Merge branches 'acpi-dock', 'acpi-ec' and 'acpi-scan'
[deliverable/linux.git] / arch / x86 / Kconfig
1 # Select 32 or 64 bit
2 config 64BIT
3 bool "64-bit kernel" if ARCH = "x86"
4 default ARCH != "i386"
5 ---help---
6 Say yes to build a 64-bit kernel - formerly known as x86_64
7 Say no to build a 32-bit kernel - formerly known as i386
8
9 config X86_32
10 def_bool y
11 depends on !64BIT
12 select CLKSRC_I8253
13 select HAVE_UID16
14
15 config X86_64
16 def_bool y
17 depends on 64BIT
18 select X86_DEV_DMA_OPS
19 select ARCH_USE_CMPXCHG_LOCKREF
20 select HAVE_LIVEPATCH
21
22 ### Arch settings
23 config X86
24 def_bool y
25 select ARCH_MIGHT_HAVE_ACPI_PDC if ACPI
26 select ARCH_HAS_DEBUG_STRICT_USER_COPY_CHECKS
27 select ARCH_HAS_FAST_MULTIPLIER
28 select ARCH_HAS_GCOV_PROFILE_ALL
29 select ARCH_MIGHT_HAVE_PC_PARPORT
30 select ARCH_MIGHT_HAVE_PC_SERIO
31 select HAVE_AOUT if X86_32
32 select HAVE_UNSTABLE_SCHED_CLOCK
33 select ARCH_SUPPORTS_NUMA_BALANCING if X86_64
34 select ARCH_SUPPORTS_INT128 if X86_64
35 select HAVE_IDE
36 select HAVE_OPROFILE
37 select HAVE_PCSPKR_PLATFORM
38 select HAVE_PERF_EVENTS
39 select HAVE_IOREMAP_PROT
40 select HAVE_KPROBES
41 select HAVE_MEMBLOCK
42 select HAVE_MEMBLOCK_NODE_MAP
43 select ARCH_DISCARD_MEMBLOCK
44 select ARCH_WANT_OPTIONAL_GPIOLIB
45 select ARCH_WANT_FRAME_POINTERS
46 select HAVE_DMA_ATTRS
47 select HAVE_DMA_CONTIGUOUS
48 select HAVE_KRETPROBES
49 select GENERIC_EARLY_IOREMAP
50 select HAVE_OPTPROBES
51 select HAVE_KPROBES_ON_FTRACE
52 select HAVE_FTRACE_MCOUNT_RECORD
53 select HAVE_FENTRY if X86_64
54 select HAVE_C_RECORDMCOUNT
55 select HAVE_DYNAMIC_FTRACE
56 select HAVE_DYNAMIC_FTRACE_WITH_REGS
57 select HAVE_FUNCTION_TRACER
58 select HAVE_FUNCTION_GRAPH_TRACER
59 select HAVE_FUNCTION_GRAPH_FP_TEST
60 select HAVE_SYSCALL_TRACEPOINTS
61 select SYSCTL_EXCEPTION_TRACE
62 select HAVE_KVM
63 select HAVE_ARCH_KGDB
64 select HAVE_ARCH_TRACEHOOK
65 select HAVE_GENERIC_DMA_COHERENT if X86_32
66 select HAVE_EFFICIENT_UNALIGNED_ACCESS
67 select USER_STACKTRACE_SUPPORT
68 select HAVE_REGS_AND_STACK_ACCESS_API
69 select HAVE_DMA_API_DEBUG
70 select HAVE_KERNEL_GZIP
71 select HAVE_KERNEL_BZIP2
72 select HAVE_KERNEL_LZMA
73 select HAVE_KERNEL_XZ
74 select HAVE_KERNEL_LZO
75 select HAVE_KERNEL_LZ4
76 select HAVE_HW_BREAKPOINT
77 select HAVE_MIXED_BREAKPOINTS_REGS
78 select PERF_EVENTS
79 select HAVE_PERF_EVENTS_NMI
80 select HAVE_PERF_REGS
81 select HAVE_PERF_USER_STACK_DUMP
82 select HAVE_DEBUG_KMEMLEAK
83 select ANON_INODES
84 select HAVE_ALIGNED_STRUCT_PAGE if SLUB
85 select HAVE_CMPXCHG_LOCAL
86 select HAVE_CMPXCHG_DOUBLE
87 select HAVE_ARCH_KMEMCHECK
88 select HAVE_ARCH_KASAN if X86_64 && SPARSEMEM_VMEMMAP
89 select HAVE_USER_RETURN_NOTIFIER
90 select ARCH_HAS_ELF_RANDOMIZE
91 select HAVE_ARCH_JUMP_LABEL
92 select ARCH_HAS_ATOMIC64_DEC_IF_POSITIVE
93 select SPARSE_IRQ
94 select GENERIC_FIND_FIRST_BIT
95 select GENERIC_IRQ_PROBE
96 select GENERIC_PENDING_IRQ if SMP
97 select GENERIC_IRQ_SHOW
98 select GENERIC_CLOCKEVENTS_MIN_ADJUST
99 select IRQ_FORCED_THREADING
100 select HAVE_BPF_JIT if X86_64
101 select HAVE_ARCH_TRANSPARENT_HUGEPAGE
102 select HAVE_ARCH_HUGE_VMAP if X86_64 || (X86_32 && X86_PAE)
103 select ARCH_HAS_SG_CHAIN
104 select CLKEVT_I8253
105 select ARCH_HAVE_NMI_SAFE_CMPXCHG
106 select GENERIC_IOMAP
107 select DCACHE_WORD_ACCESS
108 select GENERIC_SMP_IDLE_THREAD
109 select ARCH_WANT_IPC_PARSE_VERSION if X86_32
110 select HAVE_ARCH_SECCOMP_FILTER
111 select BUILDTIME_EXTABLE_SORT
112 select GENERIC_CMOS_UPDATE
113 select HAVE_ARCH_SOFT_DIRTY if X86_64
114 select CLOCKSOURCE_WATCHDOG
115 select GENERIC_CLOCKEVENTS
116 select ARCH_CLOCKSOURCE_DATA
117 select CLOCKSOURCE_VALIDATE_LAST_CYCLE
118 select GENERIC_CLOCKEVENTS_BROADCAST if X86_64 || (X86_32 && X86_LOCAL_APIC)
119 select GENERIC_TIME_VSYSCALL
120 select GENERIC_STRNCPY_FROM_USER
121 select GENERIC_STRNLEN_USER
122 select HAVE_CONTEXT_TRACKING if X86_64
123 select HAVE_IRQ_TIME_ACCOUNTING
124 select VIRT_TO_BUS
125 select MODULES_USE_ELF_REL if X86_32
126 select MODULES_USE_ELF_RELA if X86_64
127 select CLONE_BACKWARDS if X86_32
128 select ARCH_USE_BUILTIN_BSWAP
129 select ARCH_USE_QUEUE_RWLOCK
130 select OLD_SIGSUSPEND3 if X86_32 || IA32_EMULATION
131 select OLD_SIGACTION if X86_32
132 select COMPAT_OLD_SIGACTION if IA32_EMULATION
133 select RTC_LIB
134 select HAVE_DEBUG_STACKOVERFLOW
135 select HAVE_IRQ_EXIT_ON_IRQ_STACK if X86_64
136 select HAVE_CC_STACKPROTECTOR
137 select GENERIC_CPU_AUTOPROBE
138 select HAVE_ARCH_AUDITSYSCALL
139 select ARCH_SUPPORTS_ATOMIC_RMW
140 select HAVE_ACPI_APEI if ACPI
141 select HAVE_ACPI_APEI_NMI if ACPI
142 select ACPI_LEGACY_TABLES_LOOKUP if ACPI
143 select X86_FEATURE_NAMES if PROC_FS
144 select SRCU
145
146 config INSTRUCTION_DECODER
147 def_bool y
148 depends on KPROBES || PERF_EVENTS || UPROBES
149
150 config PERF_EVENTS_INTEL_UNCORE
151 def_bool y
152 depends on PERF_EVENTS && CPU_SUP_INTEL && PCI
153
154 config OUTPUT_FORMAT
155 string
156 default "elf32-i386" if X86_32
157 default "elf64-x86-64" if X86_64
158
159 config ARCH_DEFCONFIG
160 string
161 default "arch/x86/configs/i386_defconfig" if X86_32
162 default "arch/x86/configs/x86_64_defconfig" if X86_64
163
164 config LOCKDEP_SUPPORT
165 def_bool y
166
167 config STACKTRACE_SUPPORT
168 def_bool y
169
170 config HAVE_LATENCYTOP_SUPPORT
171 def_bool y
172
173 config MMU
174 def_bool y
175
176 config SBUS
177 bool
178
179 config NEED_DMA_MAP_STATE
180 def_bool y
181 depends on X86_64 || INTEL_IOMMU || DMA_API_DEBUG
182
183 config NEED_SG_DMA_LENGTH
184 def_bool y
185
186 config GENERIC_ISA_DMA
187 def_bool y
188 depends on ISA_DMA_API
189
190 config GENERIC_BUG
191 def_bool y
192 depends on BUG
193 select GENERIC_BUG_RELATIVE_POINTERS if X86_64
194
195 config GENERIC_BUG_RELATIVE_POINTERS
196 bool
197
198 config GENERIC_HWEIGHT
199 def_bool y
200
201 config ARCH_MAY_HAVE_PC_FDC
202 def_bool y
203 depends on ISA_DMA_API
204
205 config RWSEM_XCHGADD_ALGORITHM
206 def_bool y
207
208 config GENERIC_CALIBRATE_DELAY
209 def_bool y
210
211 config ARCH_HAS_CPU_RELAX
212 def_bool y
213
214 config ARCH_HAS_CACHE_LINE_SIZE
215 def_bool y
216
217 config HAVE_SETUP_PER_CPU_AREA
218 def_bool y
219
220 config NEED_PER_CPU_EMBED_FIRST_CHUNK
221 def_bool y
222
223 config NEED_PER_CPU_PAGE_FIRST_CHUNK
224 def_bool y
225
226 config ARCH_HIBERNATION_POSSIBLE
227 def_bool y
228
229 config ARCH_SUSPEND_POSSIBLE
230 def_bool y
231
232 config ARCH_WANT_HUGE_PMD_SHARE
233 def_bool y
234
235 config ARCH_WANT_GENERAL_HUGETLB
236 def_bool y
237
238 config ZONE_DMA32
239 def_bool y if X86_64
240
241 config AUDIT_ARCH
242 def_bool y if X86_64
243
244 config ARCH_SUPPORTS_OPTIMIZED_INLINING
245 def_bool y
246
247 config ARCH_SUPPORTS_DEBUG_PAGEALLOC
248 def_bool y
249
250 config HAVE_INTEL_TXT
251 def_bool y
252 depends on INTEL_IOMMU && ACPI
253
254 config X86_32_SMP
255 def_bool y
256 depends on X86_32 && SMP
257
258 config X86_64_SMP
259 def_bool y
260 depends on X86_64 && SMP
261
262 config X86_HT
263 def_bool y
264 depends on SMP
265
266 config X86_32_LAZY_GS
267 def_bool y
268 depends on X86_32 && !CC_STACKPROTECTOR
269
270 config ARCH_HWEIGHT_CFLAGS
271 string
272 default "-fcall-saved-ecx -fcall-saved-edx" if X86_32
273 default "-fcall-saved-rdi -fcall-saved-rsi -fcall-saved-rdx -fcall-saved-rcx -fcall-saved-r8 -fcall-saved-r9 -fcall-saved-r10 -fcall-saved-r11" if X86_64
274
275 config ARCH_SUPPORTS_UPROBES
276 def_bool y
277
278 config FIX_EARLYCON_MEM
279 def_bool y
280
281 config PGTABLE_LEVELS
282 int
283 default 4 if X86_64
284 default 3 if X86_PAE
285 default 2
286
287 source "init/Kconfig"
288 source "kernel/Kconfig.freezer"
289
290 menu "Processor type and features"
291
292 config ZONE_DMA
293 bool "DMA memory allocation support" if EXPERT
294 default y
295 help
296 DMA memory allocation support allows devices with less than 32-bit
297 addressing to allocate within the first 16MB of address space.
298 Disable if no such devices will be used.
299
300 If unsure, say Y.
301
302 config SMP
303 bool "Symmetric multi-processing support"
304 ---help---
305 This enables support for systems with more than one CPU. If you have
306 a system with only one CPU, say N. If you have a system with more
307 than one CPU, say Y.
308
309 If you say N here, the kernel will run on uni- and multiprocessor
310 machines, but will use only one CPU of a multiprocessor machine. If
311 you say Y here, the kernel will run on many, but not all,
312 uniprocessor machines. On a uniprocessor machine, the kernel
313 will run faster if you say N here.
314
315 Note that if you say Y here and choose architecture "586" or
316 "Pentium" under "Processor family", the kernel will not work on 486
317 architectures. Similarly, multiprocessor kernels for the "PPro"
318 architecture may not work on all Pentium based boards.
319
320 People using multiprocessor machines who say Y here should also say
321 Y to "Enhanced Real Time Clock Support", below. The "Advanced Power
322 Management" code will be disabled if you say Y here.
323
324 See also <file:Documentation/x86/i386/IO-APIC.txt>,
325 <file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at
326 <http://www.tldp.org/docs.html#howto>.
327
328 If you don't know what to do here, say N.
329
330 config X86_FEATURE_NAMES
331 bool "Processor feature human-readable names" if EMBEDDED
332 default y
333 ---help---
334 This option compiles in a table of x86 feature bits and corresponding
335 names. This is required to support /proc/cpuinfo and a few kernel
336 messages. You can disable this to save space, at the expense of
337 making those few kernel messages show numeric feature bits instead.
338
339 If in doubt, say Y.
340
341 config X86_X2APIC
342 bool "Support x2apic"
343 depends on X86_LOCAL_APIC && X86_64 && IRQ_REMAP
344 ---help---
345 This enables x2apic support on CPUs that have this feature.
346
347 This allows 32-bit apic IDs (so it can support very large systems),
348 and accesses the local apic via MSRs not via mmio.
349
350 If you don't know what to do here, say N.
351
352 config X86_MPPARSE
353 bool "Enable MPS table" if ACPI || SFI
354 default y
355 depends on X86_LOCAL_APIC
356 ---help---
357 For old smp systems that do not have proper acpi support. Newer systems
358 (esp with 64bit cpus) with acpi support, MADT and DSDT will override it
359
360 config X86_BIGSMP
361 bool "Support for big SMP systems with more than 8 CPUs"
362 depends on X86_32 && SMP
363 ---help---
364 This option is needed for the systems that have more than 8 CPUs
365
366 config GOLDFISH
367 def_bool y
368 depends on X86_GOLDFISH
369
370 if X86_32
371 config X86_EXTENDED_PLATFORM
372 bool "Support for extended (non-PC) x86 platforms"
373 default y
374 ---help---
375 If you disable this option then the kernel will only support
376 standard PC platforms. (which covers the vast majority of
377 systems out there.)
378
379 If you enable this option then you'll be able to select support
380 for the following (non-PC) 32 bit x86 platforms:
381 Goldfish (Android emulator)
382 AMD Elan
383 RDC R-321x SoC
384 SGI 320/540 (Visual Workstation)
385 STA2X11-based (e.g. Northville)
386 Moorestown MID devices
387
388 If you have one of these systems, or if you want to build a
389 generic distribution kernel, say Y here - otherwise say N.
390 endif
391
392 if X86_64
393 config X86_EXTENDED_PLATFORM
394 bool "Support for extended (non-PC) x86 platforms"
395 default y
396 ---help---
397 If you disable this option then the kernel will only support
398 standard PC platforms. (which covers the vast majority of
399 systems out there.)
400
401 If you enable this option then you'll be able to select support
402 for the following (non-PC) 64 bit x86 platforms:
403 Numascale NumaChip
404 ScaleMP vSMP
405 SGI Ultraviolet
406
407 If you have one of these systems, or if you want to build a
408 generic distribution kernel, say Y here - otherwise say N.
409 endif
410 # This is an alphabetically sorted list of 64 bit extended platforms
411 # Please maintain the alphabetic order if and when there are additions
412 config X86_NUMACHIP
413 bool "Numascale NumaChip"
414 depends on X86_64
415 depends on X86_EXTENDED_PLATFORM
416 depends on NUMA
417 depends on SMP
418 depends on X86_X2APIC
419 depends on PCI_MMCONFIG
420 ---help---
421 Adds support for Numascale NumaChip large-SMP systems. Needed to
422 enable more than ~168 cores.
423 If you don't have one of these, you should say N here.
424
425 config X86_VSMP
426 bool "ScaleMP vSMP"
427 select HYPERVISOR_GUEST
428 select PARAVIRT
429 depends on X86_64 && PCI
430 depends on X86_EXTENDED_PLATFORM
431 depends on SMP
432 ---help---
433 Support for ScaleMP vSMP systems. Say 'Y' here if this kernel is
434 supposed to run on these EM64T-based machines. Only choose this option
435 if you have one of these machines.
436
437 config X86_UV
438 bool "SGI Ultraviolet"
439 depends on X86_64
440 depends on X86_EXTENDED_PLATFORM
441 depends on NUMA
442 depends on X86_X2APIC
443 ---help---
444 This option is needed in order to support SGI Ultraviolet systems.
445 If you don't have one of these, you should say N here.
446
447 # Following is an alphabetically sorted list of 32 bit extended platforms
448 # Please maintain the alphabetic order if and when there are additions
449
450 config X86_GOLDFISH
451 bool "Goldfish (Virtual Platform)"
452 depends on X86_EXTENDED_PLATFORM
453 ---help---
454 Enable support for the Goldfish virtual platform used primarily
455 for Android development. Unless you are building for the Android
456 Goldfish emulator say N here.
457
458 config X86_INTEL_CE
459 bool "CE4100 TV platform"
460 depends on PCI
461 depends on PCI_GODIRECT
462 depends on X86_IO_APIC
463 depends on X86_32
464 depends on X86_EXTENDED_PLATFORM
465 select X86_REBOOTFIXUPS
466 select OF
467 select OF_EARLY_FLATTREE
468 select IRQ_DOMAIN
469 ---help---
470 Select for the Intel CE media processor (CE4100) SOC.
471 This option compiles in support for the CE4100 SOC for settop
472 boxes and media devices.
473
474 config X86_INTEL_MID
475 bool "Intel MID platform support"
476 depends on X86_32
477 depends on X86_EXTENDED_PLATFORM
478 depends on X86_PLATFORM_DEVICES
479 depends on PCI
480 depends on PCI_GOANY
481 depends on X86_IO_APIC
482 select SFI
483 select I2C
484 select DW_APB_TIMER
485 select APB_TIMER
486 select INTEL_SCU_IPC
487 select MFD_INTEL_MSIC
488 ---help---
489 Select to build a kernel capable of supporting Intel MID (Mobile
490 Internet Device) platform systems which do not have the PCI legacy
491 interfaces. If you are building for a PC class system say N here.
492
493 Intel MID platforms are based on an Intel processor and chipset which
494 consume less power than most of the x86 derivatives.
495
496 config X86_INTEL_QUARK
497 bool "Intel Quark platform support"
498 depends on X86_32
499 depends on X86_EXTENDED_PLATFORM
500 depends on X86_PLATFORM_DEVICES
501 depends on X86_TSC
502 depends on PCI
503 depends on PCI_GOANY
504 depends on X86_IO_APIC
505 select IOSF_MBI
506 select INTEL_IMR
507 select COMMON_CLK
508 ---help---
509 Select to include support for Quark X1000 SoC.
510 Say Y here if you have a Quark based system such as the Arduino
511 compatible Intel Galileo.
512
513 config X86_INTEL_LPSS
514 bool "Intel Low Power Subsystem Support"
515 depends on ACPI
516 select COMMON_CLK
517 select PINCTRL
518 ---help---
519 Select to build support for Intel Low Power Subsystem such as
520 found on Intel Lynxpoint PCH. Selecting this option enables
521 things like clock tree (common clock framework) and pincontrol
522 which are needed by the LPSS peripheral drivers.
523
524 config X86_AMD_PLATFORM_DEVICE
525 bool "AMD ACPI2Platform devices support"
526 depends on ACPI
527 select COMMON_CLK
528 select PINCTRL
529 ---help---
530 Select to interpret AMD specific ACPI device to platform device
531 such as I2C, UART, GPIO found on AMD Carrizo and later chipsets.
532 I2C and UART depend on COMMON_CLK to set clock. GPIO driver is
533 implemented under PINCTRL subsystem.
534
535 config IOSF_MBI
536 tristate "Intel SoC IOSF Sideband support for SoC platforms"
537 depends on PCI
538 ---help---
539 This option enables sideband register access support for Intel SoC
540 platforms. On these platforms the IOSF sideband is used in lieu of
541 MSR's for some register accesses, mostly but not limited to thermal
542 and power. Drivers may query the availability of this device to
543 determine if they need the sideband in order to work on these
544 platforms. The sideband is available on the following SoC products.
545 This list is not meant to be exclusive.
546 - BayTrail
547 - Braswell
548 - Quark
549
550 You should say Y if you are running a kernel on one of these SoC's.
551
552 config IOSF_MBI_DEBUG
553 bool "Enable IOSF sideband access through debugfs"
554 depends on IOSF_MBI && DEBUG_FS
555 ---help---
556 Select this option to expose the IOSF sideband access registers (MCR,
557 MDR, MCRX) through debugfs to write and read register information from
558 different units on the SoC. This is most useful for obtaining device
559 state information for debug and analysis. As this is a general access
560 mechanism, users of this option would have specific knowledge of the
561 device they want to access.
562
563 If you don't require the option or are in doubt, say N.
564
565 config X86_RDC321X
566 bool "RDC R-321x SoC"
567 depends on X86_32
568 depends on X86_EXTENDED_PLATFORM
569 select M486
570 select X86_REBOOTFIXUPS
571 ---help---
572 This option is needed for RDC R-321x system-on-chip, also known
573 as R-8610-(G).
574 If you don't have one of these chips, you should say N here.
575
576 config X86_32_NON_STANDARD
577 bool "Support non-standard 32-bit SMP architectures"
578 depends on X86_32 && SMP
579 depends on X86_EXTENDED_PLATFORM
580 ---help---
581 This option compiles in the bigsmp and STA2X11 default
582 subarchitectures. It is intended for a generic binary
583 kernel. If you select them all, kernel will probe it one by
584 one and will fallback to default.
585
586 # Alphabetically sorted list of Non standard 32 bit platforms
587
588 config X86_SUPPORTS_MEMORY_FAILURE
589 def_bool y
590 # MCE code calls memory_failure():
591 depends on X86_MCE
592 # On 32-bit this adds too big of NODES_SHIFT and we run out of page flags:
593 # On 32-bit SPARSEMEM adds too big of SECTIONS_WIDTH:
594 depends on X86_64 || !SPARSEMEM
595 select ARCH_SUPPORTS_MEMORY_FAILURE
596
597 config STA2X11
598 bool "STA2X11 Companion Chip Support"
599 depends on X86_32_NON_STANDARD && PCI
600 select X86_DEV_DMA_OPS
601 select X86_DMA_REMAP
602 select SWIOTLB
603 select MFD_STA2X11
604 select ARCH_REQUIRE_GPIOLIB
605 default n
606 ---help---
607 This adds support for boards based on the STA2X11 IO-Hub,
608 a.k.a. "ConneXt". The chip is used in place of the standard
609 PC chipset, so all "standard" peripherals are missing. If this
610 option is selected the kernel will still be able to boot on
611 standard PC machines.
612
613 config X86_32_IRIS
614 tristate "Eurobraille/Iris poweroff module"
615 depends on X86_32
616 ---help---
617 The Iris machines from EuroBraille do not have APM or ACPI support
618 to shut themselves down properly. A special I/O sequence is
619 needed to do so, which is what this module does at
620 kernel shutdown.
621
622 This is only for Iris machines from EuroBraille.
623
624 If unused, say N.
625
626 config SCHED_OMIT_FRAME_POINTER
627 def_bool y
628 prompt "Single-depth WCHAN output"
629 depends on X86
630 ---help---
631 Calculate simpler /proc/<PID>/wchan values. If this option
632 is disabled then wchan values will recurse back to the
633 caller function. This provides more accurate wchan values,
634 at the expense of slightly more scheduling overhead.
635
636 If in doubt, say "Y".
637
638 menuconfig HYPERVISOR_GUEST
639 bool "Linux guest support"
640 ---help---
641 Say Y here to enable options for running Linux under various hyper-
642 visors. This option enables basic hypervisor detection and platform
643 setup.
644
645 If you say N, all options in this submenu will be skipped and
646 disabled, and Linux guest support won't be built in.
647
648 if HYPERVISOR_GUEST
649
650 config PARAVIRT
651 bool "Enable paravirtualization code"
652 ---help---
653 This changes the kernel so it can modify itself when it is run
654 under a hypervisor, potentially improving performance significantly
655 over full virtualization. However, when run without a hypervisor
656 the kernel is theoretically slower and slightly larger.
657
658 config PARAVIRT_DEBUG
659 bool "paravirt-ops debugging"
660 depends on PARAVIRT && DEBUG_KERNEL
661 ---help---
662 Enable to debug paravirt_ops internals. Specifically, BUG if
663 a paravirt_op is missing when it is called.
664
665 config PARAVIRT_SPINLOCKS
666 bool "Paravirtualization layer for spinlocks"
667 depends on PARAVIRT && SMP
668 select UNINLINE_SPIN_UNLOCK
669 ---help---
670 Paravirtualized spinlocks allow a pvops backend to replace the
671 spinlock implementation with something virtualization-friendly
672 (for example, block the virtual CPU rather than spinning).
673
674 It has a minimal impact on native kernels and gives a nice performance
675 benefit on paravirtualized KVM / Xen kernels.
676
677 If you are unsure how to answer this question, answer Y.
678
679 source "arch/x86/xen/Kconfig"
680
681 config KVM_GUEST
682 bool "KVM Guest support (including kvmclock)"
683 depends on PARAVIRT
684 select PARAVIRT_CLOCK
685 default y
686 ---help---
687 This option enables various optimizations for running under the KVM
688 hypervisor. It includes a paravirtualized clock, so that instead
689 of relying on a PIT (or probably other) emulation by the
690 underlying device model, the host provides the guest with
691 timing infrastructure such as time of day, and system time
692
693 config KVM_DEBUG_FS
694 bool "Enable debug information for KVM Guests in debugfs"
695 depends on KVM_GUEST && DEBUG_FS
696 default n
697 ---help---
698 This option enables collection of various statistics for KVM guest.
699 Statistics are displayed in debugfs filesystem. Enabling this option
700 may incur significant overhead.
701
702 source "arch/x86/lguest/Kconfig"
703
704 config PARAVIRT_TIME_ACCOUNTING
705 bool "Paravirtual steal time accounting"
706 depends on PARAVIRT
707 default n
708 ---help---
709 Select this option to enable fine granularity task steal time
710 accounting. Time spent executing other tasks in parallel with
711 the current vCPU is discounted from the vCPU power. To account for
712 that, there can be a small performance impact.
713
714 If in doubt, say N here.
715
716 config PARAVIRT_CLOCK
717 bool
718
719 endif #HYPERVISOR_GUEST
720
721 config NO_BOOTMEM
722 def_bool y
723
724 source "arch/x86/Kconfig.cpu"
725
726 config HPET_TIMER
727 def_bool X86_64
728 prompt "HPET Timer Support" if X86_32
729 ---help---
730 Use the IA-PC HPET (High Precision Event Timer) to manage
731 time in preference to the PIT and RTC, if a HPET is
732 present.
733 HPET is the next generation timer replacing legacy 8254s.
734 The HPET provides a stable time base on SMP
735 systems, unlike the TSC, but it is more expensive to access,
736 as it is off-chip. You can find the HPET spec at
737 <http://www.intel.com/hardwaredesign/hpetspec_1.pdf>.
738
739 You can safely choose Y here. However, HPET will only be
740 activated if the platform and the BIOS support this feature.
741 Otherwise the 8254 will be used for timing services.
742
743 Choose N to continue using the legacy 8254 timer.
744
745 config HPET_EMULATE_RTC
746 def_bool y
747 depends on HPET_TIMER && (RTC=y || RTC=m || RTC_DRV_CMOS=m || RTC_DRV_CMOS=y)
748
749 config APB_TIMER
750 def_bool y if X86_INTEL_MID
751 prompt "Intel MID APB Timer Support" if X86_INTEL_MID
752 select DW_APB_TIMER
753 depends on X86_INTEL_MID && SFI
754 help
755 APB timer is the replacement for 8254, HPET on X86 MID platforms.
756 The APBT provides a stable time base on SMP
757 systems, unlike the TSC, but it is more expensive to access,
758 as it is off-chip. APB timers are always running regardless of CPU
759 C states, they are used as per CPU clockevent device when possible.
760
761 # Mark as expert because too many people got it wrong.
762 # The code disables itself when not needed.
763 config DMI
764 default y
765 select DMI_SCAN_MACHINE_NON_EFI_FALLBACK
766 bool "Enable DMI scanning" if EXPERT
767 ---help---
768 Enabled scanning of DMI to identify machine quirks. Say Y
769 here unless you have verified that your setup is not
770 affected by entries in the DMI blacklist. Required by PNP
771 BIOS code.
772
773 config GART_IOMMU
774 bool "Old AMD GART IOMMU support"
775 select SWIOTLB
776 depends on X86_64 && PCI && AMD_NB
777 ---help---
778 Provides a driver for older AMD Athlon64/Opteron/Turion/Sempron
779 GART based hardware IOMMUs.
780
781 The GART supports full DMA access for devices with 32-bit access
782 limitations, on systems with more than 3 GB. This is usually needed
783 for USB, sound, many IDE/SATA chipsets and some other devices.
784
785 Newer systems typically have a modern AMD IOMMU, supported via
786 the CONFIG_AMD_IOMMU=y config option.
787
788 In normal configurations this driver is only active when needed:
789 there's more than 3 GB of memory and the system contains a
790 32-bit limited device.
791
792 If unsure, say Y.
793
794 config CALGARY_IOMMU
795 bool "IBM Calgary IOMMU support"
796 select SWIOTLB
797 depends on X86_64 && PCI
798 ---help---
799 Support for hardware IOMMUs in IBM's xSeries x366 and x460
800 systems. Needed to run systems with more than 3GB of memory
801 properly with 32-bit PCI devices that do not support DAC
802 (Double Address Cycle). Calgary also supports bus level
803 isolation, where all DMAs pass through the IOMMU. This
804 prevents them from going anywhere except their intended
805 destination. This catches hard-to-find kernel bugs and
806 mis-behaving drivers and devices that do not use the DMA-API
807 properly to set up their DMA buffers. The IOMMU can be
808 turned off at boot time with the iommu=off parameter.
809 Normally the kernel will make the right choice by itself.
810 If unsure, say Y.
811
812 config CALGARY_IOMMU_ENABLED_BY_DEFAULT
813 def_bool y
814 prompt "Should Calgary be enabled by default?"
815 depends on CALGARY_IOMMU
816 ---help---
817 Should Calgary be enabled by default? if you choose 'y', Calgary
818 will be used (if it exists). If you choose 'n', Calgary will not be
819 used even if it exists. If you choose 'n' and would like to use
820 Calgary anyway, pass 'iommu=calgary' on the kernel command line.
821 If unsure, say Y.
822
823 # need this always selected by IOMMU for the VIA workaround
824 config SWIOTLB
825 def_bool y if X86_64
826 ---help---
827 Support for software bounce buffers used on x86-64 systems
828 which don't have a hardware IOMMU. Using this PCI devices
829 which can only access 32-bits of memory can be used on systems
830 with more than 3 GB of memory.
831 If unsure, say Y.
832
833 config IOMMU_HELPER
834 def_bool y
835 depends on CALGARY_IOMMU || GART_IOMMU || SWIOTLB || AMD_IOMMU
836
837 config MAXSMP
838 bool "Enable Maximum number of SMP Processors and NUMA Nodes"
839 depends on X86_64 && SMP && DEBUG_KERNEL
840 select CPUMASK_OFFSTACK
841 ---help---
842 Enable maximum number of CPUS and NUMA Nodes for this architecture.
843 If unsure, say N.
844
845 config NR_CPUS
846 int "Maximum number of CPUs" if SMP && !MAXSMP
847 range 2 8 if SMP && X86_32 && !X86_BIGSMP
848 range 2 512 if SMP && !MAXSMP && !CPUMASK_OFFSTACK
849 range 2 8192 if SMP && !MAXSMP && CPUMASK_OFFSTACK && X86_64
850 default "1" if !SMP
851 default "8192" if MAXSMP
852 default "32" if SMP && X86_BIGSMP
853 default "8" if SMP
854 ---help---
855 This allows you to specify the maximum number of CPUs which this
856 kernel will support. If CPUMASK_OFFSTACK is enabled, the maximum
857 supported value is 4096, otherwise the maximum value is 512. The
858 minimum value which makes sense is 2.
859
860 This is purely to save memory - each supported CPU adds
861 approximately eight kilobytes to the kernel image.
862
863 config SCHED_SMT
864 bool "SMT (Hyperthreading) scheduler support"
865 depends on X86_HT
866 ---help---
867 SMT scheduler support improves the CPU scheduler's decision making
868 when dealing with Intel Pentium 4 chips with HyperThreading at a
869 cost of slightly increased overhead in some places. If unsure say
870 N here.
871
872 config SCHED_MC
873 def_bool y
874 prompt "Multi-core scheduler support"
875 depends on X86_HT
876 ---help---
877 Multi-core scheduler support improves the CPU scheduler's decision
878 making when dealing with multi-core CPU chips at a cost of slightly
879 increased overhead in some places. If unsure say N here.
880
881 source "kernel/Kconfig.preempt"
882
883 config UP_LATE_INIT
884 def_bool y
885 depends on !SMP && X86_LOCAL_APIC
886
887 config X86_UP_APIC
888 bool "Local APIC support on uniprocessors" if !PCI_MSI
889 default PCI_MSI
890 depends on X86_32 && !SMP && !X86_32_NON_STANDARD
891 ---help---
892 A local APIC (Advanced Programmable Interrupt Controller) is an
893 integrated interrupt controller in the CPU. If you have a single-CPU
894 system which has a processor with a local APIC, you can say Y here to
895 enable and use it. If you say Y here even though your machine doesn't
896 have a local APIC, then the kernel will still run with no slowdown at
897 all. The local APIC supports CPU-generated self-interrupts (timer,
898 performance counters), and the NMI watchdog which detects hard
899 lockups.
900
901 config X86_UP_IOAPIC
902 bool "IO-APIC support on uniprocessors"
903 depends on X86_UP_APIC
904 ---help---
905 An IO-APIC (I/O Advanced Programmable Interrupt Controller) is an
906 SMP-capable replacement for PC-style interrupt controllers. Most
907 SMP systems and many recent uniprocessor systems have one.
908
909 If you have a single-CPU system with an IO-APIC, you can say Y here
910 to use it. If you say Y here even though your machine doesn't have
911 an IO-APIC, then the kernel will still run with no slowdown at all.
912
913 config X86_LOCAL_APIC
914 def_bool y
915 depends on X86_64 || SMP || X86_32_NON_STANDARD || X86_UP_APIC || PCI_MSI
916 select GENERIC_IRQ_LEGACY_ALLOC_HWIRQ
917
918 config X86_IO_APIC
919 def_bool y
920 depends on X86_LOCAL_APIC || X86_UP_IOAPIC
921 select IRQ_DOMAIN
922
923 config X86_REROUTE_FOR_BROKEN_BOOT_IRQS
924 bool "Reroute for broken boot IRQs"
925 depends on X86_IO_APIC
926 ---help---
927 This option enables a workaround that fixes a source of
928 spurious interrupts. This is recommended when threaded
929 interrupt handling is used on systems where the generation of
930 superfluous "boot interrupts" cannot be disabled.
931
932 Some chipsets generate a legacy INTx "boot IRQ" when the IRQ
933 entry in the chipset's IO-APIC is masked (as, e.g. the RT
934 kernel does during interrupt handling). On chipsets where this
935 boot IRQ generation cannot be disabled, this workaround keeps
936 the original IRQ line masked so that only the equivalent "boot
937 IRQ" is delivered to the CPUs. The workaround also tells the
938 kernel to set up the IRQ handler on the boot IRQ line. In this
939 way only one interrupt is delivered to the kernel. Otherwise
940 the spurious second interrupt may cause the kernel to bring
941 down (vital) interrupt lines.
942
943 Only affects "broken" chipsets. Interrupt sharing may be
944 increased on these systems.
945
946 config X86_MCE
947 bool "Machine Check / overheating reporting"
948 default y
949 ---help---
950 Machine Check support allows the processor to notify the
951 kernel if it detects a problem (e.g. overheating, data corruption).
952 The action the kernel takes depends on the severity of the problem,
953 ranging from warning messages to halting the machine.
954
955 config X86_MCE_INTEL
956 def_bool y
957 prompt "Intel MCE features"
958 depends on X86_MCE && X86_LOCAL_APIC
959 ---help---
960 Additional support for intel specific MCE features such as
961 the thermal monitor.
962
963 config X86_MCE_AMD
964 def_bool y
965 prompt "AMD MCE features"
966 depends on X86_MCE && X86_LOCAL_APIC
967 ---help---
968 Additional support for AMD specific MCE features such as
969 the DRAM Error Threshold.
970
971 config X86_ANCIENT_MCE
972 bool "Support for old Pentium 5 / WinChip machine checks"
973 depends on X86_32 && X86_MCE
974 ---help---
975 Include support for machine check handling on old Pentium 5 or WinChip
976 systems. These typically need to be enabled explicitly on the command
977 line.
978
979 config X86_MCE_THRESHOLD
980 depends on X86_MCE_AMD || X86_MCE_INTEL
981 def_bool y
982
983 config X86_MCE_INJECT
984 depends on X86_MCE
985 tristate "Machine check injector support"
986 ---help---
987 Provide support for injecting machine checks for testing purposes.
988 If you don't know what a machine check is and you don't do kernel
989 QA it is safe to say n.
990
991 config X86_THERMAL_VECTOR
992 def_bool y
993 depends on X86_MCE_INTEL
994
995 config VM86
996 bool "Enable VM86 support" if EXPERT
997 default y
998 depends on X86_32
999 ---help---
1000 This option is required by programs like DOSEMU to run
1001 16-bit real mode legacy code on x86 processors. It also may
1002 be needed by software like XFree86 to initialize some video
1003 cards via BIOS. Disabling this option saves about 6K.
1004
1005 config X86_16BIT
1006 bool "Enable support for 16-bit segments" if EXPERT
1007 default y
1008 ---help---
1009 This option is required by programs like Wine to run 16-bit
1010 protected mode legacy code on x86 processors. Disabling
1011 this option saves about 300 bytes on i386, or around 6K text
1012 plus 16K runtime memory on x86-64,
1013
1014 config X86_ESPFIX32
1015 def_bool y
1016 depends on X86_16BIT && X86_32
1017
1018 config X86_ESPFIX64
1019 def_bool y
1020 depends on X86_16BIT && X86_64
1021
1022 config X86_VSYSCALL_EMULATION
1023 bool "Enable vsyscall emulation" if EXPERT
1024 default y
1025 depends on X86_64
1026 ---help---
1027 This enables emulation of the legacy vsyscall page. Disabling
1028 it is roughly equivalent to booting with vsyscall=none, except
1029 that it will also disable the helpful warning if a program
1030 tries to use a vsyscall. With this option set to N, offending
1031 programs will just segfault, citing addresses of the form
1032 0xffffffffff600?00.
1033
1034 This option is required by many programs built before 2013, and
1035 care should be used even with newer programs if set to N.
1036
1037 Disabling this option saves about 7K of kernel size and
1038 possibly 4K of additional runtime pagetable memory.
1039
1040 config TOSHIBA
1041 tristate "Toshiba Laptop support"
1042 depends on X86_32
1043 ---help---
1044 This adds a driver to safely access the System Management Mode of
1045 the CPU on Toshiba portables with a genuine Toshiba BIOS. It does
1046 not work on models with a Phoenix BIOS. The System Management Mode
1047 is used to set the BIOS and power saving options on Toshiba portables.
1048
1049 For information on utilities to make use of this driver see the
1050 Toshiba Linux utilities web site at:
1051 <http://www.buzzard.org.uk/toshiba/>.
1052
1053 Say Y if you intend to run this kernel on a Toshiba portable.
1054 Say N otherwise.
1055
1056 config I8K
1057 tristate "Dell laptop support"
1058 select HWMON
1059 ---help---
1060 This adds a driver to safely access the System Management Mode
1061 of the CPU on the Dell Inspiron 8000. The System Management Mode
1062 is used to read cpu temperature and cooling fan status and to
1063 control the fans on the I8K portables.
1064
1065 This driver has been tested only on the Inspiron 8000 but it may
1066 also work with other Dell laptops. You can force loading on other
1067 models by passing the parameter `force=1' to the module. Use at
1068 your own risk.
1069
1070 For information on utilities to make use of this driver see the
1071 I8K Linux utilities web site at:
1072 <http://people.debian.org/~dz/i8k/>
1073
1074 Say Y if you intend to run this kernel on a Dell Inspiron 8000.
1075 Say N otherwise.
1076
1077 config X86_REBOOTFIXUPS
1078 bool "Enable X86 board specific fixups for reboot"
1079 depends on X86_32
1080 ---help---
1081 This enables chipset and/or board specific fixups to be done
1082 in order to get reboot to work correctly. This is only needed on
1083 some combinations of hardware and BIOS. The symptom, for which
1084 this config is intended, is when reboot ends with a stalled/hung
1085 system.
1086
1087 Currently, the only fixup is for the Geode machines using
1088 CS5530A and CS5536 chipsets and the RDC R-321x SoC.
1089
1090 Say Y if you want to enable the fixup. Currently, it's safe to
1091 enable this option even if you don't need it.
1092 Say N otherwise.
1093
1094 config MICROCODE
1095 tristate "CPU microcode loading support"
1096 depends on CPU_SUP_AMD || CPU_SUP_INTEL
1097 select FW_LOADER
1098 ---help---
1099
1100 If you say Y here, you will be able to update the microcode on
1101 certain Intel and AMD processors. The Intel support is for the
1102 IA32 family, e.g. Pentium Pro, Pentium II, Pentium III, Pentium 4,
1103 Xeon etc. The AMD support is for families 0x10 and later. You will
1104 obviously need the actual microcode binary data itself which is not
1105 shipped with the Linux kernel.
1106
1107 This option selects the general module only, you need to select
1108 at least one vendor specific module as well.
1109
1110 To compile this driver as a module, choose M here: the module
1111 will be called microcode.
1112
1113 config MICROCODE_INTEL
1114 bool "Intel microcode loading support"
1115 depends on MICROCODE
1116 default MICROCODE
1117 select FW_LOADER
1118 ---help---
1119 This options enables microcode patch loading support for Intel
1120 processors.
1121
1122 For the current Intel microcode data package go to
1123 <https://downloadcenter.intel.com> and search for
1124 'Linux Processor Microcode Data File'.
1125
1126 config MICROCODE_AMD
1127 bool "AMD microcode loading support"
1128 depends on MICROCODE
1129 select FW_LOADER
1130 ---help---
1131 If you select this option, microcode patch loading support for AMD
1132 processors will be enabled.
1133
1134 config MICROCODE_OLD_INTERFACE
1135 def_bool y
1136 depends on MICROCODE
1137
1138 config MICROCODE_INTEL_EARLY
1139 bool
1140
1141 config MICROCODE_AMD_EARLY
1142 bool
1143
1144 config MICROCODE_EARLY
1145 bool "Early load microcode"
1146 depends on MICROCODE=y && BLK_DEV_INITRD
1147 select MICROCODE_INTEL_EARLY if MICROCODE_INTEL
1148 select MICROCODE_AMD_EARLY if MICROCODE_AMD
1149 default y
1150 help
1151 This option provides functionality to read additional microcode data
1152 at the beginning of initrd image. The data tells kernel to load
1153 microcode to CPU's as early as possible. No functional change if no
1154 microcode data is glued to the initrd, therefore it's safe to say Y.
1155
1156 config X86_MSR
1157 tristate "/dev/cpu/*/msr - Model-specific register support"
1158 ---help---
1159 This device gives privileged processes access to the x86
1160 Model-Specific Registers (MSRs). It is a character device with
1161 major 202 and minors 0 to 31 for /dev/cpu/0/msr to /dev/cpu/31/msr.
1162 MSR accesses are directed to a specific CPU on multi-processor
1163 systems.
1164
1165 config X86_CPUID
1166 tristate "/dev/cpu/*/cpuid - CPU information support"
1167 ---help---
1168 This device gives processes access to the x86 CPUID instruction to
1169 be executed on a specific processor. It is a character device
1170 with major 203 and minors 0 to 31 for /dev/cpu/0/cpuid to
1171 /dev/cpu/31/cpuid.
1172
1173 choice
1174 prompt "High Memory Support"
1175 default HIGHMEM4G
1176 depends on X86_32
1177
1178 config NOHIGHMEM
1179 bool "off"
1180 ---help---
1181 Linux can use up to 64 Gigabytes of physical memory on x86 systems.
1182 However, the address space of 32-bit x86 processors is only 4
1183 Gigabytes large. That means that, if you have a large amount of
1184 physical memory, not all of it can be "permanently mapped" by the
1185 kernel. The physical memory that's not permanently mapped is called
1186 "high memory".
1187
1188 If you are compiling a kernel which will never run on a machine with
1189 more than 1 Gigabyte total physical RAM, answer "off" here (default
1190 choice and suitable for most users). This will result in a "3GB/1GB"
1191 split: 3GB are mapped so that each process sees a 3GB virtual memory
1192 space and the remaining part of the 4GB virtual memory space is used
1193 by the kernel to permanently map as much physical memory as
1194 possible.
1195
1196 If the machine has between 1 and 4 Gigabytes physical RAM, then
1197 answer "4GB" here.
1198
1199 If more than 4 Gigabytes is used then answer "64GB" here. This
1200 selection turns Intel PAE (Physical Address Extension) mode on.
1201 PAE implements 3-level paging on IA32 processors. PAE is fully
1202 supported by Linux, PAE mode is implemented on all recent Intel
1203 processors (Pentium Pro and better). NOTE: If you say "64GB" here,
1204 then the kernel will not boot on CPUs that don't support PAE!
1205
1206 The actual amount of total physical memory will either be
1207 auto detected or can be forced by using a kernel command line option
1208 such as "mem=256M". (Try "man bootparam" or see the documentation of
1209 your boot loader (lilo or loadlin) about how to pass options to the
1210 kernel at boot time.)
1211
1212 If unsure, say "off".
1213
1214 config HIGHMEM4G
1215 bool "4GB"
1216 ---help---
1217 Select this if you have a 32-bit processor and between 1 and 4
1218 gigabytes of physical RAM.
1219
1220 config HIGHMEM64G
1221 bool "64GB"
1222 depends on !M486
1223 select X86_PAE
1224 ---help---
1225 Select this if you have a 32-bit processor and more than 4
1226 gigabytes of physical RAM.
1227
1228 endchoice
1229
1230 choice
1231 prompt "Memory split" if EXPERT
1232 default VMSPLIT_3G
1233 depends on X86_32
1234 ---help---
1235 Select the desired split between kernel and user memory.
1236
1237 If the address range available to the kernel is less than the
1238 physical memory installed, the remaining memory will be available
1239 as "high memory". Accessing high memory is a little more costly
1240 than low memory, as it needs to be mapped into the kernel first.
1241 Note that increasing the kernel address space limits the range
1242 available to user programs, making the address space there
1243 tighter. Selecting anything other than the default 3G/1G split
1244 will also likely make your kernel incompatible with binary-only
1245 kernel modules.
1246
1247 If you are not absolutely sure what you are doing, leave this
1248 option alone!
1249
1250 config VMSPLIT_3G
1251 bool "3G/1G user/kernel split"
1252 config VMSPLIT_3G_OPT
1253 depends on !X86_PAE
1254 bool "3G/1G user/kernel split (for full 1G low memory)"
1255 config VMSPLIT_2G
1256 bool "2G/2G user/kernel split"
1257 config VMSPLIT_2G_OPT
1258 depends on !X86_PAE
1259 bool "2G/2G user/kernel split (for full 2G low memory)"
1260 config VMSPLIT_1G
1261 bool "1G/3G user/kernel split"
1262 endchoice
1263
1264 config PAGE_OFFSET
1265 hex
1266 default 0xB0000000 if VMSPLIT_3G_OPT
1267 default 0x80000000 if VMSPLIT_2G
1268 default 0x78000000 if VMSPLIT_2G_OPT
1269 default 0x40000000 if VMSPLIT_1G
1270 default 0xC0000000
1271 depends on X86_32
1272
1273 config HIGHMEM
1274 def_bool y
1275 depends on X86_32 && (HIGHMEM64G || HIGHMEM4G)
1276
1277 config X86_PAE
1278 bool "PAE (Physical Address Extension) Support"
1279 depends on X86_32 && !HIGHMEM4G
1280 ---help---
1281 PAE is required for NX support, and furthermore enables
1282 larger swapspace support for non-overcommit purposes. It
1283 has the cost of more pagetable lookup overhead, and also
1284 consumes more pagetable space per process.
1285
1286 config ARCH_PHYS_ADDR_T_64BIT
1287 def_bool y
1288 depends on X86_64 || X86_PAE
1289
1290 config ARCH_DMA_ADDR_T_64BIT
1291 def_bool y
1292 depends on X86_64 || HIGHMEM64G
1293
1294 config X86_DIRECT_GBPAGES
1295 def_bool y
1296 depends on X86_64 && !DEBUG_PAGEALLOC && !KMEMCHECK
1297 ---help---
1298 Certain kernel features effectively disable kernel
1299 linear 1 GB mappings (even if the CPU otherwise
1300 supports them), so don't confuse the user by printing
1301 that we have them enabled.
1302
1303 # Common NUMA Features
1304 config NUMA
1305 bool "Numa Memory Allocation and Scheduler Support"
1306 depends on SMP
1307 depends on X86_64 || (X86_32 && HIGHMEM64G && X86_BIGSMP)
1308 default y if X86_BIGSMP
1309 ---help---
1310 Enable NUMA (Non Uniform Memory Access) support.
1311
1312 The kernel will try to allocate memory used by a CPU on the
1313 local memory controller of the CPU and add some more
1314 NUMA awareness to the kernel.
1315
1316 For 64-bit this is recommended if the system is Intel Core i7
1317 (or later), AMD Opteron, or EM64T NUMA.
1318
1319 For 32-bit this is only needed if you boot a 32-bit
1320 kernel on a 64-bit NUMA platform.
1321
1322 Otherwise, you should say N.
1323
1324 config AMD_NUMA
1325 def_bool y
1326 prompt "Old style AMD Opteron NUMA detection"
1327 depends on X86_64 && NUMA && PCI
1328 ---help---
1329 Enable AMD NUMA node topology detection. You should say Y here if
1330 you have a multi processor AMD system. This uses an old method to
1331 read the NUMA configuration directly from the builtin Northbridge
1332 of Opteron. It is recommended to use X86_64_ACPI_NUMA instead,
1333 which also takes priority if both are compiled in.
1334
1335 config X86_64_ACPI_NUMA
1336 def_bool y
1337 prompt "ACPI NUMA detection"
1338 depends on X86_64 && NUMA && ACPI && PCI
1339 select ACPI_NUMA
1340 ---help---
1341 Enable ACPI SRAT based node topology detection.
1342
1343 # Some NUMA nodes have memory ranges that span
1344 # other nodes. Even though a pfn is valid and
1345 # between a node's start and end pfns, it may not
1346 # reside on that node. See memmap_init_zone()
1347 # for details.
1348 config NODES_SPAN_OTHER_NODES
1349 def_bool y
1350 depends on X86_64_ACPI_NUMA
1351
1352 config NUMA_EMU
1353 bool "NUMA emulation"
1354 depends on NUMA
1355 ---help---
1356 Enable NUMA emulation. A flat machine will be split
1357 into virtual nodes when booted with "numa=fake=N", where N is the
1358 number of nodes. This is only useful for debugging.
1359
1360 config NODES_SHIFT
1361 int "Maximum NUMA Nodes (as a power of 2)" if !MAXSMP
1362 range 1 10
1363 default "10" if MAXSMP
1364 default "6" if X86_64
1365 default "3"
1366 depends on NEED_MULTIPLE_NODES
1367 ---help---
1368 Specify the maximum number of NUMA Nodes available on the target
1369 system. Increases memory reserved to accommodate various tables.
1370
1371 config ARCH_HAVE_MEMORY_PRESENT
1372 def_bool y
1373 depends on X86_32 && DISCONTIGMEM
1374
1375 config NEED_NODE_MEMMAP_SIZE
1376 def_bool y
1377 depends on X86_32 && (DISCONTIGMEM || SPARSEMEM)
1378
1379 config ARCH_FLATMEM_ENABLE
1380 def_bool y
1381 depends on X86_32 && !NUMA
1382
1383 config ARCH_DISCONTIGMEM_ENABLE
1384 def_bool y
1385 depends on NUMA && X86_32
1386
1387 config ARCH_DISCONTIGMEM_DEFAULT
1388 def_bool y
1389 depends on NUMA && X86_32
1390
1391 config ARCH_SPARSEMEM_ENABLE
1392 def_bool y
1393 depends on X86_64 || NUMA || X86_32 || X86_32_NON_STANDARD
1394 select SPARSEMEM_STATIC if X86_32
1395 select SPARSEMEM_VMEMMAP_ENABLE if X86_64
1396
1397 config ARCH_SPARSEMEM_DEFAULT
1398 def_bool y
1399 depends on X86_64
1400
1401 config ARCH_SELECT_MEMORY_MODEL
1402 def_bool y
1403 depends on ARCH_SPARSEMEM_ENABLE
1404
1405 config ARCH_MEMORY_PROBE
1406 bool "Enable sysfs memory/probe interface"
1407 depends on X86_64 && MEMORY_HOTPLUG
1408 help
1409 This option enables a sysfs memory/probe interface for testing.
1410 See Documentation/memory-hotplug.txt for more information.
1411 If you are unsure how to answer this question, answer N.
1412
1413 config ARCH_PROC_KCORE_TEXT
1414 def_bool y
1415 depends on X86_64 && PROC_KCORE
1416
1417 config ILLEGAL_POINTER_VALUE
1418 hex
1419 default 0 if X86_32
1420 default 0xdead000000000000 if X86_64
1421
1422 source "mm/Kconfig"
1423
1424 config HIGHPTE
1425 bool "Allocate 3rd-level pagetables from highmem"
1426 depends on HIGHMEM
1427 ---help---
1428 The VM uses one page table entry for each page of physical memory.
1429 For systems with a lot of RAM, this can be wasteful of precious
1430 low memory. Setting this option will put user-space page table
1431 entries in high memory.
1432
1433 config X86_CHECK_BIOS_CORRUPTION
1434 bool "Check for low memory corruption"
1435 ---help---
1436 Periodically check for memory corruption in low memory, which
1437 is suspected to be caused by BIOS. Even when enabled in the
1438 configuration, it is disabled at runtime. Enable it by
1439 setting "memory_corruption_check=1" on the kernel command
1440 line. By default it scans the low 64k of memory every 60
1441 seconds; see the memory_corruption_check_size and
1442 memory_corruption_check_period parameters in
1443 Documentation/kernel-parameters.txt to adjust this.
1444
1445 When enabled with the default parameters, this option has
1446 almost no overhead, as it reserves a relatively small amount
1447 of memory and scans it infrequently. It both detects corruption
1448 and prevents it from affecting the running system.
1449
1450 It is, however, intended as a diagnostic tool; if repeatable
1451 BIOS-originated corruption always affects the same memory,
1452 you can use memmap= to prevent the kernel from using that
1453 memory.
1454
1455 config X86_BOOTPARAM_MEMORY_CORRUPTION_CHECK
1456 bool "Set the default setting of memory_corruption_check"
1457 depends on X86_CHECK_BIOS_CORRUPTION
1458 default y
1459 ---help---
1460 Set whether the default state of memory_corruption_check is
1461 on or off.
1462
1463 config X86_RESERVE_LOW
1464 int "Amount of low memory, in kilobytes, to reserve for the BIOS"
1465 default 64
1466 range 4 640
1467 ---help---
1468 Specify the amount of low memory to reserve for the BIOS.
1469
1470 The first page contains BIOS data structures that the kernel
1471 must not use, so that page must always be reserved.
1472
1473 By default we reserve the first 64K of physical RAM, as a
1474 number of BIOSes are known to corrupt that memory range
1475 during events such as suspend/resume or monitor cable
1476 insertion, so it must not be used by the kernel.
1477
1478 You can set this to 4 if you are absolutely sure that you
1479 trust the BIOS to get all its memory reservations and usages
1480 right. If you know your BIOS have problems beyond the
1481 default 64K area, you can set this to 640 to avoid using the
1482 entire low memory range.
1483
1484 If you have doubts about the BIOS (e.g. suspend/resume does
1485 not work or there's kernel crashes after certain hardware
1486 hotplug events) then you might want to enable
1487 X86_CHECK_BIOS_CORRUPTION=y to allow the kernel to check
1488 typical corruption patterns.
1489
1490 Leave this to the default value of 64 if you are unsure.
1491
1492 config MATH_EMULATION
1493 bool
1494 prompt "Math emulation" if X86_32
1495 ---help---
1496 Linux can emulate a math coprocessor (used for floating point
1497 operations) if you don't have one. 486DX and Pentium processors have
1498 a math coprocessor built in, 486SX and 386 do not, unless you added
1499 a 487DX or 387, respectively. (The messages during boot time can
1500 give you some hints here ["man dmesg"].) Everyone needs either a
1501 coprocessor or this emulation.
1502
1503 If you don't have a math coprocessor, you need to say Y here; if you
1504 say Y here even though you have a coprocessor, the coprocessor will
1505 be used nevertheless. (This behavior can be changed with the kernel
1506 command line option "no387", which comes handy if your coprocessor
1507 is broken. Try "man bootparam" or see the documentation of your boot
1508 loader (lilo or loadlin) about how to pass options to the kernel at
1509 boot time.) This means that it is a good idea to say Y here if you
1510 intend to use this kernel on different machines.
1511
1512 More information about the internals of the Linux math coprocessor
1513 emulation can be found in <file:arch/x86/math-emu/README>.
1514
1515 If you are not sure, say Y; apart from resulting in a 66 KB bigger
1516 kernel, it won't hurt.
1517
1518 config MTRR
1519 def_bool y
1520 prompt "MTRR (Memory Type Range Register) support" if EXPERT
1521 ---help---
1522 On Intel P6 family processors (Pentium Pro, Pentium II and later)
1523 the Memory Type Range Registers (MTRRs) may be used to control
1524 processor access to memory ranges. This is most useful if you have
1525 a video (VGA) card on a PCI or AGP bus. Enabling write-combining
1526 allows bus write transfers to be combined into a larger transfer
1527 before bursting over the PCI/AGP bus. This can increase performance
1528 of image write operations 2.5 times or more. Saying Y here creates a
1529 /proc/mtrr file which may be used to manipulate your processor's
1530 MTRRs. Typically the X server should use this.
1531
1532 This code has a reasonably generic interface so that similar
1533 control registers on other processors can be easily supported
1534 as well:
1535
1536 The Cyrix 6x86, 6x86MX and M II processors have Address Range
1537 Registers (ARRs) which provide a similar functionality to MTRRs. For
1538 these, the ARRs are used to emulate the MTRRs.
1539 The AMD K6-2 (stepping 8 and above) and K6-3 processors have two
1540 MTRRs. The Centaur C6 (WinChip) has 8 MCRs, allowing
1541 write-combining. All of these processors are supported by this code
1542 and it makes sense to say Y here if you have one of them.
1543
1544 Saying Y here also fixes a problem with buggy SMP BIOSes which only
1545 set the MTRRs for the boot CPU and not for the secondary CPUs. This
1546 can lead to all sorts of problems, so it's good to say Y here.
1547
1548 You can safely say Y even if your machine doesn't have MTRRs, you'll
1549 just add about 9 KB to your kernel.
1550
1551 See <file:Documentation/x86/mtrr.txt> for more information.
1552
1553 config MTRR_SANITIZER
1554 def_bool y
1555 prompt "MTRR cleanup support"
1556 depends on MTRR
1557 ---help---
1558 Convert MTRR layout from continuous to discrete, so X drivers can
1559 add writeback entries.
1560
1561 Can be disabled with disable_mtrr_cleanup on the kernel command line.
1562 The largest mtrr entry size for a continuous block can be set with
1563 mtrr_chunk_size.
1564
1565 If unsure, say Y.
1566
1567 config MTRR_SANITIZER_ENABLE_DEFAULT
1568 int "MTRR cleanup enable value (0-1)"
1569 range 0 1
1570 default "0"
1571 depends on MTRR_SANITIZER
1572 ---help---
1573 Enable mtrr cleanup default value
1574
1575 config MTRR_SANITIZER_SPARE_REG_NR_DEFAULT
1576 int "MTRR cleanup spare reg num (0-7)"
1577 range 0 7
1578 default "1"
1579 depends on MTRR_SANITIZER
1580 ---help---
1581 mtrr cleanup spare entries default, it can be changed via
1582 mtrr_spare_reg_nr=N on the kernel command line.
1583
1584 config X86_PAT
1585 def_bool y
1586 prompt "x86 PAT support" if EXPERT
1587 depends on MTRR
1588 ---help---
1589 Use PAT attributes to setup page level cache control.
1590
1591 PATs are the modern equivalents of MTRRs and are much more
1592 flexible than MTRRs.
1593
1594 Say N here if you see bootup problems (boot crash, boot hang,
1595 spontaneous reboots) or a non-working video driver.
1596
1597 If unsure, say Y.
1598
1599 config ARCH_USES_PG_UNCACHED
1600 def_bool y
1601 depends on X86_PAT
1602
1603 config ARCH_RANDOM
1604 def_bool y
1605 prompt "x86 architectural random number generator" if EXPERT
1606 ---help---
1607 Enable the x86 architectural RDRAND instruction
1608 (Intel Bull Mountain technology) to generate random numbers.
1609 If supported, this is a high bandwidth, cryptographically
1610 secure hardware random number generator.
1611
1612 config X86_SMAP
1613 def_bool y
1614 prompt "Supervisor Mode Access Prevention" if EXPERT
1615 ---help---
1616 Supervisor Mode Access Prevention (SMAP) is a security
1617 feature in newer Intel processors. There is a small
1618 performance cost if this enabled and turned on; there is
1619 also a small increase in the kernel size if this is enabled.
1620
1621 If unsure, say Y.
1622
1623 config X86_INTEL_MPX
1624 prompt "Intel MPX (Memory Protection Extensions)"
1625 def_bool n
1626 depends on CPU_SUP_INTEL
1627 ---help---
1628 MPX provides hardware features that can be used in
1629 conjunction with compiler-instrumented code to check
1630 memory references. It is designed to detect buffer
1631 overflow or underflow bugs.
1632
1633 This option enables running applications which are
1634 instrumented or otherwise use MPX. It does not use MPX
1635 itself inside the kernel or to protect the kernel
1636 against bad memory references.
1637
1638 Enabling this option will make the kernel larger:
1639 ~8k of kernel text and 36 bytes of data on a 64-bit
1640 defconfig. It adds a long to the 'mm_struct' which
1641 will increase the kernel memory overhead of each
1642 process and adds some branches to paths used during
1643 exec() and munmap().
1644
1645 For details, see Documentation/x86/intel_mpx.txt
1646
1647 If unsure, say N.
1648
1649 config EFI
1650 bool "EFI runtime service support"
1651 depends on ACPI
1652 select UCS2_STRING
1653 select EFI_RUNTIME_WRAPPERS
1654 ---help---
1655 This enables the kernel to use EFI runtime services that are
1656 available (such as the EFI variable services).
1657
1658 This option is only useful on systems that have EFI firmware.
1659 In addition, you should use the latest ELILO loader available
1660 at <http://elilo.sourceforge.net> in order to take advantage
1661 of EFI runtime services. However, even with this option, the
1662 resultant kernel should continue to boot on existing non-EFI
1663 platforms.
1664
1665 config EFI_STUB
1666 bool "EFI stub support"
1667 depends on EFI && !X86_USE_3DNOW
1668 select RELOCATABLE
1669 ---help---
1670 This kernel feature allows a bzImage to be loaded directly
1671 by EFI firmware without the use of a bootloader.
1672
1673 See Documentation/efi-stub.txt for more information.
1674
1675 config EFI_MIXED
1676 bool "EFI mixed-mode support"
1677 depends on EFI_STUB && X86_64
1678 ---help---
1679 Enabling this feature allows a 64-bit kernel to be booted
1680 on a 32-bit firmware, provided that your CPU supports 64-bit
1681 mode.
1682
1683 Note that it is not possible to boot a mixed-mode enabled
1684 kernel via the EFI boot stub - a bootloader that supports
1685 the EFI handover protocol must be used.
1686
1687 If unsure, say N.
1688
1689 config SECCOMP
1690 def_bool y
1691 prompt "Enable seccomp to safely compute untrusted bytecode"
1692 ---help---
1693 This kernel feature is useful for number crunching applications
1694 that may need to compute untrusted bytecode during their
1695 execution. By using pipes or other transports made available to
1696 the process as file descriptors supporting the read/write
1697 syscalls, it's possible to isolate those applications in
1698 their own address space using seccomp. Once seccomp is
1699 enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
1700 and the task is only allowed to execute a few safe syscalls
1701 defined by each seccomp mode.
1702
1703 If unsure, say Y. Only embedded should say N here.
1704
1705 source kernel/Kconfig.hz
1706
1707 config KEXEC
1708 bool "kexec system call"
1709 ---help---
1710 kexec is a system call that implements the ability to shutdown your
1711 current kernel, and to start another kernel. It is like a reboot
1712 but it is independent of the system firmware. And like a reboot
1713 you can start any kernel with it, not just Linux.
1714
1715 The name comes from the similarity to the exec system call.
1716
1717 It is an ongoing process to be certain the hardware in a machine
1718 is properly shutdown, so do not be surprised if this code does not
1719 initially work for you. As of this writing the exact hardware
1720 interface is strongly in flux, so no good recommendation can be
1721 made.
1722
1723 config KEXEC_FILE
1724 bool "kexec file based system call"
1725 select BUILD_BIN2C
1726 depends on KEXEC
1727 depends on X86_64
1728 depends on CRYPTO=y
1729 depends on CRYPTO_SHA256=y
1730 ---help---
1731 This is new version of kexec system call. This system call is
1732 file based and takes file descriptors as system call argument
1733 for kernel and initramfs as opposed to list of segments as
1734 accepted by previous system call.
1735
1736 config KEXEC_VERIFY_SIG
1737 bool "Verify kernel signature during kexec_file_load() syscall"
1738 depends on KEXEC_FILE
1739 ---help---
1740 This option makes kernel signature verification mandatory for
1741 the kexec_file_load() syscall.
1742
1743 In addition to that option, you need to enable signature
1744 verification for the corresponding kernel image type being
1745 loaded in order for this to work.
1746
1747 config KEXEC_BZIMAGE_VERIFY_SIG
1748 bool "Enable bzImage signature verification support"
1749 depends on KEXEC_VERIFY_SIG
1750 depends on SIGNED_PE_FILE_VERIFICATION
1751 select SYSTEM_TRUSTED_KEYRING
1752 ---help---
1753 Enable bzImage signature verification support.
1754
1755 config CRASH_DUMP
1756 bool "kernel crash dumps"
1757 depends on X86_64 || (X86_32 && HIGHMEM)
1758 ---help---
1759 Generate crash dump after being started by kexec.
1760 This should be normally only set in special crash dump kernels
1761 which are loaded in the main kernel with kexec-tools into
1762 a specially reserved region and then later executed after
1763 a crash by kdump/kexec. The crash dump kernel must be compiled
1764 to a memory address not used by the main kernel or BIOS using
1765 PHYSICAL_START, or it must be built as a relocatable image
1766 (CONFIG_RELOCATABLE=y).
1767 For more details see Documentation/kdump/kdump.txt
1768
1769 config KEXEC_JUMP
1770 bool "kexec jump"
1771 depends on KEXEC && HIBERNATION
1772 ---help---
1773 Jump between original kernel and kexeced kernel and invoke
1774 code in physical address mode via KEXEC
1775
1776 config PHYSICAL_START
1777 hex "Physical address where the kernel is loaded" if (EXPERT || CRASH_DUMP)
1778 default "0x1000000"
1779 ---help---
1780 This gives the physical address where the kernel is loaded.
1781
1782 If kernel is a not relocatable (CONFIG_RELOCATABLE=n) then
1783 bzImage will decompress itself to above physical address and
1784 run from there. Otherwise, bzImage will run from the address where
1785 it has been loaded by the boot loader and will ignore above physical
1786 address.
1787
1788 In normal kdump cases one does not have to set/change this option
1789 as now bzImage can be compiled as a completely relocatable image
1790 (CONFIG_RELOCATABLE=y) and be used to load and run from a different
1791 address. This option is mainly useful for the folks who don't want
1792 to use a bzImage for capturing the crash dump and want to use a
1793 vmlinux instead. vmlinux is not relocatable hence a kernel needs
1794 to be specifically compiled to run from a specific memory area
1795 (normally a reserved region) and this option comes handy.
1796
1797 So if you are using bzImage for capturing the crash dump,
1798 leave the value here unchanged to 0x1000000 and set
1799 CONFIG_RELOCATABLE=y. Otherwise if you plan to use vmlinux
1800 for capturing the crash dump change this value to start of
1801 the reserved region. In other words, it can be set based on
1802 the "X" value as specified in the "crashkernel=YM@XM"
1803 command line boot parameter passed to the panic-ed
1804 kernel. Please take a look at Documentation/kdump/kdump.txt
1805 for more details about crash dumps.
1806
1807 Usage of bzImage for capturing the crash dump is recommended as
1808 one does not have to build two kernels. Same kernel can be used
1809 as production kernel and capture kernel. Above option should have
1810 gone away after relocatable bzImage support is introduced. But it
1811 is present because there are users out there who continue to use
1812 vmlinux for dump capture. This option should go away down the
1813 line.
1814
1815 Don't change this unless you know what you are doing.
1816
1817 config RELOCATABLE
1818 bool "Build a relocatable kernel"
1819 default y
1820 ---help---
1821 This builds a kernel image that retains relocation information
1822 so it can be loaded someplace besides the default 1MB.
1823 The relocations tend to make the kernel binary about 10% larger,
1824 but are discarded at runtime.
1825
1826 One use is for the kexec on panic case where the recovery kernel
1827 must live at a different physical address than the primary
1828 kernel.
1829
1830 Note: If CONFIG_RELOCATABLE=y, then the kernel runs from the address
1831 it has been loaded at and the compile time physical address
1832 (CONFIG_PHYSICAL_START) is used as the minimum location.
1833
1834 config RANDOMIZE_BASE
1835 bool "Randomize the address of the kernel image"
1836 depends on RELOCATABLE
1837 default n
1838 ---help---
1839 Randomizes the physical and virtual address at which the
1840 kernel image is decompressed, as a security feature that
1841 deters exploit attempts relying on knowledge of the location
1842 of kernel internals.
1843
1844 Entropy is generated using the RDRAND instruction if it is
1845 supported. If RDTSC is supported, it is used as well. If
1846 neither RDRAND nor RDTSC are supported, then randomness is
1847 read from the i8254 timer.
1848
1849 The kernel will be offset by up to RANDOMIZE_BASE_MAX_OFFSET,
1850 and aligned according to PHYSICAL_ALIGN. Since the kernel is
1851 built using 2GiB addressing, and PHYSICAL_ALGIN must be at a
1852 minimum of 2MiB, only 10 bits of entropy is theoretically
1853 possible. At best, due to page table layouts, 64-bit can use
1854 9 bits of entropy and 32-bit uses 8 bits.
1855
1856 If unsure, say N.
1857
1858 config RANDOMIZE_BASE_MAX_OFFSET
1859 hex "Maximum kASLR offset allowed" if EXPERT
1860 depends on RANDOMIZE_BASE
1861 range 0x0 0x20000000 if X86_32
1862 default "0x20000000" if X86_32
1863 range 0x0 0x40000000 if X86_64
1864 default "0x40000000" if X86_64
1865 ---help---
1866 The lesser of RANDOMIZE_BASE_MAX_OFFSET and available physical
1867 memory is used to determine the maximal offset in bytes that will
1868 be applied to the kernel when kernel Address Space Layout
1869 Randomization (kASLR) is active. This must be a multiple of
1870 PHYSICAL_ALIGN.
1871
1872 On 32-bit this is limited to 512MiB by page table layouts. The
1873 default is 512MiB.
1874
1875 On 64-bit this is limited by how the kernel fixmap page table is
1876 positioned, so this cannot be larger than 1GiB currently. Without
1877 RANDOMIZE_BASE, there is a 512MiB to 1.5GiB split between kernel
1878 and modules. When RANDOMIZE_BASE_MAX_OFFSET is above 512MiB, the
1879 modules area will shrink to compensate, up to the current maximum
1880 1GiB to 1GiB split. The default is 1GiB.
1881
1882 If unsure, leave at the default value.
1883
1884 # Relocation on x86 needs some additional build support
1885 config X86_NEED_RELOCS
1886 def_bool y
1887 depends on RANDOMIZE_BASE || (X86_32 && RELOCATABLE)
1888
1889 config PHYSICAL_ALIGN
1890 hex "Alignment value to which kernel should be aligned"
1891 default "0x200000"
1892 range 0x2000 0x1000000 if X86_32
1893 range 0x200000 0x1000000 if X86_64
1894 ---help---
1895 This value puts the alignment restrictions on physical address
1896 where kernel is loaded and run from. Kernel is compiled for an
1897 address which meets above alignment restriction.
1898
1899 If bootloader loads the kernel at a non-aligned address and
1900 CONFIG_RELOCATABLE is set, kernel will move itself to nearest
1901 address aligned to above value and run from there.
1902
1903 If bootloader loads the kernel at a non-aligned address and
1904 CONFIG_RELOCATABLE is not set, kernel will ignore the run time
1905 load address and decompress itself to the address it has been
1906 compiled for and run from there. The address for which kernel is
1907 compiled already meets above alignment restrictions. Hence the
1908 end result is that kernel runs from a physical address meeting
1909 above alignment restrictions.
1910
1911 On 32-bit this value must be a multiple of 0x2000. On 64-bit
1912 this value must be a multiple of 0x200000.
1913
1914 Don't change this unless you know what you are doing.
1915
1916 config HOTPLUG_CPU
1917 bool "Support for hot-pluggable CPUs"
1918 depends on SMP
1919 ---help---
1920 Say Y here to allow turning CPUs off and on. CPUs can be
1921 controlled through /sys/devices/system/cpu.
1922 ( Note: power management support will enable this option
1923 automatically on SMP systems. )
1924 Say N if you want to disable CPU hotplug.
1925
1926 config BOOTPARAM_HOTPLUG_CPU0
1927 bool "Set default setting of cpu0_hotpluggable"
1928 default n
1929 depends on HOTPLUG_CPU
1930 ---help---
1931 Set whether default state of cpu0_hotpluggable is on or off.
1932
1933 Say Y here to enable CPU0 hotplug by default. If this switch
1934 is turned on, there is no need to give cpu0_hotplug kernel
1935 parameter and the CPU0 hotplug feature is enabled by default.
1936
1937 Please note: there are two known CPU0 dependencies if you want
1938 to enable the CPU0 hotplug feature either by this switch or by
1939 cpu0_hotplug kernel parameter.
1940
1941 First, resume from hibernate or suspend always starts from CPU0.
1942 So hibernate and suspend are prevented if CPU0 is offline.
1943
1944 Second dependency is PIC interrupts always go to CPU0. CPU0 can not
1945 offline if any interrupt can not migrate out of CPU0. There may
1946 be other CPU0 dependencies.
1947
1948 Please make sure the dependencies are under your control before
1949 you enable this feature.
1950
1951 Say N if you don't want to enable CPU0 hotplug feature by default.
1952 You still can enable the CPU0 hotplug feature at boot by kernel
1953 parameter cpu0_hotplug.
1954
1955 config DEBUG_HOTPLUG_CPU0
1956 def_bool n
1957 prompt "Debug CPU0 hotplug"
1958 depends on HOTPLUG_CPU
1959 ---help---
1960 Enabling this option offlines CPU0 (if CPU0 can be offlined) as
1961 soon as possible and boots up userspace with CPU0 offlined. User
1962 can online CPU0 back after boot time.
1963
1964 To debug CPU0 hotplug, you need to enable CPU0 offline/online
1965 feature by either turning on CONFIG_BOOTPARAM_HOTPLUG_CPU0 during
1966 compilation or giving cpu0_hotplug kernel parameter at boot.
1967
1968 If unsure, say N.
1969
1970 config COMPAT_VDSO
1971 def_bool n
1972 prompt "Disable the 32-bit vDSO (needed for glibc 2.3.3)"
1973 depends on X86_32 || IA32_EMULATION
1974 ---help---
1975 Certain buggy versions of glibc will crash if they are
1976 presented with a 32-bit vDSO that is not mapped at the address
1977 indicated in its segment table.
1978
1979 The bug was introduced by f866314b89d56845f55e6f365e18b31ec978ec3a
1980 and fixed by 3b3ddb4f7db98ec9e912ccdf54d35df4aa30e04a and
1981 49ad572a70b8aeb91e57483a11dd1b77e31c4468. Glibc 2.3.3 is
1982 the only released version with the bug, but OpenSUSE 9
1983 contains a buggy "glibc 2.3.2".
1984
1985 The symptom of the bug is that everything crashes on startup, saying:
1986 dl_main: Assertion `(void *) ph->p_vaddr == _rtld_local._dl_sysinfo_dso' failed!
1987
1988 Saying Y here changes the default value of the vdso32 boot
1989 option from 1 to 0, which turns off the 32-bit vDSO entirely.
1990 This works around the glibc bug but hurts performance.
1991
1992 If unsure, say N: if you are compiling your own kernel, you
1993 are unlikely to be using a buggy version of glibc.
1994
1995 config CMDLINE_BOOL
1996 bool "Built-in kernel command line"
1997 ---help---
1998 Allow for specifying boot arguments to the kernel at
1999 build time. On some systems (e.g. embedded ones), it is
2000 necessary or convenient to provide some or all of the
2001 kernel boot arguments with the kernel itself (that is,
2002 to not rely on the boot loader to provide them.)
2003
2004 To compile command line arguments into the kernel,
2005 set this option to 'Y', then fill in the
2006 the boot arguments in CONFIG_CMDLINE.
2007
2008 Systems with fully functional boot loaders (i.e. non-embedded)
2009 should leave this option set to 'N'.
2010
2011 config CMDLINE
2012 string "Built-in kernel command string"
2013 depends on CMDLINE_BOOL
2014 default ""
2015 ---help---
2016 Enter arguments here that should be compiled into the kernel
2017 image and used at boot time. If the boot loader provides a
2018 command line at boot time, it is appended to this string to
2019 form the full kernel command line, when the system boots.
2020
2021 However, you can use the CONFIG_CMDLINE_OVERRIDE option to
2022 change this behavior.
2023
2024 In most cases, the command line (whether built-in or provided
2025 by the boot loader) should specify the device for the root
2026 file system.
2027
2028 config CMDLINE_OVERRIDE
2029 bool "Built-in command line overrides boot loader arguments"
2030 depends on CMDLINE_BOOL
2031 ---help---
2032 Set this option to 'Y' to have the kernel ignore the boot loader
2033 command line, and use ONLY the built-in command line.
2034
2035 This is used to work around broken boot loaders. This should
2036 be set to 'N' under normal conditions.
2037
2038 source "kernel/livepatch/Kconfig"
2039
2040 endmenu
2041
2042 config ARCH_ENABLE_MEMORY_HOTPLUG
2043 def_bool y
2044 depends on X86_64 || (X86_32 && HIGHMEM)
2045
2046 config ARCH_ENABLE_MEMORY_HOTREMOVE
2047 def_bool y
2048 depends on MEMORY_HOTPLUG
2049
2050 config USE_PERCPU_NUMA_NODE_ID
2051 def_bool y
2052 depends on NUMA
2053
2054 config ARCH_ENABLE_SPLIT_PMD_PTLOCK
2055 def_bool y
2056 depends on X86_64 || X86_PAE
2057
2058 config ARCH_ENABLE_HUGEPAGE_MIGRATION
2059 def_bool y
2060 depends on X86_64 && HUGETLB_PAGE && MIGRATION
2061
2062 menu "Power management and ACPI options"
2063
2064 config ARCH_HIBERNATION_HEADER
2065 def_bool y
2066 depends on X86_64 && HIBERNATION
2067
2068 source "kernel/power/Kconfig"
2069
2070 source "drivers/acpi/Kconfig"
2071
2072 source "drivers/sfi/Kconfig"
2073
2074 config X86_APM_BOOT
2075 def_bool y
2076 depends on APM
2077
2078 menuconfig APM
2079 tristate "APM (Advanced Power Management) BIOS support"
2080 depends on X86_32 && PM_SLEEP
2081 ---help---
2082 APM is a BIOS specification for saving power using several different
2083 techniques. This is mostly useful for battery powered laptops with
2084 APM compliant BIOSes. If you say Y here, the system time will be
2085 reset after a RESUME operation, the /proc/apm device will provide
2086 battery status information, and user-space programs will receive
2087 notification of APM "events" (e.g. battery status change).
2088
2089 If you select "Y" here, you can disable actual use of the APM
2090 BIOS by passing the "apm=off" option to the kernel at boot time.
2091
2092 Note that the APM support is almost completely disabled for
2093 machines with more than one CPU.
2094
2095 In order to use APM, you will need supporting software. For location
2096 and more information, read <file:Documentation/power/apm-acpi.txt>
2097 and the Battery Powered Linux mini-HOWTO, available from
2098 <http://www.tldp.org/docs.html#howto>.
2099
2100 This driver does not spin down disk drives (see the hdparm(8)
2101 manpage ("man 8 hdparm") for that), and it doesn't turn off
2102 VESA-compliant "green" monitors.
2103
2104 This driver does not support the TI 4000M TravelMate and the ACER
2105 486/DX4/75 because they don't have compliant BIOSes. Many "green"
2106 desktop machines also don't have compliant BIOSes, and this driver
2107 may cause those machines to panic during the boot phase.
2108
2109 Generally, if you don't have a battery in your machine, there isn't
2110 much point in using this driver and you should say N. If you get
2111 random kernel OOPSes or reboots that don't seem to be related to
2112 anything, try disabling/enabling this option (or disabling/enabling
2113 APM in your BIOS).
2114
2115 Some other things you should try when experiencing seemingly random,
2116 "weird" problems:
2117
2118 1) make sure that you have enough swap space and that it is
2119 enabled.
2120 2) pass the "no-hlt" option to the kernel
2121 3) switch on floating point emulation in the kernel and pass
2122 the "no387" option to the kernel
2123 4) pass the "floppy=nodma" option to the kernel
2124 5) pass the "mem=4M" option to the kernel (thereby disabling
2125 all but the first 4 MB of RAM)
2126 6) make sure that the CPU is not over clocked.
2127 7) read the sig11 FAQ at <http://www.bitwizard.nl/sig11/>
2128 8) disable the cache from your BIOS settings
2129 9) install a fan for the video card or exchange video RAM
2130 10) install a better fan for the CPU
2131 11) exchange RAM chips
2132 12) exchange the motherboard.
2133
2134 To compile this driver as a module, choose M here: the
2135 module will be called apm.
2136
2137 if APM
2138
2139 config APM_IGNORE_USER_SUSPEND
2140 bool "Ignore USER SUSPEND"
2141 ---help---
2142 This option will ignore USER SUSPEND requests. On machines with a
2143 compliant APM BIOS, you want to say N. However, on the NEC Versa M
2144 series notebooks, it is necessary to say Y because of a BIOS bug.
2145
2146 config APM_DO_ENABLE
2147 bool "Enable PM at boot time"
2148 ---help---
2149 Enable APM features at boot time. From page 36 of the APM BIOS
2150 specification: "When disabled, the APM BIOS does not automatically
2151 power manage devices, enter the Standby State, enter the Suspend
2152 State, or take power saving steps in response to CPU Idle calls."
2153 This driver will make CPU Idle calls when Linux is idle (unless this
2154 feature is turned off -- see "Do CPU IDLE calls", below). This
2155 should always save battery power, but more complicated APM features
2156 will be dependent on your BIOS implementation. You may need to turn
2157 this option off if your computer hangs at boot time when using APM
2158 support, or if it beeps continuously instead of suspending. Turn
2159 this off if you have a NEC UltraLite Versa 33/C or a Toshiba
2160 T400CDT. This is off by default since most machines do fine without
2161 this feature.
2162
2163 config APM_CPU_IDLE
2164 depends on CPU_IDLE
2165 bool "Make CPU Idle calls when idle"
2166 ---help---
2167 Enable calls to APM CPU Idle/CPU Busy inside the kernel's idle loop.
2168 On some machines, this can activate improved power savings, such as
2169 a slowed CPU clock rate, when the machine is idle. These idle calls
2170 are made after the idle loop has run for some length of time (e.g.,
2171 333 mS). On some machines, this will cause a hang at boot time or
2172 whenever the CPU becomes idle. (On machines with more than one CPU,
2173 this option does nothing.)
2174
2175 config APM_DISPLAY_BLANK
2176 bool "Enable console blanking using APM"
2177 ---help---
2178 Enable console blanking using the APM. Some laptops can use this to
2179 turn off the LCD backlight when the screen blanker of the Linux
2180 virtual console blanks the screen. Note that this is only used by
2181 the virtual console screen blanker, and won't turn off the backlight
2182 when using the X Window system. This also doesn't have anything to
2183 do with your VESA-compliant power-saving monitor. Further, this
2184 option doesn't work for all laptops -- it might not turn off your
2185 backlight at all, or it might print a lot of errors to the console,
2186 especially if you are using gpm.
2187
2188 config APM_ALLOW_INTS
2189 bool "Allow interrupts during APM BIOS calls"
2190 ---help---
2191 Normally we disable external interrupts while we are making calls to
2192 the APM BIOS as a measure to lessen the effects of a badly behaving
2193 BIOS implementation. The BIOS should reenable interrupts if it
2194 needs to. Unfortunately, some BIOSes do not -- especially those in
2195 many of the newer IBM Thinkpads. If you experience hangs when you
2196 suspend, try setting this to Y. Otherwise, say N.
2197
2198 endif # APM
2199
2200 source "drivers/cpufreq/Kconfig"
2201
2202 source "drivers/cpuidle/Kconfig"
2203
2204 source "drivers/idle/Kconfig"
2205
2206 endmenu
2207
2208
2209 menu "Bus options (PCI etc.)"
2210
2211 config PCI
2212 bool "PCI support"
2213 default y
2214 ---help---
2215 Find out whether you have a PCI motherboard. PCI is the name of a
2216 bus system, i.e. the way the CPU talks to the other stuff inside
2217 your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
2218 VESA. If you have PCI, say Y, otherwise N.
2219
2220 choice
2221 prompt "PCI access mode"
2222 depends on X86_32 && PCI
2223 default PCI_GOANY
2224 ---help---
2225 On PCI systems, the BIOS can be used to detect the PCI devices and
2226 determine their configuration. However, some old PCI motherboards
2227 have BIOS bugs and may crash if this is done. Also, some embedded
2228 PCI-based systems don't have any BIOS at all. Linux can also try to
2229 detect the PCI hardware directly without using the BIOS.
2230
2231 With this option, you can specify how Linux should detect the
2232 PCI devices. If you choose "BIOS", the BIOS will be used,
2233 if you choose "Direct", the BIOS won't be used, and if you
2234 choose "MMConfig", then PCI Express MMCONFIG will be used.
2235 If you choose "Any", the kernel will try MMCONFIG, then the
2236 direct access method and falls back to the BIOS if that doesn't
2237 work. If unsure, go with the default, which is "Any".
2238
2239 config PCI_GOBIOS
2240 bool "BIOS"
2241
2242 config PCI_GOMMCONFIG
2243 bool "MMConfig"
2244
2245 config PCI_GODIRECT
2246 bool "Direct"
2247
2248 config PCI_GOOLPC
2249 bool "OLPC XO-1"
2250 depends on OLPC
2251
2252 config PCI_GOANY
2253 bool "Any"
2254
2255 endchoice
2256
2257 config PCI_BIOS
2258 def_bool y
2259 depends on X86_32 && PCI && (PCI_GOBIOS || PCI_GOANY)
2260
2261 # x86-64 doesn't support PCI BIOS access from long mode so always go direct.
2262 config PCI_DIRECT
2263 def_bool y
2264 depends on PCI && (X86_64 || (PCI_GODIRECT || PCI_GOANY || PCI_GOOLPC || PCI_GOMMCONFIG))
2265
2266 config PCI_MMCONFIG
2267 def_bool y
2268 depends on X86_32 && PCI && (ACPI || SFI) && (PCI_GOMMCONFIG || PCI_GOANY)
2269
2270 config PCI_OLPC
2271 def_bool y
2272 depends on PCI && OLPC && (PCI_GOOLPC || PCI_GOANY)
2273
2274 config PCI_XEN
2275 def_bool y
2276 depends on PCI && XEN
2277 select SWIOTLB_XEN
2278
2279 config PCI_DOMAINS
2280 def_bool y
2281 depends on PCI
2282
2283 config PCI_MMCONFIG
2284 bool "Support mmconfig PCI config space access"
2285 depends on X86_64 && PCI && ACPI
2286
2287 config PCI_CNB20LE_QUIRK
2288 bool "Read CNB20LE Host Bridge Windows" if EXPERT
2289 depends on PCI
2290 help
2291 Read the PCI windows out of the CNB20LE host bridge. This allows
2292 PCI hotplug to work on systems with the CNB20LE chipset which do
2293 not have ACPI.
2294
2295 There's no public spec for this chipset, and this functionality
2296 is known to be incomplete.
2297
2298 You should say N unless you know you need this.
2299
2300 source "drivers/pci/pcie/Kconfig"
2301
2302 source "drivers/pci/Kconfig"
2303
2304 # x86_64 have no ISA slots, but can have ISA-style DMA.
2305 config ISA_DMA_API
2306 bool "ISA-style DMA support" if (X86_64 && EXPERT)
2307 default y
2308 help
2309 Enables ISA-style DMA support for devices requiring such controllers.
2310 If unsure, say Y.
2311
2312 if X86_32
2313
2314 config ISA
2315 bool "ISA support"
2316 ---help---
2317 Find out whether you have ISA slots on your motherboard. ISA is the
2318 name of a bus system, i.e. the way the CPU talks to the other stuff
2319 inside your box. Other bus systems are PCI, EISA, MicroChannel
2320 (MCA) or VESA. ISA is an older system, now being displaced by PCI;
2321 newer boards don't support it. If you have ISA, say Y, otherwise N.
2322
2323 config EISA
2324 bool "EISA support"
2325 depends on ISA
2326 ---help---
2327 The Extended Industry Standard Architecture (EISA) bus was
2328 developed as an open alternative to the IBM MicroChannel bus.
2329
2330 The EISA bus provided some of the features of the IBM MicroChannel
2331 bus while maintaining backward compatibility with cards made for
2332 the older ISA bus. The EISA bus saw limited use between 1988 and
2333 1995 when it was made obsolete by the PCI bus.
2334
2335 Say Y here if you are building a kernel for an EISA-based machine.
2336
2337 Otherwise, say N.
2338
2339 source "drivers/eisa/Kconfig"
2340
2341 config SCx200
2342 tristate "NatSemi SCx200 support"
2343 ---help---
2344 This provides basic support for National Semiconductor's
2345 (now AMD's) Geode processors. The driver probes for the
2346 PCI-IDs of several on-chip devices, so its a good dependency
2347 for other scx200_* drivers.
2348
2349 If compiled as a module, the driver is named scx200.
2350
2351 config SCx200HR_TIMER
2352 tristate "NatSemi SCx200 27MHz High-Resolution Timer Support"
2353 depends on SCx200
2354 default y
2355 ---help---
2356 This driver provides a clocksource built upon the on-chip
2357 27MHz high-resolution timer. Its also a workaround for
2358 NSC Geode SC-1100's buggy TSC, which loses time when the
2359 processor goes idle (as is done by the scheduler). The
2360 other workaround is idle=poll boot option.
2361
2362 config OLPC
2363 bool "One Laptop Per Child support"
2364 depends on !X86_PAE
2365 select GPIOLIB
2366 select OF
2367 select OF_PROMTREE
2368 select IRQ_DOMAIN
2369 ---help---
2370 Add support for detecting the unique features of the OLPC
2371 XO hardware.
2372
2373 config OLPC_XO1_PM
2374 bool "OLPC XO-1 Power Management"
2375 depends on OLPC && MFD_CS5535 && PM_SLEEP
2376 select MFD_CORE
2377 ---help---
2378 Add support for poweroff and suspend of the OLPC XO-1 laptop.
2379
2380 config OLPC_XO1_RTC
2381 bool "OLPC XO-1 Real Time Clock"
2382 depends on OLPC_XO1_PM && RTC_DRV_CMOS
2383 ---help---
2384 Add support for the XO-1 real time clock, which can be used as a
2385 programmable wakeup source.
2386
2387 config OLPC_XO1_SCI
2388 bool "OLPC XO-1 SCI extras"
2389 depends on OLPC && OLPC_XO1_PM
2390 depends on INPUT=y
2391 select POWER_SUPPLY
2392 select GPIO_CS5535
2393 select MFD_CORE
2394 ---help---
2395 Add support for SCI-based features of the OLPC XO-1 laptop:
2396 - EC-driven system wakeups
2397 - Power button
2398 - Ebook switch
2399 - Lid switch
2400 - AC adapter status updates
2401 - Battery status updates
2402
2403 config OLPC_XO15_SCI
2404 bool "OLPC XO-1.5 SCI extras"
2405 depends on OLPC && ACPI
2406 select POWER_SUPPLY
2407 ---help---
2408 Add support for SCI-based features of the OLPC XO-1.5 laptop:
2409 - EC-driven system wakeups
2410 - AC adapter status updates
2411 - Battery status updates
2412
2413 config ALIX
2414 bool "PCEngines ALIX System Support (LED setup)"
2415 select GPIOLIB
2416 ---help---
2417 This option enables system support for the PCEngines ALIX.
2418 At present this just sets up LEDs for GPIO control on
2419 ALIX2/3/6 boards. However, other system specific setup should
2420 get added here.
2421
2422 Note: You must still enable the drivers for GPIO and LED support
2423 (GPIO_CS5535 & LEDS_GPIO) to actually use the LEDs
2424
2425 Note: You have to set alix.force=1 for boards with Award BIOS.
2426
2427 config NET5501
2428 bool "Soekris Engineering net5501 System Support (LEDS, GPIO, etc)"
2429 select GPIOLIB
2430 ---help---
2431 This option enables system support for the Soekris Engineering net5501.
2432
2433 config GEOS
2434 bool "Traverse Technologies GEOS System Support (LEDS, GPIO, etc)"
2435 select GPIOLIB
2436 depends on DMI
2437 ---help---
2438 This option enables system support for the Traverse Technologies GEOS.
2439
2440 config TS5500
2441 bool "Technologic Systems TS-5500 platform support"
2442 depends on MELAN
2443 select CHECK_SIGNATURE
2444 select NEW_LEDS
2445 select LEDS_CLASS
2446 ---help---
2447 This option enables system support for the Technologic Systems TS-5500.
2448
2449 endif # X86_32
2450
2451 config AMD_NB
2452 def_bool y
2453 depends on CPU_SUP_AMD && PCI
2454
2455 source "drivers/pcmcia/Kconfig"
2456
2457 source "drivers/pci/hotplug/Kconfig"
2458
2459 config RAPIDIO
2460 tristate "RapidIO support"
2461 depends on PCI
2462 default n
2463 help
2464 If enabled this option will include drivers and the core
2465 infrastructure code to support RapidIO interconnect devices.
2466
2467 source "drivers/rapidio/Kconfig"
2468
2469 config X86_SYSFB
2470 bool "Mark VGA/VBE/EFI FB as generic system framebuffer"
2471 help
2472 Firmwares often provide initial graphics framebuffers so the BIOS,
2473 bootloader or kernel can show basic video-output during boot for
2474 user-guidance and debugging. Historically, x86 used the VESA BIOS
2475 Extensions and EFI-framebuffers for this, which are mostly limited
2476 to x86.
2477 This option, if enabled, marks VGA/VBE/EFI framebuffers as generic
2478 framebuffers so the new generic system-framebuffer drivers can be
2479 used on x86. If the framebuffer is not compatible with the generic
2480 modes, it is adverticed as fallback platform framebuffer so legacy
2481 drivers like efifb, vesafb and uvesafb can pick it up.
2482 If this option is not selected, all system framebuffers are always
2483 marked as fallback platform framebuffers as usual.
2484
2485 Note: Legacy fbdev drivers, including vesafb, efifb, uvesafb, will
2486 not be able to pick up generic system framebuffers if this option
2487 is selected. You are highly encouraged to enable simplefb as
2488 replacement if you select this option. simplefb can correctly deal
2489 with generic system framebuffers. But you should still keep vesafb
2490 and others enabled as fallback if a system framebuffer is
2491 incompatible with simplefb.
2492
2493 If unsure, say Y.
2494
2495 endmenu
2496
2497
2498 menu "Executable file formats / Emulations"
2499
2500 source "fs/Kconfig.binfmt"
2501
2502 config IA32_EMULATION
2503 bool "IA32 Emulation"
2504 depends on X86_64
2505 select BINFMT_ELF
2506 select COMPAT_BINFMT_ELF
2507 select HAVE_UID16
2508 ---help---
2509 Include code to run legacy 32-bit programs under a
2510 64-bit kernel. You should likely turn this on, unless you're
2511 100% sure that you don't have any 32-bit programs left.
2512
2513 config IA32_AOUT
2514 tristate "IA32 a.out support"
2515 depends on IA32_EMULATION
2516 ---help---
2517 Support old a.out binaries in the 32bit emulation.
2518
2519 config X86_X32
2520 bool "x32 ABI for 64-bit mode"
2521 depends on X86_64 && IA32_EMULATION
2522 ---help---
2523 Include code to run binaries for the x32 native 32-bit ABI
2524 for 64-bit processors. An x32 process gets access to the
2525 full 64-bit register file and wide data path while leaving
2526 pointers at 32 bits for smaller memory footprint.
2527
2528 You will need a recent binutils (2.22 or later) with
2529 elf32_x86_64 support enabled to compile a kernel with this
2530 option set.
2531
2532 config COMPAT
2533 def_bool y
2534 depends on IA32_EMULATION || X86_X32
2535 select ARCH_WANT_OLD_COMPAT_IPC
2536
2537 if COMPAT
2538 config COMPAT_FOR_U64_ALIGNMENT
2539 def_bool y
2540
2541 config SYSVIPC_COMPAT
2542 def_bool y
2543 depends on SYSVIPC
2544
2545 config KEYS_COMPAT
2546 def_bool y
2547 depends on KEYS
2548 endif
2549
2550 endmenu
2551
2552
2553 config HAVE_ATOMIC_IOMAP
2554 def_bool y
2555 depends on X86_32
2556
2557 config X86_DEV_DMA_OPS
2558 bool
2559 depends on X86_64 || STA2X11
2560
2561 config X86_DMA_REMAP
2562 bool
2563 depends on STA2X11
2564
2565 config PMC_ATOM
2566 def_bool y
2567 depends on PCI
2568
2569 source "net/Kconfig"
2570
2571 source "drivers/Kconfig"
2572
2573 source "drivers/firmware/Kconfig"
2574
2575 source "fs/Kconfig"
2576
2577 source "arch/x86/Kconfig.debug"
2578
2579 source "security/Kconfig"
2580
2581 source "crypto/Kconfig"
2582
2583 source "arch/x86/kvm/Kconfig"
2584
2585 source "lib/Kconfig"
This page took 0.079665 seconds and 6 git commands to generate.