu.
2012 ( Note: power management support will enable this option
2013 automatically on SMP systems. )
2014 Say N if you want to disable CPU hotplug.
2015
2016 config BOOTPARAM_HOTPLUG_CPU0
2017 bool "Set default setting of cpu0_hotpluggable"
2018 default n
2019 depends on HOTPLUG_CPU
2020 ---help---
2021 Set whether default state of cpu0_hotpluggable is on or off.
2022
2023 Say Y here to enable CPU0 hotplug by default. If this switch
2024 is turned on, there is no need to give cpu0_hotplug kernel
2025 parameter and the CPU0 hotplug feature is enabled by default.
2026
2027 Please note: there are two known CPU0 dependencies if you want
2028 to enable the CPU0 hotplug feature either by this switch or by
2029 cpu0_hotplug kernel parameter.
2030
2031 First, resume from hibernate or suspend always starts from CPU0.
2032 So hibernate and suspend are prevented if CPU0 is offline.
2033
2034 Second dependency is PIC interrupts always go to CPU0. CPU0 can not
2035 offline if any interrupt can not migrate out of CPU0. There may
2036 be other CPU0 dependencies.
2037
2038 Please make sure the dependencies are under your control before
2039 you enable this feature.
2040
2041 Say N if you don't want to enable CPU0 hotplug feature by default.
2042 You still can enable the CPU0 hotplug feature at boot by kernel
2043 parameter cpu0_hotplug.
2044
2045 config DEBUG_HOTPLUG_CPU0
2046 def_bool n
2047 prompt "Debug CPU0 hotplug"
2048 depends on HOTPLUG_CPU
2049 ---help---
2050 Enabling this option offlines CPU0 (if CPU0 can be offlined) as
2051 soon as possible and boots up userspace with CPU0 offlined. User
2052 can online CPU0 back after boot time.
2053
2054 To debug CPU0 hotplug, you need to enable CPU0 offline/online
2055 feature by either turning on CONFIG_BOOTPARAM_HOTPLUG_CPU0 during
2056 compilation or giving cpu0_hotplug kernel parameter at boot.
2057
2058 If unsure, say N.
2059
2060 config COMPAT_VDSO
2061 def_bool n
2062 prompt "Disable the 32-bit vDSO (needed for glibc 2.3.3)"
2063 depends on X86_32 || IA32_EMULATION
2064 ---help---
2065 Certain buggy versions of glibc will crash if they are
2066 presented with a 32-bit vDSO that is not mapped at the address
2067 indicated in its segment table.
2068
2069 The bug was introduced by f866314b89d56845f55e6f365e18b31ec978ec3a
2070 and fixed by 3b3ddb4f7db98ec9e912ccdf54d35df4aa30e04a and
2071 49ad572a70b8aeb91e57483a11dd1b77e31c4468. Glibc 2.3.3 is
2072 the only released version with the bug, but OpenSUSE 9
2073 contains a buggy "glibc 2.3.2".
2074
2075 The symptom of the bug is that everything crashes on startup, saying:
2076 dl_main: Assertion `(void *) ph->p_vaddr == _rtld_local._dl_sysinfo_dso' failed!
2077
2078 Saying Y here changes the default value of the vdso32 boot
2079 option from 1 to 0, which turns off the 32-bit vDSO entirely.
2080 This works around the glibc bug but hurts performance.
2081
2082 If unsure, say N: if you are compiling your own kernel, you
2083 are unlikely to be using a buggy version of glibc.
2084
2085 choice
2086 prompt "vsyscall table for legacy applications"
2087 depends on X86_64
2088 default LEGACY_VSYSCALL_EMULATE
2089 help
2090 Legacy user code that does not know how to find the vDSO expects
2091 to be able to issue three syscalls by calling fixed addresses in
2092 kernel space. Since this location is not randomized with ASLR,
2093 it can be used to assist security vulnerability exploitation.
2094
2095 This setting can be changed at boot time via the kernel command
2096 line parameter vsyscall=[native|emulate|none].
2097
2098 On a system with recent enough glibc (2.14 or newer) and no
2099 static binaries, you can say None without a performance penalty
2100 to improve security.
2101
2102 If unsure, select "Emulate".
2103
2104 config LEGACY_VSYSCALL_NATIVE
2105 bool "Native"
2106 help
2107 Actual executable code is located in the fixed vsyscall
2108 address mapping, implementing time() efficiently. Since
2109 this makes the mapping executable, it can be used during
2110 security vulnerability exploitation (traditionally as
2111 ROP gadgets). This configuration is not recommended.
2112
2113 config LEGACY_VSYSCALL_EMULATE
2114 bool "Emulate"
2115 help
2116 The kernel traps and emulates calls into the fixed
2117 vsyscall address mapping. This makes the mapping
2118 non-executable, but it still contains known contents,
2119 which could be used in certain rare security vulnerability
2120 exploits. This configuration is recommended when userspace
2121 still uses the vsyscall area.
2122
2123 config LEGACY_VSYSCALL_NONE
2124 bool "None"
2125 help
2126 There will be no vsyscall mapping at all. This will
2127 eliminate any risk of ASLR bypass due to the vsyscall
2128 fixed address mapping. Attempts to use the vsyscalls
2129 will be reported to dmesg, so that either old or
2130 malicious userspace programs can be identified.
2131
2132 endchoice
2133
2134 config CMDLINE_BOOL
2135 bool "Built-in kernel command line"
2136 ---help---
2137 Allow for specifying boot arguments to the kernel at
2138 build time. On some systems (e.g. embedded ones), it is
2139 necessary or convenient to provide some or all of the
2140 kernel boot arguments with the kernel itself (that is,
2141 to not rely on the boot loader to provide them.)
2142
2143 To compile command line arguments into the kernel,
2144 set this option to 'Y', then fill in the
2145 boot arguments in CONFIG_CMDLINE.
2146
2147 Systems with fully functional boot loaders (i.e. non-embedded)
2148 should leave this option set to 'N'.
2149
2150 config CMDLINE
2151 string "Built-in kernel command string"
2152 depends on CMDLINE_BOOL
2153 default ""
2154 ---help---
2155 Enter arguments here that should be compiled into the kernel
2156 image and used at boot time. If the boot loader provides a
2157 command line at boot time, it is appended to this string to
2158 form the full kernel command line, when the system boots.
2159
2160 However, you can use the CONFIG_CMDLINE_OVERRIDE option to
2161 change this behavior.
2162
2163 In most cases, the command line (whether built-in or provided
2164 by the boot loader) should specify the device for the root
2165 file system.
2166
2167 config CMDLINE_OVERRIDE
2168 bool "Built-in command line overrides boot loader arguments"
2169 depends on CMDLINE_BOOL
2170 ---help---
2171 Set this option to 'Y' to have the kernel ignore the boot loader
2172 command line, and use ONLY the built-in command line.
2173
2174 This is used to work around broken boot loaders. This should
2175 be set to 'N' under normal conditions.
2176
2177 config MODIFY_LDT_SYSCALL
2178 bool "Enable the LDT (local descriptor table)" if EXPERT
2179 default y
2180 ---help---
2181 Linux can allow user programs to install a per-process x86
2182 Local Descriptor Table (LDT) using the modify_ldt(2) system
2183 call. This is required to run 16-bit or segmented code such as
2184 DOSEMU or some Wine programs. It is also used by some very old
2185 threading libraries.
2186
2187 Enabling this feature adds a small amount of overhead to
2188 context switches and increases the low-level kernel attack
2189 surface. Disabling it removes the modify_ldt(2) system call.
2190
2191 Saying 'N' here may make sense for embedded or server kernels.
2192
2193 source "kernel/livepatch/Kconfig"
2194
2195 endmenu
2196
2197 config ARCH_ENABLE_MEMORY_HOTPLUG
2198 def_bool y
2199 depends on X86_64 || (X86_32 && HIGHMEM)
2200
2201 config ARCH_ENABLE_MEMORY_HOTREMOVE
2202 def_bool y
2203 depends on MEMORY_HOTPLUG
2204
2205 config USE_PERCPU_NUMA_NODE_ID
2206 def_bool y
2207 depends on NUMA
2208
2209 config ARCH_ENABLE_SPLIT_PMD_PTLOCK
2210 def_bool y
2211 depends on X86_64 || X86_PAE
2212
2213 config ARCH_ENABLE_HUGEPAGE_MIGRATION
2214 def_bool y
2215 depends on X86_64 && HUGETLB_PAGE && MIGRATION
2216
2217 menu "Power management and ACPI options"
2218
2219 config ARCH_HIBERNATION_HEADER
2220 def_bool y
2221 depends on X86_64 && HIBERNATION
2222
2223 source "kernel/power/Kconfig"
2224
2225 source "drivers/acpi/Kconfig"
2226
2227 source "drivers/sfi/Kconfig"
2228
2229 config X86_APM_BOOT
2230 def_bool y
2231 depends on APM
2232
2233 menuconfig APM
2234 tristate "APM (Advanced Power Management) BIOS support"
2235 depends on X86_32 && PM_SLEEP
2236 ---help---
2237 APM is a BIOS specification for saving power using several different
2238 techniques. This is mostly useful for battery powered laptops with
2239 APM compliant BIOSes. If you say Y here, the system time will be
2240 reset after a RESUME operation, the /proc/apm device will provide
2241 battery status information, and user-space programs will receive
2242 notification of APM "events" (e.g. battery status change).
2243
2244 If you select "Y" here, you can disable actual use of the APM
2245 BIOS by passing the "apm=off" option to the kernel at boot time.
2246
2247 Note that the APM support is almost completely disabled for
2248 machines with more than one CPU.
2249
2250 In order to use APM, you will need supporting software. For location
2251 and more information, read <file:Documentation/power/apm-acpi.txt>
2252 and the Battery Powered Linux mini-HOWTO, available from
2253 <http://www.tldp.org/docs.html#howto>.
2254
2255 This driver does not spin down disk drives (see the hdparm(8)
2256 manpage ("man 8 hdparm") for that), and it doesn't turn off
2257 VESA-compliant "green" monitors.
2258
2259 This driver does not support the TI 4000M TravelMate and the ACER
2260 486/DX4/75 because they don't have compliant BIOSes. Many "green"
2261 desktop machines also don't have compliant BIOSes, and this driver
2262 may cause those machines to panic during the boot phase.
2263
2264 Generally, if you don't have a battery in your machine, there isn't
2265 much point in using this driver and you should say N. If you get
2266 random kernel OOPSes or reboots that don't seem to be related to
2267 anything, try disabling/enabling this option (or disabling/enabling
2268 APM in your BIOS).
2269
2270 Some other things you should try when experiencing seemingly random,
2271 "weird" problems:
2272
2273 1) make sure that you have enough swap space and that it is
2274 enabled.
2275 2) pass the "no-hlt" option to the kernel
2276 3) switch on floating point emulation in the kernel and pass
2277 the "no387" option to the kernel
2278 4) pass the "floppy=nodma" option to the kernel
2279 5) pass the "mem=4M" option to the kernel (thereby disabling
2280 all but the first 4 MB of RAM)
2281 6) make sure that the CPU is not over clocked.
2282 7) read the sig11 FAQ at <http://www.bitwizard.nl/sig11/>
2283 8) disable the cache from your BIOS settings
2284 9) install a fan for the video card or exchange video RAM
2285 10) install a better fan for the CPU
2286 11) exchange RAM chips
2287 12) exchange the motherboard.
2288
2289 To compile this driver as a module, choose M here: the
2290 module will be called apm.
2291
2292 if APM
2293
2294 config APM_IGNORE_USER_SUSPEND
2295 bool "Ignore USER SUSPEND"
2296 ---help---
2297 This option will ignore USER SUSPEND requests. On machines with a
2298 compliant APM BIOS, you want to say N. However, on the NEC Versa M
2299 series notebooks, it is necessary to say Y because of a BIOS bug.
2300
2301 config APM_DO_ENABLE
2302 bool "Enable PM at boot time"
2303 ---help---
2304 Enable APM features at boot time. From page 36 of the APM BIOS
2305 specification: "When disabled, the APM BIOS does not automatically
2306 power manage devices, enter the Standby State, enter the Suspend
2307 State, or take power saving steps in response to CPU Idle calls."
2308 This driver will make CPU Idle calls when Linux is idle (unless this
2309 feature is turned off -- see "Do CPU IDLE calls", below). This
2310 should always save battery power, but more complicated APM features
2311 will be dependent on your BIOS implementation. You may need to turn
2312 this option off if your computer hangs at boot time when using APM
2313 support, or if it beeps continuously instead of suspending. Turn
2314 this off if you have a NEC UltraLite Versa 33/C or a Toshiba
2315 T400CDT. This is off by default since most machines do fine without
2316 this feature.
2317
2318 config APM_CPU_IDLE
2319 depends on CPU_IDLE
2320 bool "Make CPU Idle calls when idle"
2321 ---help---
2322 Enable calls to APM CPU Idle/CPU Busy inside the kernel's idle loop.
2323 On some machines, this can activate improved power savings, such as
2324 a slowed CPU clock rate, when the machine is idle. These idle calls
2325 are made after the idle loop has run for some length of time (e.g.,
2326 333 mS). On some machines, this will cause a hang at boot time or
2327 whenever the CPU becomes idle. (On machines with more than one CPU,
2328 this option does nothing.)
2329
2330 config APM_DISPLAY_BLANK
2331 bool "Enable console blanking using APM"
2332 ---help---
2333 Enable console blanking using the APM. Some laptops can use this to
2334 turn off the LCD backlight when the screen blanker of the Linux
2335 virtual console blanks the screen. Note that this is only used by
2336 the virtual console screen blanker, and won't turn off the backlight
2337 when using the X Window system. This also doesn't have anything to
2338 do with your VESA-compliant power-saving monitor. Further, this
2339 option doesn't work for all laptops -- it might not turn off your
2340 backlight at all, or it might print a lot of errors to the console,
2341 especially if you are using gpm.
2342
2343 config APM_ALLOW_INTS
2344 bool "Allow interrupts during APM BIOS calls"
2345 ---help---
2346 Normally we disable external interrupts while we are making calls to
2347 the APM BIOS as a measure to lessen the effects of a badly behaving
2348 BIOS implementation. The BIOS should reenable interrupts if it
2349 needs to. Unfortunately, some BIOSes do not -- especially those in
2350 many of the newer IBM Thinkpads. If you experience hangs when you
2351 suspend, try setting this to Y. Otherwise, say N.
2352
2353 endif # APM
2354
2355 source "drivers/cpufreq/Kconfig"
2356
2357 source "drivers/cpuidle/Kconfig"
2358
2359 source "drivers/idle/Kconfig"
2360
2361 endmenu
2362
2363
2364 menu "Bus options (PCI etc.)"
2365
2366 config PCI
2367 bool "PCI support"
2368 default y
2369 ---help---
2370 Find out whether you have a PCI motherboard. PCI is the name of a
2371 bus system, i.e. the way the CPU talks to the other stuff inside
2372 your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
2373 VESA. If you have PCI, say Y, otherwise N.
2374
2375 choice
2376 prompt "PCI access mode"
2377 depends on X86_32 && PCI
2378 default PCI_GOANY
2379 ---help---
2380 On PCI systems, the BIOS can be used to detect the PCI devices and
2381 determine their configuration. However, some old PCI motherboards
2382 have BIOS bugs and may crash if this is done. Also, some embedded
2383 PCI-based systems don't have any BIOS at all. Linux can also try to
2384 detect the PCI hardware directly without using the BIOS.
2385
2386 With this option, you can specify how Linux should detect the
2387 PCI devices. If you choose "BIOS", the BIOS will be used,
2388 if you choose "Direct", the BIOS won't be used, and if you
2389 choose "MMConfig", then PCI Express MMCONFIG will be used.
2390 If you choose "Any", the kernel will try MMCONFIG, then the
2391 direct access method and falls back to the BIOS if that doesn't
2392 work. If unsure, go with the default, which is "Any".
2393
2394 config PCI_GOBIOS
2395 bool "BIOS"
2396
2397 config PCI_GOMMCONFIG
2398 bool "MMConfig"
2399
2400 config PCI_GODIRECT
2401 bool "Direct"
2402
2403 config PCI_GOOLPC
2404 bool "OLPC XO-1"
2405 depends on OLPC
2406
2407 config PCI_GOANY
2408 bool "Any"
2409
2410 endchoice
2411
2412 config PCI_BIOS
2413 def_bool y
2414 depends on X86_32 && PCI && (PCI_GOBIOS || PCI_GOANY)
2415
2416 # x86-64 doesn't support PCI BIOS access from long mode so always go direct.
2417 config PCI_DIRECT
2418 def_bool y
2419 depends on PCI && (X86_64 || (PCI_GODIRECT || PCI_GOANY || PCI_GOOLPC || PCI_GOMMCONFIG))
2420
2421 config PCI_MMCONFIG
2422 def_bool y
2423 depends on X86_32 && PCI && (ACPI || SFI) && (PCI_GOMMCONFIG || PCI_GOANY)
2424
2425 config PCI_OLPC
2426 def_bool y
2427 depends on PCI && OLPC && (PCI_GOOLPC || PCI_GOANY)
2428
2429 config PCI_XEN
2430 def_bool y
2431 depends on PCI && XEN
2432 select SWIOTLB_XEN
2433
2434 config PCI_DOMAINS
2435 def_bool y
2436 depends on PCI
2437
2438 config PCI_MMCONFIG
2439 bool "Support mmconfig PCI config space access"
2440 depends on X86_64 && PCI && ACPI
2441
2442 config PCI_CNB20LE_QUIRK
2443 bool "Read CNB20LE Host Bridge Windows" if EXPERT
2444 depends on PCI
2445 help
2446 Read the PCI windows out of the CNB20LE host bridge. This allows
2447 PCI hotplug to work on systems with the CNB20LE chipset which do
2448 not have ACPI.
2449
2450 There's no public spec for this chipset, and this functionality
2451 is known to be incomplete.
2452
2453 You should say N unless you know you need this.
2454
2455 source "drivers/pci/Kconfig"
2456
2457 # x86_64 have no ISA slots, but can have ISA-style DMA.
2458 config ISA_DMA_API
2459 bool "ISA-style DMA support" if (X86_64 && EXPERT)
2460 default y
2461 help
2462 Enables ISA-style DMA support for devices requiring such controllers.
2463 If unsure, say Y.
2464
2465 if X86_32
2466
2467 config ISA
2468 bool "ISA support"
2469 ---help---
2470 Find out whether you have ISA slots on your motherboard. ISA is the
2471 name of a bus system, i.e. the way the CPU talks to the other stuff
2472 inside your box. Other bus systems are PCI, EISA, MicroChannel
2473 (MCA) or VESA. ISA is an older system, now being displaced by PCI;
2474 newer boards don't support it. If you have ISA, say Y, otherwise N.
2475
2476 config EISA
2477 bool "EISA support"
2478 depends on ISA
2479 ---help---
2480 The Extended Industry Standard Architecture (EISA) bus was
2481 developed as an open alternative to the IBM MicroChannel bus.
2482
2483 The EISA bus provided some of the features of the IBM MicroChannel
2484 bus while maintaining backward compatibility with cards made for
2485 the older ISA bus. The EISA bus saw limited use between 1988 and
2486 1995 when it was made obsolete by the PCI bus.
2487
2488 Say Y here if you are building a kernel for an EISA-based machine.
2489
2490 Otherwise, say N.
2491
2492 source "drivers/eisa/Kconfig"
2493
2494 config SCx200
2495 tristate "NatSemi SCx200 support"
2496 ---help---
2497 This provides basic support for National Semiconductor's
2498 (now AMD's) Geode processors. The driver probes for the
2499 PCI-IDs of several on-chip devices, so its a good dependency
2500 for other scx200_* drivers.
2501
2502 If compiled as a module, the driver is named scx200.
2503
2504 config SCx200HR_TIMER
2505 tristate "NatSemi SCx200 27MHz High-Resolution Timer Support"
2506 depends on SCx200
2507 default y
2508 ---help---
2509 This driver provides a clocksource built upon the on-chip
2510 27MHz high-resolution timer. Its also a workaround for
2511 NSC Geode SC-1100's buggy TSC, which loses time when the
2512 processor goes idle (as is done by the scheduler). The
2513 other workaround is idle=poll boot option.
2514
2515 config OLPC
2516 bool "One Laptop Per Child support"
2517 depends on !X86_PAE
2518 select GPIOLIB
2519 select OF
2520 select OF_PROMTREE
2521 select IRQ_DOMAIN
2522 ---help---
2523 Add support for detecting the unique features of the OLPC
2524 XO hardware.
2525
2526 config OLPC_XO1_PM
2527 bool "OLPC XO-1 Power Management"
2528 depends on OLPC && MFD_CS5535 && PM_SLEEP
2529 select MFD_CORE
2530 ---help---
2531 Add support for poweroff and suspend of the OLPC XO-1 laptop.
2532
2533 config OLPC_XO1_RTC
2534 bool "OLPC XO-1 Real Time Clock"
2535 depends on OLPC_XO1_PM && RTC_DRV_CMOS
2536 ---help---
2537 Add support for the XO-1 real time clock, which can be used as a
2538 programmable wakeup source.
2539
2540 config OLPC_XO1_SCI
2541 bool "OLPC XO-1 SCI extras"
2542 depends on OLPC && OLPC_XO1_PM
2543 depends on INPUT=y
2544 select POWER_SUPPLY
2545 select GPIO_CS5535
2546 select MFD_CORE
2547 ---help---
2548 Add support for SCI-based features of the OLPC XO-1 laptop:
2549 - EC-driven system wakeups
2550 - Power button
2551 - Ebook switch
2552 - Lid switch
2553 - AC adapter status updates
2554 - Battery status updates
2555
2556 config OLPC_XO15_SCI
2557 bool "OLPC XO-1.5 SCI extras"
2558 depends on OLPC && ACPI
2559 select POWER_SUPPLY
2560 ---help---
2561 Add support for SCI-based features of the OLPC XO-1.5 laptop:
2562 - EC-driven system wakeups
2563 - AC adapter status updates
2564 - Battery status updates
2565
2566 config ALIX
2567 bool "PCEngines ALIX System Support (LED setup)"
2568 select GPIOLIB
2569 ---help---
2570 This option enables system support for the PCEngines ALIX.
2571 At present this just sets up LEDs for GPIO control on
2572 ALIX2/3/6 boards. However, other system specific setup should
2573 get added here.
2574
2575 Note: You must still enable the drivers for GPIO and LED support
2576 (GPIO_CS5535 & LEDS_GPIO) to actually use the LEDs
2577
2578 Note: You have to set alix.force=1 for boards with Award BIOS.
2579
2580 config NET5501
2581 bool "Soekris Engineering net5501 System Support (LEDS, GPIO, etc)"
2582 select GPIOLIB
2583 ---help---
2584 This option enables system support for the Soekris Engineering net5501.
2585
2586 config GEOS
2587 bool "Traverse Technologies GEOS System Support (LEDS, GPIO, etc)"
2588 select GPIOLIB
2589 depends on DMI
2590 ---help---
2591 This option enables system support for the Traverse Technologies GEOS.
2592
2593 config TS5500
2594 bool "Technologic Systems TS-5500 platform support"
2595 depends on MELAN
2596 select CHECK_SIGNATURE
2597 select NEW_LEDS
2598 select LEDS_CLASS
2599 ---help---
2600 This option enables system support for the Technologic Systems TS-5500.
2601
2602 endif # X86_32
2603
2604 config AMD_NB
2605 def_bool y
2606 depends on CPU_SUP_AMD && PCI
2607
2608 source "drivers/pcmcia/Kconfig"
2609
2610 config RAPIDIO
2611 tristate "RapidIO support"
2612 depends on PCI
2613 default n
2614 help
2615 If enabled this option will include drivers and the core
2616 infrastructure code to support RapidIO interconnect devices.
2617
2618 source "drivers/rapidio/Kconfig"
2619
2620 config X86_SYSFB
2621 bool "Mark VGA/VBE/EFI FB as generic system framebuffer"
2622 help
2623 Firmwares often provide initial graphics framebuffers so the BIOS,
2624 bootloader or kernel can show basic video-output during boot for
2625 user-guidance and debugging. Historically, x86 used the VESA BIOS
2626 Extensions and EFI-framebuffers for this, which are mostly limited
2627 to x86.
2628 This option, if enabled, marks VGA/VBE/EFI framebuffers as generic
2629 framebuffers so the new generic system-framebuffer drivers can be
2630 used on x86. If the framebuffer is not compatible with the generic
2631 modes, it is adverticed as fallback platform framebuffer so legacy
2632 drivers like efifb, vesafb and uvesafb can pick it up.
2633 If this option is not selected, all system framebuffers are always
2634 marked as fallback platform framebuffers as usual.
2635
2636 Note: Legacy fbdev drivers, including vesafb, efifb, uvesafb, will
2637 not be able to pick up generic system framebuffers if this option
2638 is selected. You are highly encouraged to enable simplefb as
2639 replacement if you select this option. simplefb can correctly deal
2640 with generic system framebuffers. But you should still keep vesafb
2641 and others enabled as fallback if a system framebuffer is
2642 incompatible with simplefb.
2643
2644 If unsure, say Y.
2645
2646 endmenu
2647
2648
2649 menu "Executable file formats / Emulations"
2650
2651 source "fs/Kconfig.binfmt"
2652
2653 config IA32_EMULATION
2654 bool "IA32 Emulation"
2655 depends on X86_64
2656 select BINFMT_ELF
2657 select COMPAT_BINFMT_ELF
2658 select ARCH_WANT_OLD_COMPAT_IPC
2659 ---help---
2660 Include code to run legacy 32-bit programs under a
2661 64-bit kernel. You should likely turn this on, unless you're
2662 100% sure that you don't have any 32-bit programs left.
2663
2664 config IA32_AOUT
2665 tristate "IA32 a.out support"
2666 depends on IA32_EMULATION
2667 ---help---
2668 Support old a.out binaries in the 32bit emulation.
2669
2670 config X86_X32
2671 bool "x32 ABI for 64-bit mode"
2672 depends on X86_64
2673 ---help---
2674 Include code to run binaries for the x32 native 32-bit ABI
2675 for 64-bit processors. An x32 process gets access to the
2676 full 64-bit register file and wide data path while leaving
2677 pointers at 32 bits for smaller memory footprint.
2678
2679 You will need a recent binutils (2.22 or later) with
2680 elf32_x86_64 support enabled to compile a kernel with this
2681 option set.
2682
2683 config COMPAT
2684 def_bool y
2685 depends on IA32_EMULATION || X86_X32
2686
2687 if COMPAT
2688 config COMPAT_FOR_U64_ALIGNMENT
2689 def_bool y
2690
2691 config SYSVIPC_COMPAT
2692 def_bool y
2693 depends on SYSVIPC
2694
2695 config KEYS_COMPAT
2696 def_bool y
2697 depends on KEYS
2698 endif
2699
2700 endmenu
2701
2702
2703 config HAVE_ATOMIC_IOMAP
2704 def_bool y
2705 depends on X86_32
2706
2707 config X86_DEV_DMA_OPS
2708 bool
2709 depends on X86_64 || STA2X11
2710
2711 config X86_DMA_REMAP
2712 bool
2713 depends on STA2X11
2714
2715 config PMC_ATOM
2716 def_bool y
2717 depends on PCI
2718
2719 config VMD
2720 depends on PCI_MSI
2721 tristate "Volume Management Device Driver"
2722 default N
2723 ---help---
2724 Adds support for the Intel Volume Management Device (VMD). VMD is a
2725 secondary PCI host bridge that allows PCI Express root ports,
2726 and devices attached to them, to be removed from the default
2727 PCI domain and placed within the VMD domain. This provides
2728 more bus resources than are otherwise possible with a
2729 single domain. If you know your system provides one of these and
2730 has devices attached to it, say Y; if you are not sure, say N.
2731
2732 source "net/Kconfig"
2733
2734 source "drivers/Kconfig"
2735
2736 source "drivers/firmware/Kconfig"
2737
2738 source "fs/Kconfig"
2739
2740 source "arch/x86/Kconfig.debug"
2741
2742 source "security/Kconfig"
2743
2744 source "crypto/Kconfig"
2745
2746 source "arch/x86/kvm/Kconfig"
2747
2748 source "lib/Kconfig"
This page took 0.081862 seconds and 6 git commands to generate.