crypto: aead - Remove CRYPTO_ALG_AEAD_NEW flag
[deliverable/linux.git] / arch / x86 / crypto / aesni-intel_glue.c
1 /*
2 * Support for Intel AES-NI instructions. This file contains glue
3 * code, the real AES implementation is in intel-aes_asm.S.
4 *
5 * Copyright (C) 2008, Intel Corp.
6 * Author: Huang Ying <ying.huang@intel.com>
7 *
8 * Added RFC4106 AES-GCM support for 128-bit keys under the AEAD
9 * interface for 64-bit kernels.
10 * Authors: Adrian Hoban <adrian.hoban@intel.com>
11 * Gabriele Paoloni <gabriele.paoloni@intel.com>
12 * Tadeusz Struk (tadeusz.struk@intel.com)
13 * Aidan O'Mahony (aidan.o.mahony@intel.com)
14 * Copyright (c) 2010, Intel Corporation.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
20 */
21
22 #include <linux/hardirq.h>
23 #include <linux/types.h>
24 #include <linux/crypto.h>
25 #include <linux/module.h>
26 #include <linux/err.h>
27 #include <crypto/algapi.h>
28 #include <crypto/aes.h>
29 #include <crypto/cryptd.h>
30 #include <crypto/ctr.h>
31 #include <crypto/b128ops.h>
32 #include <crypto/lrw.h>
33 #include <crypto/xts.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/fpu/api.h>
36 #include <asm/crypto/aes.h>
37 #include <crypto/ablk_helper.h>
38 #include <crypto/scatterwalk.h>
39 #include <crypto/internal/aead.h>
40 #include <linux/workqueue.h>
41 #include <linux/spinlock.h>
42 #ifdef CONFIG_X86_64
43 #include <asm/crypto/glue_helper.h>
44 #endif
45
46
47 #define AESNI_ALIGN 16
48 #define AES_BLOCK_MASK (~(AES_BLOCK_SIZE - 1))
49 #define RFC4106_HASH_SUBKEY_SIZE 16
50
51 /* This data is stored at the end of the crypto_tfm struct.
52 * It's a type of per "session" data storage location.
53 * This needs to be 16 byte aligned.
54 */
55 struct aesni_rfc4106_gcm_ctx {
56 u8 hash_subkey[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
57 struct crypto_aes_ctx aes_key_expanded
58 __attribute__ ((__aligned__(AESNI_ALIGN)));
59 u8 nonce[4];
60 };
61
62 struct aesni_gcm_set_hash_subkey_result {
63 int err;
64 struct completion completion;
65 };
66
67 struct aesni_hash_subkey_req_data {
68 u8 iv[16];
69 struct aesni_gcm_set_hash_subkey_result result;
70 struct scatterlist sg;
71 };
72
73 struct aesni_lrw_ctx {
74 struct lrw_table_ctx lrw_table;
75 u8 raw_aes_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
76 };
77
78 struct aesni_xts_ctx {
79 u8 raw_tweak_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
80 u8 raw_crypt_ctx[sizeof(struct crypto_aes_ctx) + AESNI_ALIGN - 1];
81 };
82
83 asmlinkage int aesni_set_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
84 unsigned int key_len);
85 asmlinkage void aesni_enc(struct crypto_aes_ctx *ctx, u8 *out,
86 const u8 *in);
87 asmlinkage void aesni_dec(struct crypto_aes_ctx *ctx, u8 *out,
88 const u8 *in);
89 asmlinkage void aesni_ecb_enc(struct crypto_aes_ctx *ctx, u8 *out,
90 const u8 *in, unsigned int len);
91 asmlinkage void aesni_ecb_dec(struct crypto_aes_ctx *ctx, u8 *out,
92 const u8 *in, unsigned int len);
93 asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
94 const u8 *in, unsigned int len, u8 *iv);
95 asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
96 const u8 *in, unsigned int len, u8 *iv);
97
98 int crypto_fpu_init(void);
99 void crypto_fpu_exit(void);
100
101 #define AVX_GEN2_OPTSIZE 640
102 #define AVX_GEN4_OPTSIZE 4096
103
104 #ifdef CONFIG_X86_64
105
106 static void (*aesni_ctr_enc_tfm)(struct crypto_aes_ctx *ctx, u8 *out,
107 const u8 *in, unsigned int len, u8 *iv);
108 asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
109 const u8 *in, unsigned int len, u8 *iv);
110
111 asmlinkage void aesni_xts_crypt8(struct crypto_aes_ctx *ctx, u8 *out,
112 const u8 *in, bool enc, u8 *iv);
113
114 /* asmlinkage void aesni_gcm_enc()
115 * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
116 * u8 *out, Ciphertext output. Encrypt in-place is allowed.
117 * const u8 *in, Plaintext input
118 * unsigned long plaintext_len, Length of data in bytes for encryption.
119 * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
120 * concatenated with 8 byte Initialisation Vector (from IPSec ESP
121 * Payload) concatenated with 0x00000001. 16-byte aligned pointer.
122 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
123 * const u8 *aad, Additional Authentication Data (AAD)
124 * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this
125 * is going to be 8 or 12 bytes
126 * u8 *auth_tag, Authenticated Tag output.
127 * unsigned long auth_tag_len), Authenticated Tag Length in bytes.
128 * Valid values are 16 (most likely), 12 or 8.
129 */
130 asmlinkage void aesni_gcm_enc(void *ctx, u8 *out,
131 const u8 *in, unsigned long plaintext_len, u8 *iv,
132 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
133 u8 *auth_tag, unsigned long auth_tag_len);
134
135 /* asmlinkage void aesni_gcm_dec()
136 * void *ctx, AES Key schedule. Starts on a 16 byte boundary.
137 * u8 *out, Plaintext output. Decrypt in-place is allowed.
138 * const u8 *in, Ciphertext input
139 * unsigned long ciphertext_len, Length of data in bytes for decryption.
140 * u8 *iv, Pre-counter block j0: 4 byte salt (from Security Association)
141 * concatenated with 8 byte Initialisation Vector (from IPSec ESP
142 * Payload) concatenated with 0x00000001. 16-byte aligned pointer.
143 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
144 * const u8 *aad, Additional Authentication Data (AAD)
145 * unsigned long aad_len, Length of AAD in bytes. With RFC4106 this is going
146 * to be 8 or 12 bytes
147 * u8 *auth_tag, Authenticated Tag output.
148 * unsigned long auth_tag_len) Authenticated Tag Length in bytes.
149 * Valid values are 16 (most likely), 12 or 8.
150 */
151 asmlinkage void aesni_gcm_dec(void *ctx, u8 *out,
152 const u8 *in, unsigned long ciphertext_len, u8 *iv,
153 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
154 u8 *auth_tag, unsigned long auth_tag_len);
155
156
157 #ifdef CONFIG_AS_AVX
158 asmlinkage void aes_ctr_enc_128_avx_by8(const u8 *in, u8 *iv,
159 void *keys, u8 *out, unsigned int num_bytes);
160 asmlinkage void aes_ctr_enc_192_avx_by8(const u8 *in, u8 *iv,
161 void *keys, u8 *out, unsigned int num_bytes);
162 asmlinkage void aes_ctr_enc_256_avx_by8(const u8 *in, u8 *iv,
163 void *keys, u8 *out, unsigned int num_bytes);
164 /*
165 * asmlinkage void aesni_gcm_precomp_avx_gen2()
166 * gcm_data *my_ctx_data, context data
167 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
168 */
169 asmlinkage void aesni_gcm_precomp_avx_gen2(void *my_ctx_data, u8 *hash_subkey);
170
171 asmlinkage void aesni_gcm_enc_avx_gen2(void *ctx, u8 *out,
172 const u8 *in, unsigned long plaintext_len, u8 *iv,
173 const u8 *aad, unsigned long aad_len,
174 u8 *auth_tag, unsigned long auth_tag_len);
175
176 asmlinkage void aesni_gcm_dec_avx_gen2(void *ctx, u8 *out,
177 const u8 *in, unsigned long ciphertext_len, u8 *iv,
178 const u8 *aad, unsigned long aad_len,
179 u8 *auth_tag, unsigned long auth_tag_len);
180
181 static void aesni_gcm_enc_avx(void *ctx, u8 *out,
182 const u8 *in, unsigned long plaintext_len, u8 *iv,
183 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
184 u8 *auth_tag, unsigned long auth_tag_len)
185 {
186 struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
187 if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)){
188 aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
189 aad_len, auth_tag, auth_tag_len);
190 } else {
191 aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
192 aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
193 aad_len, auth_tag, auth_tag_len);
194 }
195 }
196
197 static void aesni_gcm_dec_avx(void *ctx, u8 *out,
198 const u8 *in, unsigned long ciphertext_len, u8 *iv,
199 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
200 u8 *auth_tag, unsigned long auth_tag_len)
201 {
202 struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
203 if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
204 aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey, aad,
205 aad_len, auth_tag, auth_tag_len);
206 } else {
207 aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
208 aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
209 aad_len, auth_tag, auth_tag_len);
210 }
211 }
212 #endif
213
214 #ifdef CONFIG_AS_AVX2
215 /*
216 * asmlinkage void aesni_gcm_precomp_avx_gen4()
217 * gcm_data *my_ctx_data, context data
218 * u8 *hash_subkey, the Hash sub key input. Data starts on a 16-byte boundary.
219 */
220 asmlinkage void aesni_gcm_precomp_avx_gen4(void *my_ctx_data, u8 *hash_subkey);
221
222 asmlinkage void aesni_gcm_enc_avx_gen4(void *ctx, u8 *out,
223 const u8 *in, unsigned long plaintext_len, u8 *iv,
224 const u8 *aad, unsigned long aad_len,
225 u8 *auth_tag, unsigned long auth_tag_len);
226
227 asmlinkage void aesni_gcm_dec_avx_gen4(void *ctx, u8 *out,
228 const u8 *in, unsigned long ciphertext_len, u8 *iv,
229 const u8 *aad, unsigned long aad_len,
230 u8 *auth_tag, unsigned long auth_tag_len);
231
232 static void aesni_gcm_enc_avx2(void *ctx, u8 *out,
233 const u8 *in, unsigned long plaintext_len, u8 *iv,
234 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
235 u8 *auth_tag, unsigned long auth_tag_len)
236 {
237 struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
238 if ((plaintext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
239 aesni_gcm_enc(ctx, out, in, plaintext_len, iv, hash_subkey, aad,
240 aad_len, auth_tag, auth_tag_len);
241 } else if (plaintext_len < AVX_GEN4_OPTSIZE) {
242 aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
243 aesni_gcm_enc_avx_gen2(ctx, out, in, plaintext_len, iv, aad,
244 aad_len, auth_tag, auth_tag_len);
245 } else {
246 aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
247 aesni_gcm_enc_avx_gen4(ctx, out, in, plaintext_len, iv, aad,
248 aad_len, auth_tag, auth_tag_len);
249 }
250 }
251
252 static void aesni_gcm_dec_avx2(void *ctx, u8 *out,
253 const u8 *in, unsigned long ciphertext_len, u8 *iv,
254 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
255 u8 *auth_tag, unsigned long auth_tag_len)
256 {
257 struct crypto_aes_ctx *aes_ctx = (struct crypto_aes_ctx*)ctx;
258 if ((ciphertext_len < AVX_GEN2_OPTSIZE) || (aes_ctx-> key_length != AES_KEYSIZE_128)) {
259 aesni_gcm_dec(ctx, out, in, ciphertext_len, iv, hash_subkey,
260 aad, aad_len, auth_tag, auth_tag_len);
261 } else if (ciphertext_len < AVX_GEN4_OPTSIZE) {
262 aesni_gcm_precomp_avx_gen2(ctx, hash_subkey);
263 aesni_gcm_dec_avx_gen2(ctx, out, in, ciphertext_len, iv, aad,
264 aad_len, auth_tag, auth_tag_len);
265 } else {
266 aesni_gcm_precomp_avx_gen4(ctx, hash_subkey);
267 aesni_gcm_dec_avx_gen4(ctx, out, in, ciphertext_len, iv, aad,
268 aad_len, auth_tag, auth_tag_len);
269 }
270 }
271 #endif
272
273 static void (*aesni_gcm_enc_tfm)(void *ctx, u8 *out,
274 const u8 *in, unsigned long plaintext_len, u8 *iv,
275 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
276 u8 *auth_tag, unsigned long auth_tag_len);
277
278 static void (*aesni_gcm_dec_tfm)(void *ctx, u8 *out,
279 const u8 *in, unsigned long ciphertext_len, u8 *iv,
280 u8 *hash_subkey, const u8 *aad, unsigned long aad_len,
281 u8 *auth_tag, unsigned long auth_tag_len);
282
283 static inline struct
284 aesni_rfc4106_gcm_ctx *aesni_rfc4106_gcm_ctx_get(struct crypto_aead *tfm)
285 {
286 unsigned long align = AESNI_ALIGN;
287
288 if (align <= crypto_tfm_ctx_alignment())
289 align = 1;
290 return PTR_ALIGN(crypto_aead_ctx(tfm), align);
291 }
292 #endif
293
294 static inline struct crypto_aes_ctx *aes_ctx(void *raw_ctx)
295 {
296 unsigned long addr = (unsigned long)raw_ctx;
297 unsigned long align = AESNI_ALIGN;
298
299 if (align <= crypto_tfm_ctx_alignment())
300 align = 1;
301 return (struct crypto_aes_ctx *)ALIGN(addr, align);
302 }
303
304 static int aes_set_key_common(struct crypto_tfm *tfm, void *raw_ctx,
305 const u8 *in_key, unsigned int key_len)
306 {
307 struct crypto_aes_ctx *ctx = aes_ctx(raw_ctx);
308 u32 *flags = &tfm->crt_flags;
309 int err;
310
311 if (key_len != AES_KEYSIZE_128 && key_len != AES_KEYSIZE_192 &&
312 key_len != AES_KEYSIZE_256) {
313 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
314 return -EINVAL;
315 }
316
317 if (!irq_fpu_usable())
318 err = crypto_aes_expand_key(ctx, in_key, key_len);
319 else {
320 kernel_fpu_begin();
321 err = aesni_set_key(ctx, in_key, key_len);
322 kernel_fpu_end();
323 }
324
325 return err;
326 }
327
328 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
329 unsigned int key_len)
330 {
331 return aes_set_key_common(tfm, crypto_tfm_ctx(tfm), in_key, key_len);
332 }
333
334 static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
335 {
336 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
337
338 if (!irq_fpu_usable())
339 crypto_aes_encrypt_x86(ctx, dst, src);
340 else {
341 kernel_fpu_begin();
342 aesni_enc(ctx, dst, src);
343 kernel_fpu_end();
344 }
345 }
346
347 static void aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
348 {
349 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
350
351 if (!irq_fpu_usable())
352 crypto_aes_decrypt_x86(ctx, dst, src);
353 else {
354 kernel_fpu_begin();
355 aesni_dec(ctx, dst, src);
356 kernel_fpu_end();
357 }
358 }
359
360 static void __aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
361 {
362 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
363
364 aesni_enc(ctx, dst, src);
365 }
366
367 static void __aes_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
368 {
369 struct crypto_aes_ctx *ctx = aes_ctx(crypto_tfm_ctx(tfm));
370
371 aesni_dec(ctx, dst, src);
372 }
373
374 static int ecb_encrypt(struct blkcipher_desc *desc,
375 struct scatterlist *dst, struct scatterlist *src,
376 unsigned int nbytes)
377 {
378 struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
379 struct blkcipher_walk walk;
380 int err;
381
382 blkcipher_walk_init(&walk, dst, src, nbytes);
383 err = blkcipher_walk_virt(desc, &walk);
384 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
385
386 kernel_fpu_begin();
387 while ((nbytes = walk.nbytes)) {
388 aesni_ecb_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
389 nbytes & AES_BLOCK_MASK);
390 nbytes &= AES_BLOCK_SIZE - 1;
391 err = blkcipher_walk_done(desc, &walk, nbytes);
392 }
393 kernel_fpu_end();
394
395 return err;
396 }
397
398 static int ecb_decrypt(struct blkcipher_desc *desc,
399 struct scatterlist *dst, struct scatterlist *src,
400 unsigned int nbytes)
401 {
402 struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
403 struct blkcipher_walk walk;
404 int err;
405
406 blkcipher_walk_init(&walk, dst, src, nbytes);
407 err = blkcipher_walk_virt(desc, &walk);
408 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
409
410 kernel_fpu_begin();
411 while ((nbytes = walk.nbytes)) {
412 aesni_ecb_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
413 nbytes & AES_BLOCK_MASK);
414 nbytes &= AES_BLOCK_SIZE - 1;
415 err = blkcipher_walk_done(desc, &walk, nbytes);
416 }
417 kernel_fpu_end();
418
419 return err;
420 }
421
422 static int cbc_encrypt(struct blkcipher_desc *desc,
423 struct scatterlist *dst, struct scatterlist *src,
424 unsigned int nbytes)
425 {
426 struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
427 struct blkcipher_walk walk;
428 int err;
429
430 blkcipher_walk_init(&walk, dst, src, nbytes);
431 err = blkcipher_walk_virt(desc, &walk);
432 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
433
434 kernel_fpu_begin();
435 while ((nbytes = walk.nbytes)) {
436 aesni_cbc_enc(ctx, walk.dst.virt.addr, walk.src.virt.addr,
437 nbytes & AES_BLOCK_MASK, walk.iv);
438 nbytes &= AES_BLOCK_SIZE - 1;
439 err = blkcipher_walk_done(desc, &walk, nbytes);
440 }
441 kernel_fpu_end();
442
443 return err;
444 }
445
446 static int cbc_decrypt(struct blkcipher_desc *desc,
447 struct scatterlist *dst, struct scatterlist *src,
448 unsigned int nbytes)
449 {
450 struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
451 struct blkcipher_walk walk;
452 int err;
453
454 blkcipher_walk_init(&walk, dst, src, nbytes);
455 err = blkcipher_walk_virt(desc, &walk);
456 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
457
458 kernel_fpu_begin();
459 while ((nbytes = walk.nbytes)) {
460 aesni_cbc_dec(ctx, walk.dst.virt.addr, walk.src.virt.addr,
461 nbytes & AES_BLOCK_MASK, walk.iv);
462 nbytes &= AES_BLOCK_SIZE - 1;
463 err = blkcipher_walk_done(desc, &walk, nbytes);
464 }
465 kernel_fpu_end();
466
467 return err;
468 }
469
470 #ifdef CONFIG_X86_64
471 static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
472 struct blkcipher_walk *walk)
473 {
474 u8 *ctrblk = walk->iv;
475 u8 keystream[AES_BLOCK_SIZE];
476 u8 *src = walk->src.virt.addr;
477 u8 *dst = walk->dst.virt.addr;
478 unsigned int nbytes = walk->nbytes;
479
480 aesni_enc(ctx, keystream, ctrblk);
481 crypto_xor(keystream, src, nbytes);
482 memcpy(dst, keystream, nbytes);
483 crypto_inc(ctrblk, AES_BLOCK_SIZE);
484 }
485
486 #ifdef CONFIG_AS_AVX
487 static void aesni_ctr_enc_avx_tfm(struct crypto_aes_ctx *ctx, u8 *out,
488 const u8 *in, unsigned int len, u8 *iv)
489 {
490 /*
491 * based on key length, override with the by8 version
492 * of ctr mode encryption/decryption for improved performance
493 * aes_set_key_common() ensures that key length is one of
494 * {128,192,256}
495 */
496 if (ctx->key_length == AES_KEYSIZE_128)
497 aes_ctr_enc_128_avx_by8(in, iv, (void *)ctx, out, len);
498 else if (ctx->key_length == AES_KEYSIZE_192)
499 aes_ctr_enc_192_avx_by8(in, iv, (void *)ctx, out, len);
500 else
501 aes_ctr_enc_256_avx_by8(in, iv, (void *)ctx, out, len);
502 }
503 #endif
504
505 static int ctr_crypt(struct blkcipher_desc *desc,
506 struct scatterlist *dst, struct scatterlist *src,
507 unsigned int nbytes)
508 {
509 struct crypto_aes_ctx *ctx = aes_ctx(crypto_blkcipher_ctx(desc->tfm));
510 struct blkcipher_walk walk;
511 int err;
512
513 blkcipher_walk_init(&walk, dst, src, nbytes);
514 err = blkcipher_walk_virt_block(desc, &walk, AES_BLOCK_SIZE);
515 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
516
517 kernel_fpu_begin();
518 while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
519 aesni_ctr_enc_tfm(ctx, walk.dst.virt.addr, walk.src.virt.addr,
520 nbytes & AES_BLOCK_MASK, walk.iv);
521 nbytes &= AES_BLOCK_SIZE - 1;
522 err = blkcipher_walk_done(desc, &walk, nbytes);
523 }
524 if (walk.nbytes) {
525 ctr_crypt_final(ctx, &walk);
526 err = blkcipher_walk_done(desc, &walk, 0);
527 }
528 kernel_fpu_end();
529
530 return err;
531 }
532 #endif
533
534 static int ablk_ecb_init(struct crypto_tfm *tfm)
535 {
536 return ablk_init_common(tfm, "__driver-ecb-aes-aesni");
537 }
538
539 static int ablk_cbc_init(struct crypto_tfm *tfm)
540 {
541 return ablk_init_common(tfm, "__driver-cbc-aes-aesni");
542 }
543
544 #ifdef CONFIG_X86_64
545 static int ablk_ctr_init(struct crypto_tfm *tfm)
546 {
547 return ablk_init_common(tfm, "__driver-ctr-aes-aesni");
548 }
549
550 #endif
551
552 #if IS_ENABLED(CONFIG_CRYPTO_PCBC)
553 static int ablk_pcbc_init(struct crypto_tfm *tfm)
554 {
555 return ablk_init_common(tfm, "fpu(pcbc(__driver-aes-aesni))");
556 }
557 #endif
558
559 static void lrw_xts_encrypt_callback(void *ctx, u8 *blks, unsigned int nbytes)
560 {
561 aesni_ecb_enc(ctx, blks, blks, nbytes);
562 }
563
564 static void lrw_xts_decrypt_callback(void *ctx, u8 *blks, unsigned int nbytes)
565 {
566 aesni_ecb_dec(ctx, blks, blks, nbytes);
567 }
568
569 static int lrw_aesni_setkey(struct crypto_tfm *tfm, const u8 *key,
570 unsigned int keylen)
571 {
572 struct aesni_lrw_ctx *ctx = crypto_tfm_ctx(tfm);
573 int err;
574
575 err = aes_set_key_common(tfm, ctx->raw_aes_ctx, key,
576 keylen - AES_BLOCK_SIZE);
577 if (err)
578 return err;
579
580 return lrw_init_table(&ctx->lrw_table, key + keylen - AES_BLOCK_SIZE);
581 }
582
583 static void lrw_aesni_exit_tfm(struct crypto_tfm *tfm)
584 {
585 struct aesni_lrw_ctx *ctx = crypto_tfm_ctx(tfm);
586
587 lrw_free_table(&ctx->lrw_table);
588 }
589
590 static int lrw_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
591 struct scatterlist *src, unsigned int nbytes)
592 {
593 struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
594 be128 buf[8];
595 struct lrw_crypt_req req = {
596 .tbuf = buf,
597 .tbuflen = sizeof(buf),
598
599 .table_ctx = &ctx->lrw_table,
600 .crypt_ctx = aes_ctx(ctx->raw_aes_ctx),
601 .crypt_fn = lrw_xts_encrypt_callback,
602 };
603 int ret;
604
605 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
606
607 kernel_fpu_begin();
608 ret = lrw_crypt(desc, dst, src, nbytes, &req);
609 kernel_fpu_end();
610
611 return ret;
612 }
613
614 static int lrw_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
615 struct scatterlist *src, unsigned int nbytes)
616 {
617 struct aesni_lrw_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
618 be128 buf[8];
619 struct lrw_crypt_req req = {
620 .tbuf = buf,
621 .tbuflen = sizeof(buf),
622
623 .table_ctx = &ctx->lrw_table,
624 .crypt_ctx = aes_ctx(ctx->raw_aes_ctx),
625 .crypt_fn = lrw_xts_decrypt_callback,
626 };
627 int ret;
628
629 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
630
631 kernel_fpu_begin();
632 ret = lrw_crypt(desc, dst, src, nbytes, &req);
633 kernel_fpu_end();
634
635 return ret;
636 }
637
638 static int xts_aesni_setkey(struct crypto_tfm *tfm, const u8 *key,
639 unsigned int keylen)
640 {
641 struct aesni_xts_ctx *ctx = crypto_tfm_ctx(tfm);
642 u32 *flags = &tfm->crt_flags;
643 int err;
644
645 /* key consists of keys of equal size concatenated, therefore
646 * the length must be even
647 */
648 if (keylen % 2) {
649 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
650 return -EINVAL;
651 }
652
653 /* first half of xts-key is for crypt */
654 err = aes_set_key_common(tfm, ctx->raw_crypt_ctx, key, keylen / 2);
655 if (err)
656 return err;
657
658 /* second half of xts-key is for tweak */
659 return aes_set_key_common(tfm, ctx->raw_tweak_ctx, key + keylen / 2,
660 keylen / 2);
661 }
662
663
664 static void aesni_xts_tweak(void *ctx, u8 *out, const u8 *in)
665 {
666 aesni_enc(ctx, out, in);
667 }
668
669 #ifdef CONFIG_X86_64
670
671 static void aesni_xts_enc(void *ctx, u128 *dst, const u128 *src, le128 *iv)
672 {
673 glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_enc));
674 }
675
676 static void aesni_xts_dec(void *ctx, u128 *dst, const u128 *src, le128 *iv)
677 {
678 glue_xts_crypt_128bit_one(ctx, dst, src, iv, GLUE_FUNC_CAST(aesni_dec));
679 }
680
681 static void aesni_xts_enc8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
682 {
683 aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, true, (u8 *)iv);
684 }
685
686 static void aesni_xts_dec8(void *ctx, u128 *dst, const u128 *src, le128 *iv)
687 {
688 aesni_xts_crypt8(ctx, (u8 *)dst, (const u8 *)src, false, (u8 *)iv);
689 }
690
691 static const struct common_glue_ctx aesni_enc_xts = {
692 .num_funcs = 2,
693 .fpu_blocks_limit = 1,
694
695 .funcs = { {
696 .num_blocks = 8,
697 .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc8) }
698 }, {
699 .num_blocks = 1,
700 .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_enc) }
701 } }
702 };
703
704 static const struct common_glue_ctx aesni_dec_xts = {
705 .num_funcs = 2,
706 .fpu_blocks_limit = 1,
707
708 .funcs = { {
709 .num_blocks = 8,
710 .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec8) }
711 }, {
712 .num_blocks = 1,
713 .fn_u = { .xts = GLUE_XTS_FUNC_CAST(aesni_xts_dec) }
714 } }
715 };
716
717 static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
718 struct scatterlist *src, unsigned int nbytes)
719 {
720 struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
721
722 return glue_xts_crypt_128bit(&aesni_enc_xts, desc, dst, src, nbytes,
723 XTS_TWEAK_CAST(aesni_xts_tweak),
724 aes_ctx(ctx->raw_tweak_ctx),
725 aes_ctx(ctx->raw_crypt_ctx));
726 }
727
728 static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
729 struct scatterlist *src, unsigned int nbytes)
730 {
731 struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
732
733 return glue_xts_crypt_128bit(&aesni_dec_xts, desc, dst, src, nbytes,
734 XTS_TWEAK_CAST(aesni_xts_tweak),
735 aes_ctx(ctx->raw_tweak_ctx),
736 aes_ctx(ctx->raw_crypt_ctx));
737 }
738
739 #else
740
741 static int xts_encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
742 struct scatterlist *src, unsigned int nbytes)
743 {
744 struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
745 be128 buf[8];
746 struct xts_crypt_req req = {
747 .tbuf = buf,
748 .tbuflen = sizeof(buf),
749
750 .tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
751 .tweak_fn = aesni_xts_tweak,
752 .crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
753 .crypt_fn = lrw_xts_encrypt_callback,
754 };
755 int ret;
756
757 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
758
759 kernel_fpu_begin();
760 ret = xts_crypt(desc, dst, src, nbytes, &req);
761 kernel_fpu_end();
762
763 return ret;
764 }
765
766 static int xts_decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
767 struct scatterlist *src, unsigned int nbytes)
768 {
769 struct aesni_xts_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
770 be128 buf[8];
771 struct xts_crypt_req req = {
772 .tbuf = buf,
773 .tbuflen = sizeof(buf),
774
775 .tweak_ctx = aes_ctx(ctx->raw_tweak_ctx),
776 .tweak_fn = aesni_xts_tweak,
777 .crypt_ctx = aes_ctx(ctx->raw_crypt_ctx),
778 .crypt_fn = lrw_xts_decrypt_callback,
779 };
780 int ret;
781
782 desc->flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
783
784 kernel_fpu_begin();
785 ret = xts_crypt(desc, dst, src, nbytes, &req);
786 kernel_fpu_end();
787
788 return ret;
789 }
790
791 #endif
792
793 #ifdef CONFIG_X86_64
794 static int rfc4106_init(struct crypto_aead *aead)
795 {
796 struct cryptd_aead *cryptd_tfm;
797 struct cryptd_aead **ctx = crypto_aead_ctx(aead);
798
799 cryptd_tfm = cryptd_alloc_aead("__driver-gcm-aes-aesni",
800 CRYPTO_ALG_INTERNAL,
801 CRYPTO_ALG_INTERNAL);
802 if (IS_ERR(cryptd_tfm))
803 return PTR_ERR(cryptd_tfm);
804
805 *ctx = cryptd_tfm;
806 crypto_aead_set_reqsize(aead, crypto_aead_reqsize(&cryptd_tfm->base));
807 return 0;
808 }
809
810 static void rfc4106_exit(struct crypto_aead *aead)
811 {
812 struct cryptd_aead **ctx = crypto_aead_ctx(aead);
813
814 cryptd_free_aead(*ctx);
815 }
816
817 static void
818 rfc4106_set_hash_subkey_done(struct crypto_async_request *req, int err)
819 {
820 struct aesni_gcm_set_hash_subkey_result *result = req->data;
821
822 if (err == -EINPROGRESS)
823 return;
824 result->err = err;
825 complete(&result->completion);
826 }
827
828 static int
829 rfc4106_set_hash_subkey(u8 *hash_subkey, const u8 *key, unsigned int key_len)
830 {
831 struct crypto_ablkcipher *ctr_tfm;
832 struct ablkcipher_request *req;
833 int ret = -EINVAL;
834 struct aesni_hash_subkey_req_data *req_data;
835
836 ctr_tfm = crypto_alloc_ablkcipher("ctr(aes)", 0, 0);
837 if (IS_ERR(ctr_tfm))
838 return PTR_ERR(ctr_tfm);
839
840 ret = crypto_ablkcipher_setkey(ctr_tfm, key, key_len);
841 if (ret)
842 goto out_free_ablkcipher;
843
844 ret = -ENOMEM;
845 req = ablkcipher_request_alloc(ctr_tfm, GFP_KERNEL);
846 if (!req)
847 goto out_free_ablkcipher;
848
849 req_data = kmalloc(sizeof(*req_data), GFP_KERNEL);
850 if (!req_data)
851 goto out_free_request;
852
853 memset(req_data->iv, 0, sizeof(req_data->iv));
854
855 /* Clear the data in the hash sub key container to zero.*/
856 /* We want to cipher all zeros to create the hash sub key. */
857 memset(hash_subkey, 0, RFC4106_HASH_SUBKEY_SIZE);
858
859 init_completion(&req_data->result.completion);
860 sg_init_one(&req_data->sg, hash_subkey, RFC4106_HASH_SUBKEY_SIZE);
861 ablkcipher_request_set_tfm(req, ctr_tfm);
862 ablkcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
863 CRYPTO_TFM_REQ_MAY_BACKLOG,
864 rfc4106_set_hash_subkey_done,
865 &req_data->result);
866
867 ablkcipher_request_set_crypt(req, &req_data->sg,
868 &req_data->sg, RFC4106_HASH_SUBKEY_SIZE, req_data->iv);
869
870 ret = crypto_ablkcipher_encrypt(req);
871 if (ret == -EINPROGRESS || ret == -EBUSY) {
872 ret = wait_for_completion_interruptible
873 (&req_data->result.completion);
874 if (!ret)
875 ret = req_data->result.err;
876 }
877 kfree(req_data);
878 out_free_request:
879 ablkcipher_request_free(req);
880 out_free_ablkcipher:
881 crypto_free_ablkcipher(ctr_tfm);
882 return ret;
883 }
884
885 static int common_rfc4106_set_key(struct crypto_aead *aead, const u8 *key,
886 unsigned int key_len)
887 {
888 struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(aead);
889
890 if (key_len < 4) {
891 crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
892 return -EINVAL;
893 }
894 /*Account for 4 byte nonce at the end.*/
895 key_len -= 4;
896
897 memcpy(ctx->nonce, key + key_len, sizeof(ctx->nonce));
898
899 return aes_set_key_common(crypto_aead_tfm(aead),
900 &ctx->aes_key_expanded, key, key_len) ?:
901 rfc4106_set_hash_subkey(ctx->hash_subkey, key, key_len);
902 }
903
904 static int rfc4106_set_key(struct crypto_aead *parent, const u8 *key,
905 unsigned int key_len)
906 {
907 struct cryptd_aead **ctx = crypto_aead_ctx(parent);
908 struct cryptd_aead *cryptd_tfm = *ctx;
909
910 return crypto_aead_setkey(&cryptd_tfm->base, key, key_len);
911 }
912
913 static int common_rfc4106_set_authsize(struct crypto_aead *aead,
914 unsigned int authsize)
915 {
916 switch (authsize) {
917 case 8:
918 case 12:
919 case 16:
920 break;
921 default:
922 return -EINVAL;
923 }
924
925 return 0;
926 }
927
928 /* This is the Integrity Check Value (aka the authentication tag length and can
929 * be 8, 12 or 16 bytes long. */
930 static int rfc4106_set_authsize(struct crypto_aead *parent,
931 unsigned int authsize)
932 {
933 struct cryptd_aead **ctx = crypto_aead_ctx(parent);
934 struct cryptd_aead *cryptd_tfm = *ctx;
935
936 return crypto_aead_setauthsize(&cryptd_tfm->base, authsize);
937 }
938
939 static int helper_rfc4106_encrypt(struct aead_request *req)
940 {
941 u8 one_entry_in_sg = 0;
942 u8 *src, *dst, *assoc;
943 __be32 counter = cpu_to_be32(1);
944 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
945 struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
946 void *aes_ctx = &(ctx->aes_key_expanded);
947 unsigned long auth_tag_len = crypto_aead_authsize(tfm);
948 u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
949 struct scatter_walk src_sg_walk;
950 struct scatter_walk dst_sg_walk;
951 unsigned int i;
952
953 /* Assuming we are supporting rfc4106 64-bit extended */
954 /* sequence numbers We need to have the AAD length equal */
955 /* to 16 or 20 bytes */
956 if (unlikely(req->assoclen != 16 && req->assoclen != 20))
957 return -EINVAL;
958
959 /* IV below built */
960 for (i = 0; i < 4; i++)
961 *(iv+i) = ctx->nonce[i];
962 for (i = 0; i < 8; i++)
963 *(iv+4+i) = req->iv[i];
964 *((__be32 *)(iv+12)) = counter;
965
966 if (sg_is_last(req->src) &&
967 req->src->offset + req->src->length <= PAGE_SIZE &&
968 sg_is_last(req->dst) &&
969 req->dst->offset + req->dst->length <= PAGE_SIZE) {
970 one_entry_in_sg = 1;
971 scatterwalk_start(&src_sg_walk, req->src);
972 assoc = scatterwalk_map(&src_sg_walk);
973 src = assoc + req->assoclen;
974 dst = src;
975 if (unlikely(req->src != req->dst)) {
976 scatterwalk_start(&dst_sg_walk, req->dst);
977 dst = scatterwalk_map(&dst_sg_walk) + req->assoclen;
978 }
979 } else {
980 /* Allocate memory for src, dst, assoc */
981 assoc = kmalloc(req->cryptlen + auth_tag_len + req->assoclen,
982 GFP_ATOMIC);
983 if (unlikely(!assoc))
984 return -ENOMEM;
985 scatterwalk_map_and_copy(assoc, req->src, 0,
986 req->assoclen + req->cryptlen, 0);
987 src = assoc + req->assoclen;
988 dst = src;
989 }
990
991 kernel_fpu_begin();
992 aesni_gcm_enc_tfm(aes_ctx, dst, src, req->cryptlen, iv,
993 ctx->hash_subkey, assoc, req->assoclen - 8,
994 dst + req->cryptlen, auth_tag_len);
995 kernel_fpu_end();
996
997 /* The authTag (aka the Integrity Check Value) needs to be written
998 * back to the packet. */
999 if (one_entry_in_sg) {
1000 if (unlikely(req->src != req->dst)) {
1001 scatterwalk_unmap(dst - req->assoclen);
1002 scatterwalk_advance(&dst_sg_walk, req->dst->length);
1003 scatterwalk_done(&dst_sg_walk, 1, 0);
1004 }
1005 scatterwalk_unmap(assoc);
1006 scatterwalk_advance(&src_sg_walk, req->src->length);
1007 scatterwalk_done(&src_sg_walk, req->src == req->dst, 0);
1008 } else {
1009 scatterwalk_map_and_copy(dst, req->dst, req->assoclen,
1010 req->cryptlen + auth_tag_len, 1);
1011 kfree(assoc);
1012 }
1013 return 0;
1014 }
1015
1016 static int helper_rfc4106_decrypt(struct aead_request *req)
1017 {
1018 u8 one_entry_in_sg = 0;
1019 u8 *src, *dst, *assoc;
1020 unsigned long tempCipherLen = 0;
1021 __be32 counter = cpu_to_be32(1);
1022 int retval = 0;
1023 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1024 struct aesni_rfc4106_gcm_ctx *ctx = aesni_rfc4106_gcm_ctx_get(tfm);
1025 void *aes_ctx = &(ctx->aes_key_expanded);
1026 unsigned long auth_tag_len = crypto_aead_authsize(tfm);
1027 u8 iv[16] __attribute__ ((__aligned__(AESNI_ALIGN)));
1028 u8 authTag[16];
1029 struct scatter_walk src_sg_walk;
1030 struct scatter_walk dst_sg_walk;
1031 unsigned int i;
1032
1033 if (unlikely(req->assoclen != 16 && req->assoclen != 20))
1034 return -EINVAL;
1035
1036 /* Assuming we are supporting rfc4106 64-bit extended */
1037 /* sequence numbers We need to have the AAD length */
1038 /* equal to 16 or 20 bytes */
1039
1040 tempCipherLen = (unsigned long)(req->cryptlen - auth_tag_len);
1041 /* IV below built */
1042 for (i = 0; i < 4; i++)
1043 *(iv+i) = ctx->nonce[i];
1044 for (i = 0; i < 8; i++)
1045 *(iv+4+i) = req->iv[i];
1046 *((__be32 *)(iv+12)) = counter;
1047
1048 if (sg_is_last(req->src) &&
1049 req->src->offset + req->src->length <= PAGE_SIZE &&
1050 sg_is_last(req->dst) &&
1051 req->dst->offset + req->dst->length <= PAGE_SIZE) {
1052 one_entry_in_sg = 1;
1053 scatterwalk_start(&src_sg_walk, req->src);
1054 assoc = scatterwalk_map(&src_sg_walk);
1055 src = assoc + req->assoclen;
1056 dst = src;
1057 if (unlikely(req->src != req->dst)) {
1058 scatterwalk_start(&dst_sg_walk, req->dst);
1059 dst = scatterwalk_map(&dst_sg_walk) + req->assoclen;
1060 }
1061
1062 } else {
1063 /* Allocate memory for src, dst, assoc */
1064 assoc = kmalloc(req->cryptlen + req->assoclen, GFP_ATOMIC);
1065 if (!assoc)
1066 return -ENOMEM;
1067 scatterwalk_map_and_copy(assoc, req->src, 0,
1068 req->assoclen + req->cryptlen, 0);
1069 src = assoc + req->assoclen;
1070 dst = src;
1071 }
1072
1073 kernel_fpu_begin();
1074 aesni_gcm_dec_tfm(aes_ctx, dst, src, tempCipherLen, iv,
1075 ctx->hash_subkey, assoc, req->assoclen - 8,
1076 authTag, auth_tag_len);
1077 kernel_fpu_end();
1078
1079 /* Compare generated tag with passed in tag. */
1080 retval = crypto_memneq(src + tempCipherLen, authTag, auth_tag_len) ?
1081 -EBADMSG : 0;
1082
1083 if (one_entry_in_sg) {
1084 if (unlikely(req->src != req->dst)) {
1085 scatterwalk_unmap(dst - req->assoclen);
1086 scatterwalk_advance(&dst_sg_walk, req->dst->length);
1087 scatterwalk_done(&dst_sg_walk, 1, 0);
1088 }
1089 scatterwalk_unmap(assoc);
1090 scatterwalk_advance(&src_sg_walk, req->src->length);
1091 scatterwalk_done(&src_sg_walk, req->src == req->dst, 0);
1092 } else {
1093 scatterwalk_map_and_copy(dst, req->dst, req->assoclen,
1094 tempCipherLen, 1);
1095 kfree(assoc);
1096 }
1097 return retval;
1098 }
1099
1100 static int rfc4106_encrypt(struct aead_request *req)
1101 {
1102 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1103 struct cryptd_aead **ctx = crypto_aead_ctx(tfm);
1104 struct cryptd_aead *cryptd_tfm = *ctx;
1105
1106 aead_request_set_tfm(req, irq_fpu_usable() ?
1107 cryptd_aead_child(cryptd_tfm) :
1108 &cryptd_tfm->base);
1109
1110 return crypto_aead_encrypt(req);
1111 }
1112
1113 static int rfc4106_decrypt(struct aead_request *req)
1114 {
1115 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1116 struct cryptd_aead **ctx = crypto_aead_ctx(tfm);
1117 struct cryptd_aead *cryptd_tfm = *ctx;
1118
1119 aead_request_set_tfm(req, irq_fpu_usable() ?
1120 cryptd_aead_child(cryptd_tfm) :
1121 &cryptd_tfm->base);
1122
1123 return crypto_aead_decrypt(req);
1124 }
1125 #endif
1126
1127 static struct crypto_alg aesni_algs[] = { {
1128 .cra_name = "aes",
1129 .cra_driver_name = "aes-aesni",
1130 .cra_priority = 300,
1131 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
1132 .cra_blocksize = AES_BLOCK_SIZE,
1133 .cra_ctxsize = sizeof(struct crypto_aes_ctx) +
1134 AESNI_ALIGN - 1,
1135 .cra_alignmask = 0,
1136 .cra_module = THIS_MODULE,
1137 .cra_u = {
1138 .cipher = {
1139 .cia_min_keysize = AES_MIN_KEY_SIZE,
1140 .cia_max_keysize = AES_MAX_KEY_SIZE,
1141 .cia_setkey = aes_set_key,
1142 .cia_encrypt = aes_encrypt,
1143 .cia_decrypt = aes_decrypt
1144 }
1145 }
1146 }, {
1147 .cra_name = "__aes-aesni",
1148 .cra_driver_name = "__driver-aes-aesni",
1149 .cra_priority = 0,
1150 .cra_flags = CRYPTO_ALG_TYPE_CIPHER | CRYPTO_ALG_INTERNAL,
1151 .cra_blocksize = AES_BLOCK_SIZE,
1152 .cra_ctxsize = sizeof(struct crypto_aes_ctx) +
1153 AESNI_ALIGN - 1,
1154 .cra_alignmask = 0,
1155 .cra_module = THIS_MODULE,
1156 .cra_u = {
1157 .cipher = {
1158 .cia_min_keysize = AES_MIN_KEY_SIZE,
1159 .cia_max_keysize = AES_MAX_KEY_SIZE,
1160 .cia_setkey = aes_set_key,
1161 .cia_encrypt = __aes_encrypt,
1162 .cia_decrypt = __aes_decrypt
1163 }
1164 }
1165 }, {
1166 .cra_name = "__ecb-aes-aesni",
1167 .cra_driver_name = "__driver-ecb-aes-aesni",
1168 .cra_priority = 0,
1169 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
1170 CRYPTO_ALG_INTERNAL,
1171 .cra_blocksize = AES_BLOCK_SIZE,
1172 .cra_ctxsize = sizeof(struct crypto_aes_ctx) +
1173 AESNI_ALIGN - 1,
1174 .cra_alignmask = 0,
1175 .cra_type = &crypto_blkcipher_type,
1176 .cra_module = THIS_MODULE,
1177 .cra_u = {
1178 .blkcipher = {
1179 .min_keysize = AES_MIN_KEY_SIZE,
1180 .max_keysize = AES_MAX_KEY_SIZE,
1181 .setkey = aes_set_key,
1182 .encrypt = ecb_encrypt,
1183 .decrypt = ecb_decrypt,
1184 },
1185 },
1186 }, {
1187 .cra_name = "__cbc-aes-aesni",
1188 .cra_driver_name = "__driver-cbc-aes-aesni",
1189 .cra_priority = 0,
1190 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
1191 CRYPTO_ALG_INTERNAL,
1192 .cra_blocksize = AES_BLOCK_SIZE,
1193 .cra_ctxsize = sizeof(struct crypto_aes_ctx) +
1194 AESNI_ALIGN - 1,
1195 .cra_alignmask = 0,
1196 .cra_type = &crypto_blkcipher_type,
1197 .cra_module = THIS_MODULE,
1198 .cra_u = {
1199 .blkcipher = {
1200 .min_keysize = AES_MIN_KEY_SIZE,
1201 .max_keysize = AES_MAX_KEY_SIZE,
1202 .setkey = aes_set_key,
1203 .encrypt = cbc_encrypt,
1204 .decrypt = cbc_decrypt,
1205 },
1206 },
1207 }, {
1208 .cra_name = "ecb(aes)",
1209 .cra_driver_name = "ecb-aes-aesni",
1210 .cra_priority = 400,
1211 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1212 .cra_blocksize = AES_BLOCK_SIZE,
1213 .cra_ctxsize = sizeof(struct async_helper_ctx),
1214 .cra_alignmask = 0,
1215 .cra_type = &crypto_ablkcipher_type,
1216 .cra_module = THIS_MODULE,
1217 .cra_init = ablk_ecb_init,
1218 .cra_exit = ablk_exit,
1219 .cra_u = {
1220 .ablkcipher = {
1221 .min_keysize = AES_MIN_KEY_SIZE,
1222 .max_keysize = AES_MAX_KEY_SIZE,
1223 .setkey = ablk_set_key,
1224 .encrypt = ablk_encrypt,
1225 .decrypt = ablk_decrypt,
1226 },
1227 },
1228 }, {
1229 .cra_name = "cbc(aes)",
1230 .cra_driver_name = "cbc-aes-aesni",
1231 .cra_priority = 400,
1232 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1233 .cra_blocksize = AES_BLOCK_SIZE,
1234 .cra_ctxsize = sizeof(struct async_helper_ctx),
1235 .cra_alignmask = 0,
1236 .cra_type = &crypto_ablkcipher_type,
1237 .cra_module = THIS_MODULE,
1238 .cra_init = ablk_cbc_init,
1239 .cra_exit = ablk_exit,
1240 .cra_u = {
1241 .ablkcipher = {
1242 .min_keysize = AES_MIN_KEY_SIZE,
1243 .max_keysize = AES_MAX_KEY_SIZE,
1244 .ivsize = AES_BLOCK_SIZE,
1245 .setkey = ablk_set_key,
1246 .encrypt = ablk_encrypt,
1247 .decrypt = ablk_decrypt,
1248 },
1249 },
1250 #ifdef CONFIG_X86_64
1251 }, {
1252 .cra_name = "__ctr-aes-aesni",
1253 .cra_driver_name = "__driver-ctr-aes-aesni",
1254 .cra_priority = 0,
1255 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
1256 CRYPTO_ALG_INTERNAL,
1257 .cra_blocksize = 1,
1258 .cra_ctxsize = sizeof(struct crypto_aes_ctx) +
1259 AESNI_ALIGN - 1,
1260 .cra_alignmask = 0,
1261 .cra_type = &crypto_blkcipher_type,
1262 .cra_module = THIS_MODULE,
1263 .cra_u = {
1264 .blkcipher = {
1265 .min_keysize = AES_MIN_KEY_SIZE,
1266 .max_keysize = AES_MAX_KEY_SIZE,
1267 .ivsize = AES_BLOCK_SIZE,
1268 .setkey = aes_set_key,
1269 .encrypt = ctr_crypt,
1270 .decrypt = ctr_crypt,
1271 },
1272 },
1273 }, {
1274 .cra_name = "ctr(aes)",
1275 .cra_driver_name = "ctr-aes-aesni",
1276 .cra_priority = 400,
1277 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1278 .cra_blocksize = 1,
1279 .cra_ctxsize = sizeof(struct async_helper_ctx),
1280 .cra_alignmask = 0,
1281 .cra_type = &crypto_ablkcipher_type,
1282 .cra_module = THIS_MODULE,
1283 .cra_init = ablk_ctr_init,
1284 .cra_exit = ablk_exit,
1285 .cra_u = {
1286 .ablkcipher = {
1287 .min_keysize = AES_MIN_KEY_SIZE,
1288 .max_keysize = AES_MAX_KEY_SIZE,
1289 .ivsize = AES_BLOCK_SIZE,
1290 .setkey = ablk_set_key,
1291 .encrypt = ablk_encrypt,
1292 .decrypt = ablk_encrypt,
1293 .geniv = "chainiv",
1294 },
1295 },
1296 #endif
1297 #if IS_ENABLED(CONFIG_CRYPTO_PCBC)
1298 }, {
1299 .cra_name = "pcbc(aes)",
1300 .cra_driver_name = "pcbc-aes-aesni",
1301 .cra_priority = 400,
1302 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1303 .cra_blocksize = AES_BLOCK_SIZE,
1304 .cra_ctxsize = sizeof(struct async_helper_ctx),
1305 .cra_alignmask = 0,
1306 .cra_type = &crypto_ablkcipher_type,
1307 .cra_module = THIS_MODULE,
1308 .cra_init = ablk_pcbc_init,
1309 .cra_exit = ablk_exit,
1310 .cra_u = {
1311 .ablkcipher = {
1312 .min_keysize = AES_MIN_KEY_SIZE,
1313 .max_keysize = AES_MAX_KEY_SIZE,
1314 .ivsize = AES_BLOCK_SIZE,
1315 .setkey = ablk_set_key,
1316 .encrypt = ablk_encrypt,
1317 .decrypt = ablk_decrypt,
1318 },
1319 },
1320 #endif
1321 }, {
1322 .cra_name = "__lrw-aes-aesni",
1323 .cra_driver_name = "__driver-lrw-aes-aesni",
1324 .cra_priority = 0,
1325 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
1326 CRYPTO_ALG_INTERNAL,
1327 .cra_blocksize = AES_BLOCK_SIZE,
1328 .cra_ctxsize = sizeof(struct aesni_lrw_ctx),
1329 .cra_alignmask = 0,
1330 .cra_type = &crypto_blkcipher_type,
1331 .cra_module = THIS_MODULE,
1332 .cra_exit = lrw_aesni_exit_tfm,
1333 .cra_u = {
1334 .blkcipher = {
1335 .min_keysize = AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
1336 .max_keysize = AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
1337 .ivsize = AES_BLOCK_SIZE,
1338 .setkey = lrw_aesni_setkey,
1339 .encrypt = lrw_encrypt,
1340 .decrypt = lrw_decrypt,
1341 },
1342 },
1343 }, {
1344 .cra_name = "__xts-aes-aesni",
1345 .cra_driver_name = "__driver-xts-aes-aesni",
1346 .cra_priority = 0,
1347 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
1348 CRYPTO_ALG_INTERNAL,
1349 .cra_blocksize = AES_BLOCK_SIZE,
1350 .cra_ctxsize = sizeof(struct aesni_xts_ctx),
1351 .cra_alignmask = 0,
1352 .cra_type = &crypto_blkcipher_type,
1353 .cra_module = THIS_MODULE,
1354 .cra_u = {
1355 .blkcipher = {
1356 .min_keysize = 2 * AES_MIN_KEY_SIZE,
1357 .max_keysize = 2 * AES_MAX_KEY_SIZE,
1358 .ivsize = AES_BLOCK_SIZE,
1359 .setkey = xts_aesni_setkey,
1360 .encrypt = xts_encrypt,
1361 .decrypt = xts_decrypt,
1362 },
1363 },
1364 }, {
1365 .cra_name = "lrw(aes)",
1366 .cra_driver_name = "lrw-aes-aesni",
1367 .cra_priority = 400,
1368 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1369 .cra_blocksize = AES_BLOCK_SIZE,
1370 .cra_ctxsize = sizeof(struct async_helper_ctx),
1371 .cra_alignmask = 0,
1372 .cra_type = &crypto_ablkcipher_type,
1373 .cra_module = THIS_MODULE,
1374 .cra_init = ablk_init,
1375 .cra_exit = ablk_exit,
1376 .cra_u = {
1377 .ablkcipher = {
1378 .min_keysize = AES_MIN_KEY_SIZE + AES_BLOCK_SIZE,
1379 .max_keysize = AES_MAX_KEY_SIZE + AES_BLOCK_SIZE,
1380 .ivsize = AES_BLOCK_SIZE,
1381 .setkey = ablk_set_key,
1382 .encrypt = ablk_encrypt,
1383 .decrypt = ablk_decrypt,
1384 },
1385 },
1386 }, {
1387 .cra_name = "xts(aes)",
1388 .cra_driver_name = "xts-aes-aesni",
1389 .cra_priority = 400,
1390 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1391 .cra_blocksize = AES_BLOCK_SIZE,
1392 .cra_ctxsize = sizeof(struct async_helper_ctx),
1393 .cra_alignmask = 0,
1394 .cra_type = &crypto_ablkcipher_type,
1395 .cra_module = THIS_MODULE,
1396 .cra_init = ablk_init,
1397 .cra_exit = ablk_exit,
1398 .cra_u = {
1399 .ablkcipher = {
1400 .min_keysize = 2 * AES_MIN_KEY_SIZE,
1401 .max_keysize = 2 * AES_MAX_KEY_SIZE,
1402 .ivsize = AES_BLOCK_SIZE,
1403 .setkey = ablk_set_key,
1404 .encrypt = ablk_encrypt,
1405 .decrypt = ablk_decrypt,
1406 },
1407 },
1408 } };
1409
1410 #ifdef CONFIG_X86_64
1411 static struct aead_alg aesni_aead_algs[] = { {
1412 .setkey = common_rfc4106_set_key,
1413 .setauthsize = common_rfc4106_set_authsize,
1414 .encrypt = helper_rfc4106_encrypt,
1415 .decrypt = helper_rfc4106_decrypt,
1416 .ivsize = 8,
1417 .maxauthsize = 16,
1418 .base = {
1419 .cra_name = "__gcm-aes-aesni",
1420 .cra_driver_name = "__driver-gcm-aes-aesni",
1421 .cra_flags = CRYPTO_ALG_INTERNAL,
1422 .cra_blocksize = 1,
1423 .cra_ctxsize = sizeof(struct aesni_rfc4106_gcm_ctx),
1424 .cra_alignmask = AESNI_ALIGN - 1,
1425 .cra_module = THIS_MODULE,
1426 },
1427 }, {
1428 .init = rfc4106_init,
1429 .exit = rfc4106_exit,
1430 .setkey = rfc4106_set_key,
1431 .setauthsize = rfc4106_set_authsize,
1432 .encrypt = rfc4106_encrypt,
1433 .decrypt = rfc4106_decrypt,
1434 .ivsize = 8,
1435 .maxauthsize = 16,
1436 .base = {
1437 .cra_name = "rfc4106(gcm(aes))",
1438 .cra_driver_name = "rfc4106-gcm-aesni",
1439 .cra_priority = 400,
1440 .cra_flags = CRYPTO_ALG_ASYNC,
1441 .cra_blocksize = 1,
1442 .cra_ctxsize = sizeof(struct cryptd_aead *),
1443 .cra_module = THIS_MODULE,
1444 },
1445 } };
1446 #else
1447 static struct aead_alg aesni_aead_algs[0];
1448 #endif
1449
1450
1451 static const struct x86_cpu_id aesni_cpu_id[] = {
1452 X86_FEATURE_MATCH(X86_FEATURE_AES),
1453 {}
1454 };
1455 MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
1456
1457 static int __init aesni_init(void)
1458 {
1459 int err;
1460
1461 if (!x86_match_cpu(aesni_cpu_id))
1462 return -ENODEV;
1463 #ifdef CONFIG_X86_64
1464 #ifdef CONFIG_AS_AVX2
1465 if (boot_cpu_has(X86_FEATURE_AVX2)) {
1466 pr_info("AVX2 version of gcm_enc/dec engaged.\n");
1467 aesni_gcm_enc_tfm = aesni_gcm_enc_avx2;
1468 aesni_gcm_dec_tfm = aesni_gcm_dec_avx2;
1469 } else
1470 #endif
1471 #ifdef CONFIG_AS_AVX
1472 if (boot_cpu_has(X86_FEATURE_AVX)) {
1473 pr_info("AVX version of gcm_enc/dec engaged.\n");
1474 aesni_gcm_enc_tfm = aesni_gcm_enc_avx;
1475 aesni_gcm_dec_tfm = aesni_gcm_dec_avx;
1476 } else
1477 #endif
1478 {
1479 pr_info("SSE version of gcm_enc/dec engaged.\n");
1480 aesni_gcm_enc_tfm = aesni_gcm_enc;
1481 aesni_gcm_dec_tfm = aesni_gcm_dec;
1482 }
1483 aesni_ctr_enc_tfm = aesni_ctr_enc;
1484 #ifdef CONFIG_AS_AVX
1485 if (cpu_has_avx) {
1486 /* optimize performance of ctr mode encryption transform */
1487 aesni_ctr_enc_tfm = aesni_ctr_enc_avx_tfm;
1488 pr_info("AES CTR mode by8 optimization enabled\n");
1489 }
1490 #endif
1491 #endif
1492
1493 err = crypto_fpu_init();
1494 if (err)
1495 return err;
1496
1497 err = crypto_register_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1498 if (err)
1499 goto fpu_exit;
1500
1501 err = crypto_register_aeads(aesni_aead_algs,
1502 ARRAY_SIZE(aesni_aead_algs));
1503 if (err)
1504 goto unregister_algs;
1505
1506 return err;
1507
1508 unregister_algs:
1509 crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1510 fpu_exit:
1511 crypto_fpu_exit();
1512 return err;
1513 }
1514
1515 static void __exit aesni_exit(void)
1516 {
1517 crypto_unregister_aeads(aesni_aead_algs, ARRAY_SIZE(aesni_aead_algs));
1518 crypto_unregister_algs(aesni_algs, ARRAY_SIZE(aesni_algs));
1519
1520 crypto_fpu_exit();
1521 }
1522
1523 late_initcall(aesni_init);
1524 module_exit(aesni_exit);
1525
1526 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, Intel AES-NI instructions optimized");
1527 MODULE_LICENSE("GPL");
1528 MODULE_ALIAS_CRYPTO("aes");
This page took 0.077924 seconds and 5 git commands to generate.