Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / arch / x86 / crypto / camellia-aesni-avx2-asm_64.S
1 /*
2 * x86_64/AVX2/AES-NI assembler implementation of Camellia
3 *
4 * Copyright © 2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 */
12
13 #include <linux/linkage.h>
14
15 #define CAMELLIA_TABLE_BYTE_LEN 272
16
17 /* struct camellia_ctx: */
18 #define key_table 0
19 #define key_length CAMELLIA_TABLE_BYTE_LEN
20
21 /* register macros */
22 #define CTX %rdi
23 #define RIO %r8
24
25 /**********************************************************************
26 helper macros
27 **********************************************************************/
28 #define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
29 vpand x, mask4bit, tmp0; \
30 vpandn x, mask4bit, x; \
31 vpsrld $4, x, x; \
32 \
33 vpshufb tmp0, lo_t, tmp0; \
34 vpshufb x, hi_t, x; \
35 vpxor tmp0, x, x;
36
37 #define ymm0_x xmm0
38 #define ymm1_x xmm1
39 #define ymm2_x xmm2
40 #define ymm3_x xmm3
41 #define ymm4_x xmm4
42 #define ymm5_x xmm5
43 #define ymm6_x xmm6
44 #define ymm7_x xmm7
45 #define ymm8_x xmm8
46 #define ymm9_x xmm9
47 #define ymm10_x xmm10
48 #define ymm11_x xmm11
49 #define ymm12_x xmm12
50 #define ymm13_x xmm13
51 #define ymm14_x xmm14
52 #define ymm15_x xmm15
53
54 /**********************************************************************
55 32-way camellia
56 **********************************************************************/
57
58 /*
59 * IN:
60 * x0..x7: byte-sliced AB state
61 * mem_cd: register pointer storing CD state
62 * key: index for key material
63 * OUT:
64 * x0..x7: new byte-sliced CD state
65 */
66 #define roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
67 t7, mem_cd, key) \
68 /* \
69 * S-function with AES subbytes \
70 */ \
71 vbroadcasti128 .Linv_shift_row, t4; \
72 vpbroadcastd .L0f0f0f0f, t7; \
73 vbroadcasti128 .Lpre_tf_lo_s1, t5; \
74 vbroadcasti128 .Lpre_tf_hi_s1, t6; \
75 vbroadcasti128 .Lpre_tf_lo_s4, t2; \
76 vbroadcasti128 .Lpre_tf_hi_s4, t3; \
77 \
78 /* AES inverse shift rows */ \
79 vpshufb t4, x0, x0; \
80 vpshufb t4, x7, x7; \
81 vpshufb t4, x3, x3; \
82 vpshufb t4, x6, x6; \
83 vpshufb t4, x2, x2; \
84 vpshufb t4, x5, x5; \
85 vpshufb t4, x1, x1; \
86 vpshufb t4, x4, x4; \
87 \
88 /* prefilter sboxes 1, 2 and 3 */ \
89 /* prefilter sbox 4 */ \
90 filter_8bit(x0, t5, t6, t7, t4); \
91 filter_8bit(x7, t5, t6, t7, t4); \
92 vextracti128 $1, x0, t0##_x; \
93 vextracti128 $1, x7, t1##_x; \
94 filter_8bit(x3, t2, t3, t7, t4); \
95 filter_8bit(x6, t2, t3, t7, t4); \
96 vextracti128 $1, x3, t3##_x; \
97 vextracti128 $1, x6, t2##_x; \
98 filter_8bit(x2, t5, t6, t7, t4); \
99 filter_8bit(x5, t5, t6, t7, t4); \
100 filter_8bit(x1, t5, t6, t7, t4); \
101 filter_8bit(x4, t5, t6, t7, t4); \
102 \
103 vpxor t4##_x, t4##_x, t4##_x; \
104 \
105 /* AES subbytes + AES shift rows */ \
106 vextracti128 $1, x2, t6##_x; \
107 vextracti128 $1, x5, t5##_x; \
108 vaesenclast t4##_x, x0##_x, x0##_x; \
109 vaesenclast t4##_x, t0##_x, t0##_x; \
110 vinserti128 $1, t0##_x, x0, x0; \
111 vaesenclast t4##_x, x7##_x, x7##_x; \
112 vaesenclast t4##_x, t1##_x, t1##_x; \
113 vinserti128 $1, t1##_x, x7, x7; \
114 vaesenclast t4##_x, x3##_x, x3##_x; \
115 vaesenclast t4##_x, t3##_x, t3##_x; \
116 vinserti128 $1, t3##_x, x3, x3; \
117 vaesenclast t4##_x, x6##_x, x6##_x; \
118 vaesenclast t4##_x, t2##_x, t2##_x; \
119 vinserti128 $1, t2##_x, x6, x6; \
120 vextracti128 $1, x1, t3##_x; \
121 vextracti128 $1, x4, t2##_x; \
122 vbroadcasti128 .Lpost_tf_lo_s1, t0; \
123 vbroadcasti128 .Lpost_tf_hi_s1, t1; \
124 vaesenclast t4##_x, x2##_x, x2##_x; \
125 vaesenclast t4##_x, t6##_x, t6##_x; \
126 vinserti128 $1, t6##_x, x2, x2; \
127 vaesenclast t4##_x, x5##_x, x5##_x; \
128 vaesenclast t4##_x, t5##_x, t5##_x; \
129 vinserti128 $1, t5##_x, x5, x5; \
130 vaesenclast t4##_x, x1##_x, x1##_x; \
131 vaesenclast t4##_x, t3##_x, t3##_x; \
132 vinserti128 $1, t3##_x, x1, x1; \
133 vaesenclast t4##_x, x4##_x, x4##_x; \
134 vaesenclast t4##_x, t2##_x, t2##_x; \
135 vinserti128 $1, t2##_x, x4, x4; \
136 \
137 /* postfilter sboxes 1 and 4 */ \
138 vbroadcasti128 .Lpost_tf_lo_s3, t2; \
139 vbroadcasti128 .Lpost_tf_hi_s3, t3; \
140 filter_8bit(x0, t0, t1, t7, t6); \
141 filter_8bit(x7, t0, t1, t7, t6); \
142 filter_8bit(x3, t0, t1, t7, t6); \
143 filter_8bit(x6, t0, t1, t7, t6); \
144 \
145 /* postfilter sbox 3 */ \
146 vbroadcasti128 .Lpost_tf_lo_s2, t4; \
147 vbroadcasti128 .Lpost_tf_hi_s2, t5; \
148 filter_8bit(x2, t2, t3, t7, t6); \
149 filter_8bit(x5, t2, t3, t7, t6); \
150 \
151 vpbroadcastq key, t0; /* higher 64-bit duplicate ignored */ \
152 \
153 /* postfilter sbox 2 */ \
154 filter_8bit(x1, t4, t5, t7, t2); \
155 filter_8bit(x4, t4, t5, t7, t2); \
156 vpxor t7, t7, t7; \
157 \
158 vpsrldq $1, t0, t1; \
159 vpsrldq $2, t0, t2; \
160 vpshufb t7, t1, t1; \
161 vpsrldq $3, t0, t3; \
162 \
163 /* P-function */ \
164 vpxor x5, x0, x0; \
165 vpxor x6, x1, x1; \
166 vpxor x7, x2, x2; \
167 vpxor x4, x3, x3; \
168 \
169 vpshufb t7, t2, t2; \
170 vpsrldq $4, t0, t4; \
171 vpshufb t7, t3, t3; \
172 vpsrldq $5, t0, t5; \
173 vpshufb t7, t4, t4; \
174 \
175 vpxor x2, x4, x4; \
176 vpxor x3, x5, x5; \
177 vpxor x0, x6, x6; \
178 vpxor x1, x7, x7; \
179 \
180 vpsrldq $6, t0, t6; \
181 vpshufb t7, t5, t5; \
182 vpshufb t7, t6, t6; \
183 \
184 vpxor x7, x0, x0; \
185 vpxor x4, x1, x1; \
186 vpxor x5, x2, x2; \
187 vpxor x6, x3, x3; \
188 \
189 vpxor x3, x4, x4; \
190 vpxor x0, x5, x5; \
191 vpxor x1, x6, x6; \
192 vpxor x2, x7, x7; /* note: high and low parts swapped */ \
193 \
194 /* Add key material and result to CD (x becomes new CD) */ \
195 \
196 vpxor t6, x1, x1; \
197 vpxor 5 * 32(mem_cd), x1, x1; \
198 \
199 vpsrldq $7, t0, t6; \
200 vpshufb t7, t0, t0; \
201 vpshufb t7, t6, t7; \
202 \
203 vpxor t7, x0, x0; \
204 vpxor 4 * 32(mem_cd), x0, x0; \
205 \
206 vpxor t5, x2, x2; \
207 vpxor 6 * 32(mem_cd), x2, x2; \
208 \
209 vpxor t4, x3, x3; \
210 vpxor 7 * 32(mem_cd), x3, x3; \
211 \
212 vpxor t3, x4, x4; \
213 vpxor 0 * 32(mem_cd), x4, x4; \
214 \
215 vpxor t2, x5, x5; \
216 vpxor 1 * 32(mem_cd), x5, x5; \
217 \
218 vpxor t1, x6, x6; \
219 vpxor 2 * 32(mem_cd), x6, x6; \
220 \
221 vpxor t0, x7, x7; \
222 vpxor 3 * 32(mem_cd), x7, x7;
223
224 /*
225 * Size optimization... with inlined roundsm32 binary would be over 5 times
226 * larger and would only marginally faster.
227 */
228 .align 8
229 roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd:
230 roundsm32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
231 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15,
232 %rcx, (%r9));
233 ret;
234 ENDPROC(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
235
236 .align 8
237 roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab:
238 roundsm32(%ymm4, %ymm5, %ymm6, %ymm7, %ymm0, %ymm1, %ymm2, %ymm3,
239 %ymm12, %ymm13, %ymm14, %ymm15, %ymm8, %ymm9, %ymm10, %ymm11,
240 %rax, (%r9));
241 ret;
242 ENDPROC(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
243
244 /*
245 * IN/OUT:
246 * x0..x7: byte-sliced AB state preloaded
247 * mem_ab: byte-sliced AB state in memory
248 * mem_cb: byte-sliced CD state in memory
249 */
250 #define two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
251 y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
252 leaq (key_table + (i) * 8)(CTX), %r9; \
253 call roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
254 \
255 vmovdqu x0, 4 * 32(mem_cd); \
256 vmovdqu x1, 5 * 32(mem_cd); \
257 vmovdqu x2, 6 * 32(mem_cd); \
258 vmovdqu x3, 7 * 32(mem_cd); \
259 vmovdqu x4, 0 * 32(mem_cd); \
260 vmovdqu x5, 1 * 32(mem_cd); \
261 vmovdqu x6, 2 * 32(mem_cd); \
262 vmovdqu x7, 3 * 32(mem_cd); \
263 \
264 leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
265 call roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
266 \
267 store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
268
269 #define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
270
271 #define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
272 /* Store new AB state */ \
273 vmovdqu x4, 4 * 32(mem_ab); \
274 vmovdqu x5, 5 * 32(mem_ab); \
275 vmovdqu x6, 6 * 32(mem_ab); \
276 vmovdqu x7, 7 * 32(mem_ab); \
277 vmovdqu x0, 0 * 32(mem_ab); \
278 vmovdqu x1, 1 * 32(mem_ab); \
279 vmovdqu x2, 2 * 32(mem_ab); \
280 vmovdqu x3, 3 * 32(mem_ab);
281
282 #define enc_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
283 y6, y7, mem_ab, mem_cd, i) \
284 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
285 y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
286 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
287 y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
288 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
289 y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
290
291 #define dec_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
292 y6, y7, mem_ab, mem_cd, i) \
293 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
294 y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
295 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
296 y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
297 two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
298 y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
299
300 /*
301 * IN:
302 * v0..3: byte-sliced 32-bit integers
303 * OUT:
304 * v0..3: (IN <<< 1)
305 */
306 #define rol32_1_32(v0, v1, v2, v3, t0, t1, t2, zero) \
307 vpcmpgtb v0, zero, t0; \
308 vpaddb v0, v0, v0; \
309 vpabsb t0, t0; \
310 \
311 vpcmpgtb v1, zero, t1; \
312 vpaddb v1, v1, v1; \
313 vpabsb t1, t1; \
314 \
315 vpcmpgtb v2, zero, t2; \
316 vpaddb v2, v2, v2; \
317 vpabsb t2, t2; \
318 \
319 vpor t0, v1, v1; \
320 \
321 vpcmpgtb v3, zero, t0; \
322 vpaddb v3, v3, v3; \
323 vpabsb t0, t0; \
324 \
325 vpor t1, v2, v2; \
326 vpor t2, v3, v3; \
327 vpor t0, v0, v0;
328
329 /*
330 * IN:
331 * r: byte-sliced AB state in memory
332 * l: byte-sliced CD state in memory
333 * OUT:
334 * x0..x7: new byte-sliced CD state
335 */
336 #define fls32(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
337 tt1, tt2, tt3, kll, klr, krl, krr) \
338 /* \
339 * t0 = kll; \
340 * t0 &= ll; \
341 * lr ^= rol32(t0, 1); \
342 */ \
343 vpbroadcastd kll, t0; /* only lowest 32-bit used */ \
344 vpxor tt0, tt0, tt0; \
345 vpshufb tt0, t0, t3; \
346 vpsrldq $1, t0, t0; \
347 vpshufb tt0, t0, t2; \
348 vpsrldq $1, t0, t0; \
349 vpshufb tt0, t0, t1; \
350 vpsrldq $1, t0, t0; \
351 vpshufb tt0, t0, t0; \
352 \
353 vpand l0, t0, t0; \
354 vpand l1, t1, t1; \
355 vpand l2, t2, t2; \
356 vpand l3, t3, t3; \
357 \
358 rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
359 \
360 vpxor l4, t0, l4; \
361 vpbroadcastd krr, t0; /* only lowest 32-bit used */ \
362 vmovdqu l4, 4 * 32(l); \
363 vpxor l5, t1, l5; \
364 vmovdqu l5, 5 * 32(l); \
365 vpxor l6, t2, l6; \
366 vmovdqu l6, 6 * 32(l); \
367 vpxor l7, t3, l7; \
368 vmovdqu l7, 7 * 32(l); \
369 \
370 /* \
371 * t2 = krr; \
372 * t2 |= rr; \
373 * rl ^= t2; \
374 */ \
375 \
376 vpshufb tt0, t0, t3; \
377 vpsrldq $1, t0, t0; \
378 vpshufb tt0, t0, t2; \
379 vpsrldq $1, t0, t0; \
380 vpshufb tt0, t0, t1; \
381 vpsrldq $1, t0, t0; \
382 vpshufb tt0, t0, t0; \
383 \
384 vpor 4 * 32(r), t0, t0; \
385 vpor 5 * 32(r), t1, t1; \
386 vpor 6 * 32(r), t2, t2; \
387 vpor 7 * 32(r), t3, t3; \
388 \
389 vpxor 0 * 32(r), t0, t0; \
390 vpxor 1 * 32(r), t1, t1; \
391 vpxor 2 * 32(r), t2, t2; \
392 vpxor 3 * 32(r), t3, t3; \
393 vmovdqu t0, 0 * 32(r); \
394 vpbroadcastd krl, t0; /* only lowest 32-bit used */ \
395 vmovdqu t1, 1 * 32(r); \
396 vmovdqu t2, 2 * 32(r); \
397 vmovdqu t3, 3 * 32(r); \
398 \
399 /* \
400 * t2 = krl; \
401 * t2 &= rl; \
402 * rr ^= rol32(t2, 1); \
403 */ \
404 vpshufb tt0, t0, t3; \
405 vpsrldq $1, t0, t0; \
406 vpshufb tt0, t0, t2; \
407 vpsrldq $1, t0, t0; \
408 vpshufb tt0, t0, t1; \
409 vpsrldq $1, t0, t0; \
410 vpshufb tt0, t0, t0; \
411 \
412 vpand 0 * 32(r), t0, t0; \
413 vpand 1 * 32(r), t1, t1; \
414 vpand 2 * 32(r), t2, t2; \
415 vpand 3 * 32(r), t3, t3; \
416 \
417 rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
418 \
419 vpxor 4 * 32(r), t0, t0; \
420 vpxor 5 * 32(r), t1, t1; \
421 vpxor 6 * 32(r), t2, t2; \
422 vpxor 7 * 32(r), t3, t3; \
423 vmovdqu t0, 4 * 32(r); \
424 vpbroadcastd klr, t0; /* only lowest 32-bit used */ \
425 vmovdqu t1, 5 * 32(r); \
426 vmovdqu t2, 6 * 32(r); \
427 vmovdqu t3, 7 * 32(r); \
428 \
429 /* \
430 * t0 = klr; \
431 * t0 |= lr; \
432 * ll ^= t0; \
433 */ \
434 \
435 vpshufb tt0, t0, t3; \
436 vpsrldq $1, t0, t0; \
437 vpshufb tt0, t0, t2; \
438 vpsrldq $1, t0, t0; \
439 vpshufb tt0, t0, t1; \
440 vpsrldq $1, t0, t0; \
441 vpshufb tt0, t0, t0; \
442 \
443 vpor l4, t0, t0; \
444 vpor l5, t1, t1; \
445 vpor l6, t2, t2; \
446 vpor l7, t3, t3; \
447 \
448 vpxor l0, t0, l0; \
449 vmovdqu l0, 0 * 32(l); \
450 vpxor l1, t1, l1; \
451 vmovdqu l1, 1 * 32(l); \
452 vpxor l2, t2, l2; \
453 vmovdqu l2, 2 * 32(l); \
454 vpxor l3, t3, l3; \
455 vmovdqu l3, 3 * 32(l);
456
457 #define transpose_4x4(x0, x1, x2, x3, t1, t2) \
458 vpunpckhdq x1, x0, t2; \
459 vpunpckldq x1, x0, x0; \
460 \
461 vpunpckldq x3, x2, t1; \
462 vpunpckhdq x3, x2, x2; \
463 \
464 vpunpckhqdq t1, x0, x1; \
465 vpunpcklqdq t1, x0, x0; \
466 \
467 vpunpckhqdq x2, t2, x3; \
468 vpunpcklqdq x2, t2, x2;
469
470 #define byteslice_16x16b_fast(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, \
471 a3, b3, c3, d3, st0, st1) \
472 vmovdqu d2, st0; \
473 vmovdqu d3, st1; \
474 transpose_4x4(a0, a1, a2, a3, d2, d3); \
475 transpose_4x4(b0, b1, b2, b3, d2, d3); \
476 vmovdqu st0, d2; \
477 vmovdqu st1, d3; \
478 \
479 vmovdqu a0, st0; \
480 vmovdqu a1, st1; \
481 transpose_4x4(c0, c1, c2, c3, a0, a1); \
482 transpose_4x4(d0, d1, d2, d3, a0, a1); \
483 \
484 vbroadcasti128 .Lshufb_16x16b, a0; \
485 vmovdqu st1, a1; \
486 vpshufb a0, a2, a2; \
487 vpshufb a0, a3, a3; \
488 vpshufb a0, b0, b0; \
489 vpshufb a0, b1, b1; \
490 vpshufb a0, b2, b2; \
491 vpshufb a0, b3, b3; \
492 vpshufb a0, a1, a1; \
493 vpshufb a0, c0, c0; \
494 vpshufb a0, c1, c1; \
495 vpshufb a0, c2, c2; \
496 vpshufb a0, c3, c3; \
497 vpshufb a0, d0, d0; \
498 vpshufb a0, d1, d1; \
499 vpshufb a0, d2, d2; \
500 vpshufb a0, d3, d3; \
501 vmovdqu d3, st1; \
502 vmovdqu st0, d3; \
503 vpshufb a0, d3, a0; \
504 vmovdqu d2, st0; \
505 \
506 transpose_4x4(a0, b0, c0, d0, d2, d3); \
507 transpose_4x4(a1, b1, c1, d1, d2, d3); \
508 vmovdqu st0, d2; \
509 vmovdqu st1, d3; \
510 \
511 vmovdqu b0, st0; \
512 vmovdqu b1, st1; \
513 transpose_4x4(a2, b2, c2, d2, b0, b1); \
514 transpose_4x4(a3, b3, c3, d3, b0, b1); \
515 vmovdqu st0, b0; \
516 vmovdqu st1, b1; \
517 /* does not adjust output bytes inside vectors */
518
519 /* load blocks to registers and apply pre-whitening */
520 #define inpack32_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
521 y6, y7, rio, key) \
522 vpbroadcastq key, x0; \
523 vpshufb .Lpack_bswap, x0, x0; \
524 \
525 vpxor 0 * 32(rio), x0, y7; \
526 vpxor 1 * 32(rio), x0, y6; \
527 vpxor 2 * 32(rio), x0, y5; \
528 vpxor 3 * 32(rio), x0, y4; \
529 vpxor 4 * 32(rio), x0, y3; \
530 vpxor 5 * 32(rio), x0, y2; \
531 vpxor 6 * 32(rio), x0, y1; \
532 vpxor 7 * 32(rio), x0, y0; \
533 vpxor 8 * 32(rio), x0, x7; \
534 vpxor 9 * 32(rio), x0, x6; \
535 vpxor 10 * 32(rio), x0, x5; \
536 vpxor 11 * 32(rio), x0, x4; \
537 vpxor 12 * 32(rio), x0, x3; \
538 vpxor 13 * 32(rio), x0, x2; \
539 vpxor 14 * 32(rio), x0, x1; \
540 vpxor 15 * 32(rio), x0, x0;
541
542 /* byteslice pre-whitened blocks and store to temporary memory */
543 #define inpack32_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
544 y6, y7, mem_ab, mem_cd) \
545 byteslice_16x16b_fast(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, \
546 y4, y5, y6, y7, (mem_ab), (mem_cd)); \
547 \
548 vmovdqu x0, 0 * 32(mem_ab); \
549 vmovdqu x1, 1 * 32(mem_ab); \
550 vmovdqu x2, 2 * 32(mem_ab); \
551 vmovdqu x3, 3 * 32(mem_ab); \
552 vmovdqu x4, 4 * 32(mem_ab); \
553 vmovdqu x5, 5 * 32(mem_ab); \
554 vmovdqu x6, 6 * 32(mem_ab); \
555 vmovdqu x7, 7 * 32(mem_ab); \
556 vmovdqu y0, 0 * 32(mem_cd); \
557 vmovdqu y1, 1 * 32(mem_cd); \
558 vmovdqu y2, 2 * 32(mem_cd); \
559 vmovdqu y3, 3 * 32(mem_cd); \
560 vmovdqu y4, 4 * 32(mem_cd); \
561 vmovdqu y5, 5 * 32(mem_cd); \
562 vmovdqu y6, 6 * 32(mem_cd); \
563 vmovdqu y7, 7 * 32(mem_cd);
564
565 /* de-byteslice, apply post-whitening and store blocks */
566 #define outunpack32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
567 y5, y6, y7, key, stack_tmp0, stack_tmp1) \
568 byteslice_16x16b_fast(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, \
569 y3, y7, x3, x7, stack_tmp0, stack_tmp1); \
570 \
571 vmovdqu x0, stack_tmp0; \
572 \
573 vpbroadcastq key, x0; \
574 vpshufb .Lpack_bswap, x0, x0; \
575 \
576 vpxor x0, y7, y7; \
577 vpxor x0, y6, y6; \
578 vpxor x0, y5, y5; \
579 vpxor x0, y4, y4; \
580 vpxor x0, y3, y3; \
581 vpxor x0, y2, y2; \
582 vpxor x0, y1, y1; \
583 vpxor x0, y0, y0; \
584 vpxor x0, x7, x7; \
585 vpxor x0, x6, x6; \
586 vpxor x0, x5, x5; \
587 vpxor x0, x4, x4; \
588 vpxor x0, x3, x3; \
589 vpxor x0, x2, x2; \
590 vpxor x0, x1, x1; \
591 vpxor stack_tmp0, x0, x0;
592
593 #define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
594 y6, y7, rio) \
595 vmovdqu x0, 0 * 32(rio); \
596 vmovdqu x1, 1 * 32(rio); \
597 vmovdqu x2, 2 * 32(rio); \
598 vmovdqu x3, 3 * 32(rio); \
599 vmovdqu x4, 4 * 32(rio); \
600 vmovdqu x5, 5 * 32(rio); \
601 vmovdqu x6, 6 * 32(rio); \
602 vmovdqu x7, 7 * 32(rio); \
603 vmovdqu y0, 8 * 32(rio); \
604 vmovdqu y1, 9 * 32(rio); \
605 vmovdqu y2, 10 * 32(rio); \
606 vmovdqu y3, 11 * 32(rio); \
607 vmovdqu y4, 12 * 32(rio); \
608 vmovdqu y5, 13 * 32(rio); \
609 vmovdqu y6, 14 * 32(rio); \
610 vmovdqu y7, 15 * 32(rio);
611
612 .data
613 .align 32
614
615 #define SHUFB_BYTES(idx) \
616 0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
617
618 .Lshufb_16x16b:
619 .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
620 .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
621
622 .Lpack_bswap:
623 .long 0x00010203, 0x04050607, 0x80808080, 0x80808080
624 .long 0x00010203, 0x04050607, 0x80808080, 0x80808080
625
626 /* For CTR-mode IV byteswap */
627 .Lbswap128_mask:
628 .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
629
630 /* For XTS mode */
631 .Lxts_gf128mul_and_shl1_mask_0:
632 .byte 0x87, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
633 .Lxts_gf128mul_and_shl1_mask_1:
634 .byte 0x0e, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0
635
636 /*
637 * pre-SubByte transform
638 *
639 * pre-lookup for sbox1, sbox2, sbox3:
640 * swap_bitendianness(
641 * isom_map_camellia_to_aes(
642 * camellia_f(
643 * swap_bitendianess(in)
644 * )
645 * )
646 * )
647 *
648 * (note: '⊕ 0xc5' inside camellia_f())
649 */
650 .Lpre_tf_lo_s1:
651 .byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
652 .byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
653 .Lpre_tf_hi_s1:
654 .byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
655 .byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
656
657 /*
658 * pre-SubByte transform
659 *
660 * pre-lookup for sbox4:
661 * swap_bitendianness(
662 * isom_map_camellia_to_aes(
663 * camellia_f(
664 * swap_bitendianess(in <<< 1)
665 * )
666 * )
667 * )
668 *
669 * (note: '⊕ 0xc5' inside camellia_f())
670 */
671 .Lpre_tf_lo_s4:
672 .byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
673 .byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
674 .Lpre_tf_hi_s4:
675 .byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
676 .byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
677
678 /*
679 * post-SubByte transform
680 *
681 * post-lookup for sbox1, sbox4:
682 * swap_bitendianness(
683 * camellia_h(
684 * isom_map_aes_to_camellia(
685 * swap_bitendianness(
686 * aes_inverse_affine_transform(in)
687 * )
688 * )
689 * )
690 * )
691 *
692 * (note: '⊕ 0x6e' inside camellia_h())
693 */
694 .Lpost_tf_lo_s1:
695 .byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
696 .byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
697 .Lpost_tf_hi_s1:
698 .byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
699 .byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
700
701 /*
702 * post-SubByte transform
703 *
704 * post-lookup for sbox2:
705 * swap_bitendianness(
706 * camellia_h(
707 * isom_map_aes_to_camellia(
708 * swap_bitendianness(
709 * aes_inverse_affine_transform(in)
710 * )
711 * )
712 * )
713 * ) <<< 1
714 *
715 * (note: '⊕ 0x6e' inside camellia_h())
716 */
717 .Lpost_tf_lo_s2:
718 .byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
719 .byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
720 .Lpost_tf_hi_s2:
721 .byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
722 .byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
723
724 /*
725 * post-SubByte transform
726 *
727 * post-lookup for sbox3:
728 * swap_bitendianness(
729 * camellia_h(
730 * isom_map_aes_to_camellia(
731 * swap_bitendianness(
732 * aes_inverse_affine_transform(in)
733 * )
734 * )
735 * )
736 * ) >>> 1
737 *
738 * (note: '⊕ 0x6e' inside camellia_h())
739 */
740 .Lpost_tf_lo_s3:
741 .byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
742 .byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
743 .Lpost_tf_hi_s3:
744 .byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
745 .byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
746
747 /* For isolating SubBytes from AESENCLAST, inverse shift row */
748 .Linv_shift_row:
749 .byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
750 .byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
751
752 .align 4
753 /* 4-bit mask */
754 .L0f0f0f0f:
755 .long 0x0f0f0f0f
756
757 .text
758
759 .align 8
760 __camellia_enc_blk32:
761 /* input:
762 * %rdi: ctx, CTX
763 * %rax: temporary storage, 512 bytes
764 * %ymm0..%ymm15: 32 plaintext blocks
765 * output:
766 * %ymm0..%ymm15: 32 encrypted blocks, order swapped:
767 * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
768 */
769
770 leaq 8 * 32(%rax), %rcx;
771
772 inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
773 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
774 %ymm15, %rax, %rcx);
775
776 enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
777 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
778 %ymm15, %rax, %rcx, 0);
779
780 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
781 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
782 %ymm15,
783 ((key_table + (8) * 8) + 0)(CTX),
784 ((key_table + (8) * 8) + 4)(CTX),
785 ((key_table + (8) * 8) + 8)(CTX),
786 ((key_table + (8) * 8) + 12)(CTX));
787
788 enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
789 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
790 %ymm15, %rax, %rcx, 8);
791
792 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
793 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
794 %ymm15,
795 ((key_table + (16) * 8) + 0)(CTX),
796 ((key_table + (16) * 8) + 4)(CTX),
797 ((key_table + (16) * 8) + 8)(CTX),
798 ((key_table + (16) * 8) + 12)(CTX));
799
800 enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
801 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
802 %ymm15, %rax, %rcx, 16);
803
804 movl $24, %r8d;
805 cmpl $16, key_length(CTX);
806 jne .Lenc_max32;
807
808 .Lenc_done:
809 /* load CD for output */
810 vmovdqu 0 * 32(%rcx), %ymm8;
811 vmovdqu 1 * 32(%rcx), %ymm9;
812 vmovdqu 2 * 32(%rcx), %ymm10;
813 vmovdqu 3 * 32(%rcx), %ymm11;
814 vmovdqu 4 * 32(%rcx), %ymm12;
815 vmovdqu 5 * 32(%rcx), %ymm13;
816 vmovdqu 6 * 32(%rcx), %ymm14;
817 vmovdqu 7 * 32(%rcx), %ymm15;
818
819 outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
820 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
821 %ymm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 32(%rax));
822
823 ret;
824
825 .align 8
826 .Lenc_max32:
827 movl $32, %r8d;
828
829 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
830 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
831 %ymm15,
832 ((key_table + (24) * 8) + 0)(CTX),
833 ((key_table + (24) * 8) + 4)(CTX),
834 ((key_table + (24) * 8) + 8)(CTX),
835 ((key_table + (24) * 8) + 12)(CTX));
836
837 enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
838 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
839 %ymm15, %rax, %rcx, 24);
840
841 jmp .Lenc_done;
842 ENDPROC(__camellia_enc_blk32)
843
844 .align 8
845 __camellia_dec_blk32:
846 /* input:
847 * %rdi: ctx, CTX
848 * %rax: temporary storage, 512 bytes
849 * %r8d: 24 for 16 byte key, 32 for larger
850 * %ymm0..%ymm15: 16 encrypted blocks
851 * output:
852 * %ymm0..%ymm15: 16 plaintext blocks, order swapped:
853 * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
854 */
855
856 leaq 8 * 32(%rax), %rcx;
857
858 inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
859 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
860 %ymm15, %rax, %rcx);
861
862 cmpl $32, %r8d;
863 je .Ldec_max32;
864
865 .Ldec_max24:
866 dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
867 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
868 %ymm15, %rax, %rcx, 16);
869
870 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
871 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
872 %ymm15,
873 ((key_table + (16) * 8) + 8)(CTX),
874 ((key_table + (16) * 8) + 12)(CTX),
875 ((key_table + (16) * 8) + 0)(CTX),
876 ((key_table + (16) * 8) + 4)(CTX));
877
878 dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
879 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
880 %ymm15, %rax, %rcx, 8);
881
882 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
883 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
884 %ymm15,
885 ((key_table + (8) * 8) + 8)(CTX),
886 ((key_table + (8) * 8) + 12)(CTX),
887 ((key_table + (8) * 8) + 0)(CTX),
888 ((key_table + (8) * 8) + 4)(CTX));
889
890 dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
891 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
892 %ymm15, %rax, %rcx, 0);
893
894 /* load CD for output */
895 vmovdqu 0 * 32(%rcx), %ymm8;
896 vmovdqu 1 * 32(%rcx), %ymm9;
897 vmovdqu 2 * 32(%rcx), %ymm10;
898 vmovdqu 3 * 32(%rcx), %ymm11;
899 vmovdqu 4 * 32(%rcx), %ymm12;
900 vmovdqu 5 * 32(%rcx), %ymm13;
901 vmovdqu 6 * 32(%rcx), %ymm14;
902 vmovdqu 7 * 32(%rcx), %ymm15;
903
904 outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
905 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
906 %ymm15, (key_table)(CTX), (%rax), 1 * 32(%rax));
907
908 ret;
909
910 .align 8
911 .Ldec_max32:
912 dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
913 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
914 %ymm15, %rax, %rcx, 24);
915
916 fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
917 %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
918 %ymm15,
919 ((key_table + (24) * 8) + 8)(CTX),
920 ((key_table + (24) * 8) + 12)(CTX),
921 ((key_table + (24) * 8) + 0)(CTX),
922 ((key_table + (24) * 8) + 4)(CTX));
923
924 jmp .Ldec_max24;
925 ENDPROC(__camellia_dec_blk32)
926
927 ENTRY(camellia_ecb_enc_32way)
928 /* input:
929 * %rdi: ctx, CTX
930 * %rsi: dst (32 blocks)
931 * %rdx: src (32 blocks)
932 */
933
934 vzeroupper;
935
936 inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
937 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
938 %ymm15, %rdx, (key_table)(CTX));
939
940 /* now dst can be used as temporary buffer (even in src == dst case) */
941 movq %rsi, %rax;
942
943 call __camellia_enc_blk32;
944
945 write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
946 %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
947 %ymm8, %rsi);
948
949 vzeroupper;
950
951 ret;
952 ENDPROC(camellia_ecb_enc_32way)
953
954 ENTRY(camellia_ecb_dec_32way)
955 /* input:
956 * %rdi: ctx, CTX
957 * %rsi: dst (32 blocks)
958 * %rdx: src (32 blocks)
959 */
960
961 vzeroupper;
962
963 cmpl $16, key_length(CTX);
964 movl $32, %r8d;
965 movl $24, %eax;
966 cmovel %eax, %r8d; /* max */
967
968 inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
969 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
970 %ymm15, %rdx, (key_table)(CTX, %r8, 8));
971
972 /* now dst can be used as temporary buffer (even in src == dst case) */
973 movq %rsi, %rax;
974
975 call __camellia_dec_blk32;
976
977 write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
978 %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
979 %ymm8, %rsi);
980
981 vzeroupper;
982
983 ret;
984 ENDPROC(camellia_ecb_dec_32way)
985
986 ENTRY(camellia_cbc_dec_32way)
987 /* input:
988 * %rdi: ctx, CTX
989 * %rsi: dst (32 blocks)
990 * %rdx: src (32 blocks)
991 */
992
993 vzeroupper;
994
995 cmpl $16, key_length(CTX);
996 movl $32, %r8d;
997 movl $24, %eax;
998 cmovel %eax, %r8d; /* max */
999
1000 inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
1001 %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
1002 %ymm15, %rdx, (key_table)(CTX, %r8, 8));
1003
1004 movq %rsp, %r10;
1005 cmpq %rsi, %rdx;
1006 je .Lcbc_dec_use_stack;
1007
1008 /* dst can be used as temporary storage, src is not overwritten. */
1009 movq %rsi, %rax;
1010 jmp .Lcbc_dec_continue;
1011
1012 .Lcbc_dec_use_stack:
1013 /*
1014 * dst still in-use (because dst == src), so use stack for temporary
1015 * storage.
1016 */
1017 subq $(16 * 32), %rsp;
1018 movq %rsp, %rax;
1019
1020 .Lcbc_dec_continue:
1021 call __camellia_dec_blk32;
1022
1023 vmovdqu %ymm7, (%rax);
1024 vpxor %ymm7, %ymm7, %ymm7;
1025 vinserti128 $1, (%rdx), %ymm7, %ymm7;
1026 vpxor (%rax), %ymm7, %ymm7;
1027 movq %r10, %rsp;
1028 vpxor (0 * 32 + 16)(%rdx), %ymm6, %ymm6;
1029 vpxor (1 * 32 + 16)(%rdx), %ymm5, %ymm5;
1030 vpxor (2 * 32 + 16)(%rdx), %ymm4, %ymm4;
1031 vpxor (3 * 32 + 16)(%rdx), %ymm3, %ymm3;
1032 vpxor (4 * 32 + 16)(%rdx), %ymm2, %ymm2;
1033 vpxor (5 * 32 + 16)(%rdx), %ymm1, %ymm1;
1034 vpxor (6 * 32 + 16)(%rdx), %ymm0, %ymm0;
1035 vpxor (7 * 32 + 16)(%rdx), %ymm15, %ymm15;
1036 vpxor (8 * 32 + 16)(%rdx), %ymm14, %ymm14;
1037 vpxor (9 * 32 + 16)(%rdx), %ymm13, %ymm13;
1038 vpxor (10 * 32 + 16)(%rdx), %ymm12, %ymm12;
1039 vpxor (11 * 32 + 16)(%rdx), %ymm11, %ymm11;
1040 vpxor (12 * 32 + 16)(%rdx), %ymm10, %ymm10;
1041 vpxor (13 * 32 + 16)(%rdx), %ymm9, %ymm9;
1042 vpxor (14 * 32 + 16)(%rdx), %ymm8, %ymm8;
1043 write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1044 %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1045 %ymm8, %rsi);
1046
1047 vzeroupper;
1048
1049 ret;
1050 ENDPROC(camellia_cbc_dec_32way)
1051
1052 #define inc_le128(x, minus_one, tmp) \
1053 vpcmpeqq minus_one, x, tmp; \
1054 vpsubq minus_one, x, x; \
1055 vpslldq $8, tmp, tmp; \
1056 vpsubq tmp, x, x;
1057
1058 #define add2_le128(x, minus_one, minus_two, tmp1, tmp2) \
1059 vpcmpeqq minus_one, x, tmp1; \
1060 vpcmpeqq minus_two, x, tmp2; \
1061 vpsubq minus_two, x, x; \
1062 vpor tmp2, tmp1, tmp1; \
1063 vpslldq $8, tmp1, tmp1; \
1064 vpsubq tmp1, x, x;
1065
1066 ENTRY(camellia_ctr_32way)
1067 /* input:
1068 * %rdi: ctx, CTX
1069 * %rsi: dst (32 blocks)
1070 * %rdx: src (32 blocks)
1071 * %rcx: iv (little endian, 128bit)
1072 */
1073
1074 vzeroupper;
1075
1076 movq %rsp, %r10;
1077 cmpq %rsi, %rdx;
1078 je .Lctr_use_stack;
1079
1080 /* dst can be used as temporary storage, src is not overwritten. */
1081 movq %rsi, %rax;
1082 jmp .Lctr_continue;
1083
1084 .Lctr_use_stack:
1085 subq $(16 * 32), %rsp;
1086 movq %rsp, %rax;
1087
1088 .Lctr_continue:
1089 vpcmpeqd %ymm15, %ymm15, %ymm15;
1090 vpsrldq $8, %ymm15, %ymm15; /* ab: -1:0 ; cd: -1:0 */
1091 vpaddq %ymm15, %ymm15, %ymm12; /* ab: -2:0 ; cd: -2:0 */
1092
1093 /* load IV and byteswap */
1094 vmovdqu (%rcx), %xmm0;
1095 vmovdqa %xmm0, %xmm1;
1096 inc_le128(%xmm0, %xmm15, %xmm14);
1097 vbroadcasti128 .Lbswap128_mask, %ymm14;
1098 vinserti128 $1, %xmm0, %ymm1, %ymm0;
1099 vpshufb %ymm14, %ymm0, %ymm13;
1100 vmovdqu %ymm13, 15 * 32(%rax);
1101
1102 /* construct IVs */
1103 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13); /* ab:le2 ; cd:le3 */
1104 vpshufb %ymm14, %ymm0, %ymm13;
1105 vmovdqu %ymm13, 14 * 32(%rax);
1106 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1107 vpshufb %ymm14, %ymm0, %ymm13;
1108 vmovdqu %ymm13, 13 * 32(%rax);
1109 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1110 vpshufb %ymm14, %ymm0, %ymm13;
1111 vmovdqu %ymm13, 12 * 32(%rax);
1112 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1113 vpshufb %ymm14, %ymm0, %ymm13;
1114 vmovdqu %ymm13, 11 * 32(%rax);
1115 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1116 vpshufb %ymm14, %ymm0, %ymm10;
1117 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1118 vpshufb %ymm14, %ymm0, %ymm9;
1119 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1120 vpshufb %ymm14, %ymm0, %ymm8;
1121 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1122 vpshufb %ymm14, %ymm0, %ymm7;
1123 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1124 vpshufb %ymm14, %ymm0, %ymm6;
1125 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1126 vpshufb %ymm14, %ymm0, %ymm5;
1127 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1128 vpshufb %ymm14, %ymm0, %ymm4;
1129 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1130 vpshufb %ymm14, %ymm0, %ymm3;
1131 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1132 vpshufb %ymm14, %ymm0, %ymm2;
1133 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1134 vpshufb %ymm14, %ymm0, %ymm1;
1135 add2_le128(%ymm0, %ymm15, %ymm12, %ymm11, %ymm13);
1136 vextracti128 $1, %ymm0, %xmm13;
1137 vpshufb %ymm14, %ymm0, %ymm0;
1138 inc_le128(%xmm13, %xmm15, %xmm14);
1139 vmovdqu %xmm13, (%rcx);
1140
1141 /* inpack32_pre: */
1142 vpbroadcastq (key_table)(CTX), %ymm15;
1143 vpshufb .Lpack_bswap, %ymm15, %ymm15;
1144 vpxor %ymm0, %ymm15, %ymm0;
1145 vpxor %ymm1, %ymm15, %ymm1;
1146 vpxor %ymm2, %ymm15, %ymm2;
1147 vpxor %ymm3, %ymm15, %ymm3;
1148 vpxor %ymm4, %ymm15, %ymm4;
1149 vpxor %ymm5, %ymm15, %ymm5;
1150 vpxor %ymm6, %ymm15, %ymm6;
1151 vpxor %ymm7, %ymm15, %ymm7;
1152 vpxor %ymm8, %ymm15, %ymm8;
1153 vpxor %ymm9, %ymm15, %ymm9;
1154 vpxor %ymm10, %ymm15, %ymm10;
1155 vpxor 11 * 32(%rax), %ymm15, %ymm11;
1156 vpxor 12 * 32(%rax), %ymm15, %ymm12;
1157 vpxor 13 * 32(%rax), %ymm15, %ymm13;
1158 vpxor 14 * 32(%rax), %ymm15, %ymm14;
1159 vpxor 15 * 32(%rax), %ymm15, %ymm15;
1160
1161 call __camellia_enc_blk32;
1162
1163 movq %r10, %rsp;
1164
1165 vpxor 0 * 32(%rdx), %ymm7, %ymm7;
1166 vpxor 1 * 32(%rdx), %ymm6, %ymm6;
1167 vpxor 2 * 32(%rdx), %ymm5, %ymm5;
1168 vpxor 3 * 32(%rdx), %ymm4, %ymm4;
1169 vpxor 4 * 32(%rdx), %ymm3, %ymm3;
1170 vpxor 5 * 32(%rdx), %ymm2, %ymm2;
1171 vpxor 6 * 32(%rdx), %ymm1, %ymm1;
1172 vpxor 7 * 32(%rdx), %ymm0, %ymm0;
1173 vpxor 8 * 32(%rdx), %ymm15, %ymm15;
1174 vpxor 9 * 32(%rdx), %ymm14, %ymm14;
1175 vpxor 10 * 32(%rdx), %ymm13, %ymm13;
1176 vpxor 11 * 32(%rdx), %ymm12, %ymm12;
1177 vpxor 12 * 32(%rdx), %ymm11, %ymm11;
1178 vpxor 13 * 32(%rdx), %ymm10, %ymm10;
1179 vpxor 14 * 32(%rdx), %ymm9, %ymm9;
1180 vpxor 15 * 32(%rdx), %ymm8, %ymm8;
1181 write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1182 %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1183 %ymm8, %rsi);
1184
1185 vzeroupper;
1186
1187 ret;
1188 ENDPROC(camellia_ctr_32way)
1189
1190 #define gf128mul_x_ble(iv, mask, tmp) \
1191 vpsrad $31, iv, tmp; \
1192 vpaddq iv, iv, iv; \
1193 vpshufd $0x13, tmp, tmp; \
1194 vpand mask, tmp, tmp; \
1195 vpxor tmp, iv, iv;
1196
1197 #define gf128mul_x2_ble(iv, mask1, mask2, tmp0, tmp1) \
1198 vpsrad $31, iv, tmp0; \
1199 vpaddq iv, iv, tmp1; \
1200 vpsllq $2, iv, iv; \
1201 vpshufd $0x13, tmp0, tmp0; \
1202 vpsrad $31, tmp1, tmp1; \
1203 vpand mask2, tmp0, tmp0; \
1204 vpshufd $0x13, tmp1, tmp1; \
1205 vpxor tmp0, iv, iv; \
1206 vpand mask1, tmp1, tmp1; \
1207 vpxor tmp1, iv, iv;
1208
1209 .align 8
1210 camellia_xts_crypt_32way:
1211 /* input:
1212 * %rdi: ctx, CTX
1213 * %rsi: dst (32 blocks)
1214 * %rdx: src (32 blocks)
1215 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1216 * %r8: index for input whitening key
1217 * %r9: pointer to __camellia_enc_blk32 or __camellia_dec_blk32
1218 */
1219
1220 vzeroupper;
1221
1222 subq $(16 * 32), %rsp;
1223 movq %rsp, %rax;
1224
1225 vbroadcasti128 .Lxts_gf128mul_and_shl1_mask_0, %ymm12;
1226
1227 /* load IV and construct second IV */
1228 vmovdqu (%rcx), %xmm0;
1229 vmovdqa %xmm0, %xmm15;
1230 gf128mul_x_ble(%xmm0, %xmm12, %xmm13);
1231 vbroadcasti128 .Lxts_gf128mul_and_shl1_mask_1, %ymm13;
1232 vinserti128 $1, %xmm0, %ymm15, %ymm0;
1233 vpxor 0 * 32(%rdx), %ymm0, %ymm15;
1234 vmovdqu %ymm15, 15 * 32(%rax);
1235 vmovdqu %ymm0, 0 * 32(%rsi);
1236
1237 /* construct IVs */
1238 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1239 vpxor 1 * 32(%rdx), %ymm0, %ymm15;
1240 vmovdqu %ymm15, 14 * 32(%rax);
1241 vmovdqu %ymm0, 1 * 32(%rsi);
1242
1243 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1244 vpxor 2 * 32(%rdx), %ymm0, %ymm15;
1245 vmovdqu %ymm15, 13 * 32(%rax);
1246 vmovdqu %ymm0, 2 * 32(%rsi);
1247
1248 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1249 vpxor 3 * 32(%rdx), %ymm0, %ymm15;
1250 vmovdqu %ymm15, 12 * 32(%rax);
1251 vmovdqu %ymm0, 3 * 32(%rsi);
1252
1253 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1254 vpxor 4 * 32(%rdx), %ymm0, %ymm11;
1255 vmovdqu %ymm0, 4 * 32(%rsi);
1256
1257 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1258 vpxor 5 * 32(%rdx), %ymm0, %ymm10;
1259 vmovdqu %ymm0, 5 * 32(%rsi);
1260
1261 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1262 vpxor 6 * 32(%rdx), %ymm0, %ymm9;
1263 vmovdqu %ymm0, 6 * 32(%rsi);
1264
1265 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1266 vpxor 7 * 32(%rdx), %ymm0, %ymm8;
1267 vmovdqu %ymm0, 7 * 32(%rsi);
1268
1269 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1270 vpxor 8 * 32(%rdx), %ymm0, %ymm7;
1271 vmovdqu %ymm0, 8 * 32(%rsi);
1272
1273 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1274 vpxor 9 * 32(%rdx), %ymm0, %ymm6;
1275 vmovdqu %ymm0, 9 * 32(%rsi);
1276
1277 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1278 vpxor 10 * 32(%rdx), %ymm0, %ymm5;
1279 vmovdqu %ymm0, 10 * 32(%rsi);
1280
1281 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1282 vpxor 11 * 32(%rdx), %ymm0, %ymm4;
1283 vmovdqu %ymm0, 11 * 32(%rsi);
1284
1285 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1286 vpxor 12 * 32(%rdx), %ymm0, %ymm3;
1287 vmovdqu %ymm0, 12 * 32(%rsi);
1288
1289 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1290 vpxor 13 * 32(%rdx), %ymm0, %ymm2;
1291 vmovdqu %ymm0, 13 * 32(%rsi);
1292
1293 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1294 vpxor 14 * 32(%rdx), %ymm0, %ymm1;
1295 vmovdqu %ymm0, 14 * 32(%rsi);
1296
1297 gf128mul_x2_ble(%ymm0, %ymm12, %ymm13, %ymm14, %ymm15);
1298 vpxor 15 * 32(%rdx), %ymm0, %ymm15;
1299 vmovdqu %ymm15, 0 * 32(%rax);
1300 vmovdqu %ymm0, 15 * 32(%rsi);
1301
1302 vextracti128 $1, %ymm0, %xmm0;
1303 gf128mul_x_ble(%xmm0, %xmm12, %xmm15);
1304 vmovdqu %xmm0, (%rcx);
1305
1306 /* inpack32_pre: */
1307 vpbroadcastq (key_table)(CTX, %r8, 8), %ymm15;
1308 vpshufb .Lpack_bswap, %ymm15, %ymm15;
1309 vpxor 0 * 32(%rax), %ymm15, %ymm0;
1310 vpxor %ymm1, %ymm15, %ymm1;
1311 vpxor %ymm2, %ymm15, %ymm2;
1312 vpxor %ymm3, %ymm15, %ymm3;
1313 vpxor %ymm4, %ymm15, %ymm4;
1314 vpxor %ymm5, %ymm15, %ymm5;
1315 vpxor %ymm6, %ymm15, %ymm6;
1316 vpxor %ymm7, %ymm15, %ymm7;
1317 vpxor %ymm8, %ymm15, %ymm8;
1318 vpxor %ymm9, %ymm15, %ymm9;
1319 vpxor %ymm10, %ymm15, %ymm10;
1320 vpxor %ymm11, %ymm15, %ymm11;
1321 vpxor 12 * 32(%rax), %ymm15, %ymm12;
1322 vpxor 13 * 32(%rax), %ymm15, %ymm13;
1323 vpxor 14 * 32(%rax), %ymm15, %ymm14;
1324 vpxor 15 * 32(%rax), %ymm15, %ymm15;
1325
1326 call *%r9;
1327
1328 addq $(16 * 32), %rsp;
1329
1330 vpxor 0 * 32(%rsi), %ymm7, %ymm7;
1331 vpxor 1 * 32(%rsi), %ymm6, %ymm6;
1332 vpxor 2 * 32(%rsi), %ymm5, %ymm5;
1333 vpxor 3 * 32(%rsi), %ymm4, %ymm4;
1334 vpxor 4 * 32(%rsi), %ymm3, %ymm3;
1335 vpxor 5 * 32(%rsi), %ymm2, %ymm2;
1336 vpxor 6 * 32(%rsi), %ymm1, %ymm1;
1337 vpxor 7 * 32(%rsi), %ymm0, %ymm0;
1338 vpxor 8 * 32(%rsi), %ymm15, %ymm15;
1339 vpxor 9 * 32(%rsi), %ymm14, %ymm14;
1340 vpxor 10 * 32(%rsi), %ymm13, %ymm13;
1341 vpxor 11 * 32(%rsi), %ymm12, %ymm12;
1342 vpxor 12 * 32(%rsi), %ymm11, %ymm11;
1343 vpxor 13 * 32(%rsi), %ymm10, %ymm10;
1344 vpxor 14 * 32(%rsi), %ymm9, %ymm9;
1345 vpxor 15 * 32(%rsi), %ymm8, %ymm8;
1346 write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
1347 %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
1348 %ymm8, %rsi);
1349
1350 vzeroupper;
1351
1352 ret;
1353 ENDPROC(camellia_xts_crypt_32way)
1354
1355 ENTRY(camellia_xts_enc_32way)
1356 /* input:
1357 * %rdi: ctx, CTX
1358 * %rsi: dst (32 blocks)
1359 * %rdx: src (32 blocks)
1360 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1361 */
1362
1363 xorl %r8d, %r8d; /* input whitening key, 0 for enc */
1364
1365 leaq __camellia_enc_blk32, %r9;
1366
1367 jmp camellia_xts_crypt_32way;
1368 ENDPROC(camellia_xts_enc_32way)
1369
1370 ENTRY(camellia_xts_dec_32way)
1371 /* input:
1372 * %rdi: ctx, CTX
1373 * %rsi: dst (32 blocks)
1374 * %rdx: src (32 blocks)
1375 * %rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1376 */
1377
1378 cmpl $16, key_length(CTX);
1379 movl $32, %r8d;
1380 movl $24, %eax;
1381 cmovel %eax, %r8d; /* input whitening key, last for dec */
1382
1383 leaq __camellia_dec_blk32, %r9;
1384
1385 jmp camellia_xts_crypt_32way;
1386 ENDPROC(camellia_xts_dec_32way)
This page took 0.10667 seconds and 6 git commands to generate.